Способ определения координат источника радиоизлучений коротковолнового диапазона

Изобретение может быть использовано для определения координат источника радиоизлучений (ИРИ), в частности для определения координат ИРИ коротковолнового (KB) диапазона. Сущность изобретения заключается в том, что в известный способ определения координат ИРИ KB диапазона, включающий прием радиосигналов несколькими разнесенными в пространстве постами пеленгации, частотную селекцию, определение линий пеленгов, весовую обработку и регистрацию, введены операции, при выполнении которых для каждого полученного пеленга строят трехмерный вектор измерения как вектор нормали к плоскости, проходящей через центр Земли, пеленгационную позицию и образующей линию пеленга при пересечении с поверхностью Земли, для каждого измеренного пеленга находят матрицу измерения размерностью 3×3 путем диадного произведения вектора измерения на его транспонированное значение, суммируют все полученные матрицы измерений, строят эллипсоид по задаваемым элементами суммарной матрицы коэффициентам уравнения второго порядка, определяют ориентацию эллипсоида в пространстве и находят подлежащие регистрации координаты ИРИ как координаты точки пересечения главной оси эллипсоида с поверхностью Земли. Достигаемый технический результат - повышение быстродействия при определении координат ИРИ в ходе радиомониторинга в дальней зоне. 5 ил.

 

Изобретение относится к радиотехнике и может быть использовано для определения координат источника радиоизлучений (ИРИ), в частности для определения координат ИРИ коротковолнового (КВ) диапазона в ходе радиомониторинга.

Современные системы связи широко используют КВ диапазон частот, обеспечивающий надежность связи, минимальную зависимость от условий окружающей среды и рельефа поверхности, возможность контакта с любой точкой Земли, высокую устойчивость к помехам [1]. КВ диапазон также активно используется в системах загоризонтной радиолокации [2] и пассивной локации [3]. Определение координат ИРИ КВ диапазона является важной задачей радиомониторинга [4 с.374], в частности при необходимости принятия решения о мерах реагирования [5, с.354, 416, 511] при обнаружении сигналов ИРИ (подавление путем использования активных помех, силового воздействия и других средств, семантический анализ, создание ложных целей и т.п.). Наибольшую сложность представляет определение координат подвижных ИРИ (авиация, морской флот, автотранспорт), работающих в режиме ограниченного времени. При радиомониторинге сигналов в дальней зоне (на предельно больших расстояниях) наиболее эффективным является триангуляционное местоопределение ИРИ, для реализации которого используется несколько постов пеленгации (ПП), размещенных на значительных расстояниях друг от друга.

Быстродействие определения координат ИРИ является важным параметром при радиомониторинге, в особенности при принятии решения о мерах реагирования на вновь обнаруженный ИРИ.

Известен способ определения координат ИРИ КВ диапазона, описанный в [6, с.585-586]. Способ включает прием радиосигналов несколькими разнесенными в пространстве ПП, частотную селекцию, определение линий пеленгов, весовую обработку и регистрацию полученных данных, после чего вычисляют координаты всех попарных пересечений пеленгов на геосфере, для каждой засечки определяют ее вес с учетом погрешности измерения пеленгов, дальность от каждого ПП до ИРИ и угла схождения пеленгов в засечке. Координаты ИРИ оценивают усреднением координат засечек с учетом их веса.

Но быстродействие процесса определения координат ИРИ при использовании известного способа низкое. Это объясняется тем, что для обеспечения точности пеленгования, необходимой для принятия решения о мерах реагирования на появление ИРИ, приходится производить многократное повторное измерение и отбор пеленгов с использованием сложной вычислительной процедуры вследствие влияния состояния ионосферы и изменения поляризации контролируемого сигнала. С увеличением расстояний от каждого ПП до ИРИ, их различия, базы пеленгования это влияние усиливается [7, с.221], появляются зоны молчания и неопределенности, в которых определение местоположения ИРИ проблематично.

Для компенсации ошибок пеленгования, вызванных влиянием ионосферы, используют долговременное прогнозирование состояния ионосферы [8]. Но при пеленговании в дальней зоне и значительных расстояниях между ПП появляется многозначность в данных долгосрочного прогнозирования состояния ионосферы, а в случае непредсказуемого при радиомониторинге района нахождения ИРИ учет данных прогнозирования становится невозможным.

