Способ отбраковки потенциально ненадежных транзисторов

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности транзисторов, и может быть использовано для разделения транзисторов по надежности в процессе производства, а также на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность: проводят измерения коэффициента усиления транзисторов в схеме с общим эмиттером при нормальной и повышенной температурах. Для каждого транзистора вычисляют значение абсолютной разности Δ=h21Э100°С-h21Э20°C и значения относительного изменения коэффициента усиления K=h21Э100°C/h21Э100°C, где h21Э100°С, h21Э20°C - значения коэффициента усиления при повышенной и нормальной температуре соответственно. Отбраковывают транзисторы, если они удовлетворяют двум критериям одновременно: Δ≥Δсредн; K≥Kсредн, где Δсредн и Kсредн - среднее значение абсолютных разностей и относительного изменения в выборке для данного типа транзисторов. Технический результат: упрощение и повышение функциональных возможностей. 1 табл.

 

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности транзисторов и может быть использовано для разделения транзисторов по надежности в процессе производства, а также на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Известен способ [1] разделения полупроводниковых изделий, включающий измерение интенсивности шума до и после внешнего воздействия, и последующий отбор потенциально ненадежных изделий проводят по оценке коэффициентов увеличения интенсивности шумов каждого изделия после не менее 10 термоциклов в диапазоне допустимых крайних температур по сравнению с первоначальными значениями.

Недостатком способа является дополнительные измерения интенсивности шумов на специальном оборудовании.

Наиболее близким способом является способ [2] измерения критического напряжения питания (КНП) интегральных схем при нормальной и повышенной температуре кристалла, допустимой по техническим условиям, а отбор интегральных схем проводят по относительной величине изменения КНП, рассчитываемой по формуле:

К = Е к р . н о р м Е к р . п о в 1

где Екр.норм, Екр.пов - значения критического напряжения питания при нормальной и повышенной температуре соответственно.

Недостатком способа является дополнительные измерения критического напряжения питания.

Предлагаемое изобретение направлено на устранение этого недостатка и повышение функциональных возможностей способа.

Предлагаемый способ отбраковки потенциально ненадежных транзисторов основывается на измерении коэффициента усиления транзистора в схеме с общим эмиттером при нормальной и повышенной (предельно допустимой) температурах. Определяют абсолютную разность значений коэффициента усиления при повышенной и нормальной температурах и относительное изменение коэффициента усиления от температуры. Отбраковывают транзисторы, если они удовлетворяют двум критериям:

Δ = h 21 Э 100 ° С h 21 Э 20 ° С Δ с р е д н

К = h 21 Э 100 ° С h 21 Э 20 ° С К с р е д н

где h21Э100°C, h21Э20°C - значения коэффициента усиления при повышенной и нормальной температуре соответственно; Δсредн - среднее значение абсолютных разностей в выборке для данного типа транзисторов; Kсредн - среднее значение коэффициента усиления в выборке для данного типа транзисторов.

Способ был опробован на 11 транзисторах типа КТ 646 (кремневые транзисторы n-p-n-типа, средней мощности). В качестве информативного параметра выбран коэффициент усиления транзистора в схеме с общим эмиттером. Значения h21Э при нормальной температуре (20°C) и повышенной (100°C), абсолютные и относительные изменения коэффициента усиления для каждого транзистора и средние значения абсолютного и относительного изменения указаны в таблице.

Таблица
№ транзистора h21Э при Δ = h 21 Э 100 ° С h 21 Э 20 ° С К = h 21 Э 100 ° С h 21 Э 20 ° С
20°C 100°C
1 76 150 74 1,97
2 100 187 87 1,87
3 134 289 155 2,16
4 156 251 95 1,61
5 104 177 73 1,7
6 192 318 126 1,66
7 147 240 93 1,63
8 134 267 133 1,99
9 123 204 81 1,66
10 118 187 69 1,58
11 130 265 135 2,04
Δсредн=102 Kсредн=1,89

По первому критерию потенциально ненадежными транзисторами будут транзисторы №3, 6, 8, 11; по второму критерию - №1, 3, 8, 11. Таким образом, транзисторы №3, 8, 11 будут потенциально ненадежными, так как удовлетворяют обоим критериям.

Источники информации

1. Патент РФ №2289144, G01R 31/26, 2006.

2. Патент РФ №2365930, G01R 31/26, 2009.

Способ отбраковки потенциально ненадежных транзисторов, в соответствии с которым проводят измерение коэффициента усиления транзисторов в схеме с общим эмиттером при нормальной и повышенной температурах, отличающийся тем, что для каждого транзистора сначала вычисляют значения абсолютной разности коэффициента усиления при повышенной и нормальной температурах по формуле Δ=h21Э100°C - h21Э20°C, и значения относительного изменения коэффициента усиления от температуры по формуле K=h21Э100°C:h21Э20°C, где h21Э100°С, h21Э20°С - значения коэффициента усиления при повышенной и нормальной температурах, и отбраковывают транзисторы, если они удовлетворяют одновременно двум критериям: Δ≥Δсредн, K≥Kсредн, где Δсредн - среднее значение абсолютных разностей и Kсредн - среднее значение относительного изменения в выборке для данного типа транзисторов.



 

Похожие патенты:

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (ПИИ), и может быть использовано для сравнительной оценки надежности партий НИИ как на этапе производства, так и на входном контроле на предприятиях - изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к контрольно-испытательному оборудованию изделий электронной техники. .

Изобретение относится к радиационной испытательной технике и предназначено для использования в системах испытаний на радиационную стойкость радиоэлектронной аппаратуры.

Изобретение относится к технологии изготовления и способам тестирования матричных или линейных МОП мультиплексоров. .

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (диодов, транзисторов и интегральных схем), и может быть использовано для разбраковки по критерию потенциальной надежности как в процессе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к микроэлектронике, в частности к обеспечению надежности транзисторов. .

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с элементами с перестраиваемыми параметрами, вход которой соединен с генератором шума отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема дополнительно содержит второй отрезок линии передачи на выходе, две емкости, резистор, индуктивность, две контактные площадки для подачи питания к измеряемому четырехполюснику. Элементы с перестраиваемыми параметрами выполнены в виде полевых транзисторов с барьером Шотки. На затвор полевого транзистора подают управляющее напряжение от соответствующего источника. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема содержит второй центральный проводник в виде отрезка линии передачи, две емкости, резистор, индуктивность, элемент с перестраиваемыми параметрами в виде полевого транзистора с барьером Шотки и две контактные площадки для подачи питания к измеряемому четырехполюснику. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, в частности к способам тестирования параметров планарных полупроводниковых светодиодных гетероструктур (ППСГ) на основе GaN. Способ включает облучение светоизлучающей полупроводниковой гетероструктуры пучком электронов и возбуждение катодолюминесценции, причем возбуждение катодолюминесценции осуществляют облучением в импульсном режиме с длительностью импульса от 10 нс до 400 нс. Энергию электронов обеспечивают преимущественно 18 кэВ и выше. Технический результат заключается в уменьшении влияния неоднородности ионизационных потерь и в устранении деградации активных слоев ППСГ при измерениях. 2 ил.

Изобретение относится к микроэлектронике, а именно к обеспечению качества и надежности полупроводниковых изделий (ПЛИ), в частности транзисторов, и может быть использовано как на этапе производства, так и на этапе применения. Способ разделения транзисторов по надежности включает измерение низкочастотного шума, при этом измерение напряжения низкочастотного шума перехода эмиттер-база проводят до и после воздействия рентгеновским излучением дважды: после облучения половины дозы и полной дозы допустимой по техническим условиям, и по поведению параметра низкочастотного шума разделяют транзисторы на надежные и потенциально ненадежные. Технический результат - повышение достоверности способа без превышения допустимых воздействующих факторов. 1 ил.

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых постоянный, в паузах между ними измеряют температурочувствительный параметр - прямое падение напряжения на полупроводниковом диоде при малом измерительном токе - и определяют изменение температуры р-n-перехода. При этом модуляцию длительности импульсов греющего тока осуществляют по полигармоническому закону с заданным набором частот модуляции, вычисляют с помощью Фурье-преобразования мнимые и вещественные трансформанты температуры, по ним вычисляют значения амплитуд и фаз всех гармоник температуры, после чего определяют модули и фазы теплового импеданса на всех заданных частотах модуляции. Технический результат заключается в сокращении времени процесса измерения зависимости теплового импеданса от частоты модуляции греющей мощности и повышении оперативности контроля теплофизических параметров полупроводниковых диодов. 2 ил.

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с центральной линией передачи, электрических ключей - полупроводниковых приборов, управляемых постоянными напряжениями, измеритель частотных характеристик соединен с одним концом центральной линии передачи, другой ее конец - с измеряемым двухполюсником. В котором в качестве измерителя частотных характеристик используют измеритель спектральной плотности мощности шума, интегральная схема выполнена в виде монолитной интегральной схемы на полупроводниковой подложке, при этом отрезок линии передачи выполнен равным одной восьмой длины волны в линии передачи, в качестве электрических ключей используют полевые транзисторы с барьером Шотки и, по меньшей мере, в виде одной пары, при этом в каждой упомянутой паре исток одного полевого транзистора с барьером Шотки соединен с центральной линией передачи на расстоянии одной восьмой длины волны в линии передачи от места соединения измеряемого двухполюсника и между парами, его сток с одним концом отрезка линии передачи, другой конец которого соединен со стоком другого полевого транзистора с барьером Шотки, его исток заземлен, постоянные управляющие напряжения подают на затворы каждого полевого транзистора с барьером Шотки от соответствующего источника постоянного управляющего напряжения. Технический результат заключается в расширении рабочей полосы частот, в повышении точности измерения путем снижения погрешности измерения и в упрощении устройства при сохранении возможности автоматизации. 4 ил.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов, интегральных схем (ИС) и т.д.) и может быть использовано для сравнительной оценки надежности партий ППИ как в процессе производства, так и при входном контроле на предприятии-изготовителе радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что на произвольных одинаковых выборках из партий полупроводниковых изделий (не менее 25 штук от каждой партии) проводят измерение электрического информативного параметра до и после воздействия пятью импульсами ЭСР обеих полярностей, потенциалом, допустимым по техническим условиям, затем для последнего измерения вычисляют коэффициент конструктивно-технологического запаса для верхней и нижней норм параметра, далее находят среднее значение изменения величины информативного параметра. По значениям коэффициентов запаса и средних значений величин изменения информативного параметра оценивают сравнительную надежность двух партий. Технический результат: повышение функциональных возможностей способа.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность изобретения заключается в том, что проводят измерения информативного электрического параметра или параметров при нормальной температуре, после 100 ч электротермотренировки в режиме проведения испытаний на безотказность по техническим условиям, после проведения воздействия электростатическим разрядом допустимым напряжением, указанным в технических условиях, по пяти разрядам в обоих направлениях и затем проведение температурного отжига при максимально допустимой температуре по ТУ в течение 2-4 ч. По результатам испытаний и измерений определяют для каждого изделия коэффициент К, по которому определяется изделие пониженной надежности. Технический результат: повышение достоверности и расширение функциональных возможностей способа отбраковки полупроводниковых изделий пониженного уровня надежности качества из партии изделий повышенной надежности.

Способ разделения полупроводниковых изделий по надежности заключается в том, что на партии полупроводниковых изделий измеряют интенсивность шума на двух частотах 200 Гц и 1000 Гц. Вычисляют показатель формы спектра шума γ по формуле: , где и - квадрат эффективного значения шума соответственно на частотах f1 и f2, проводят воздействие рентгеновским облучением дозой, допустимой по техническим условиям, вновь измеряют интенсивность шума и вычисляют показатель формы спектра γ2. По величине коэффициента M, равного M=γ2/γ1, партию изделий разделяют на надежные и потенциально ненадежные изделия. Технический результат - повышение достоверности способа. 1 табл.
Наверх