Известен способ определения координат ИРИ (радиолокационных станций - РЛС), основанный на сопоставлении принимаемых сигналов неизвестной РЛС с известной картой местности [9]. Способ включает прием ПП радиосигналов ИРИ, частотную селекцию, определение линий пеленгов, регистрацию и сопоставление полученных данных с картой известной местности. Для большей достоверности воспроизводимой информации при приеме сигналов РЛС вводится коррекция на коэффициент 1/(1-cosβη), где βη - текущее значение азимута. Коррекция выравнивает задержки распространения сигналов, отраженных от целей и «местников», с задержкой распространения зондирующего сигнала РЛС и приближает изображение источника на индикаторе обзора ПП к изображению неизвестной РЛС, за счет чего повышается быстродействие местоопределения ИРИ.

Способ позволяет не только определять координаты РЛС, но и следить за неизвестными целями пассивным методом.

Недостатком известного способа является зависимость быстродействия определения координат источника от режима работы РЛС. Кроме того, недостатком известного способа является также узкая функциональная направленность, не позволяющая его использовать при определении координат других видов ИРИ.

Наиболее близким по технической сущности к заявляемому объекту является способ определения координат ИРИ КВ диапазона, сущность которого описана в [10] (прототип). Способ включает прием сигналов в нескольких точках пространства, частотную селекцию, определение линий пеленгов, весовую обработку и регистрацию полученных данных. Линии пеленгов определяют в плоскости пеленгаторной антенны, а по результатам весовой обработки формируют вспомогательные плоскости, ортогональные плоскости пеленгаторной антенны и проходящие через каждую полученную линию пеленга. Определяют линии положения ИРИ как линии пересечения каждой вспомогательной плоскости с поверхностью Земли и вычисляют координаты ИРИ как точки пересечения линий положения ИРИ.

Способ позволяет существенно повысить быстродействие и точность определения координат ИРИ в ближней зоне радиомониторинга.

Однако при контроле сигналов в дальней зоне радиомониторинга быстродействие при определении координат известным способом недостаточно, в частности для принятия тех или иных мер реагирования. Это объясняется тем, что известный способ основывается на представлении части поверхности Земли в виде плоскости, на которой производят операции местоопределения ИРИ. Но в дальней зоне радиомониторинга сферичность поверхности приведет к искажению значений координат и, соответственно, к увеличению пространства ошибок [11, с.259, 260]. Оценка точки наиболее вероятных координат ИРИ с допустимой для принятия решения о мерах реагирования ошибкой требует сложной процедуры разрешения пространственного многогранника ошибок, многократного повторного пеленгования, снижающего быстродействие при местоопределении ИРИ, и в случаях подвижного ИРИ и ограниченного времени излучения неэффективна. Быстродействие процесса местоопределения ИРИ при использовании известного способа ограничивается также временем полета летательного аппарата, на котором размещен ПП.

Целью изобретения является повышение быстродействия и точности определения координат ИРИ в дальней зоне радиомониторинга.

Поставленная цель достигается за счет того, что в известный способ определения координат ИРИ КВ диапазона, включающий прием радиосигналов несколькими разнесенными в пространстве ПП, частотную селекцию, определение линий пеленгов, весовую обработку и регистрацию, введены операции, при выполнении которых для каждого полученного пеленга строят трехмерный вектор измерения как вектор нормали к плоскости, проходящей через центр Земли, пеленгационную позицию и образующей линию пеленга при пересечении с поверхностью Земли, для каждого измеренного пеленга находят матрицу измерения размерностью 3×3 путем диадного [12, с.509] произведения вектора измерения на его транспонированное значение, суммируют все полученные матрицы измерений, строят эллипсоид по задаваемым элементами суммарной матрицы коэффициентам уравнения второго порядка, определяют ориентацию эллипсоида в пространстве и находят подлежащие регистрации координаты ИРИ как координаты точки пересечения главной оси эллипсоида с поверхностью Земли.

Введение новых операций позволяет существенно повысить быстродействие при определении координат ИРИ в ходе радиомониторинга в дальней зоне за счет исключения процедуры многоэтапной оценки пространственных ошибок и определения точки наиболее вероятных координат ИРИ, что дает возможность обеспечить своевременное принятие мер реагирования и достоверной регистрации ИРИ.

Сочетание отличительных признаков и свойства предлагаемого способа определения координат ИРИ КВ диапазона из патентных источников не известны, поэтому он соответствует критериям новизны и изобретательского уровня.

На фиг.1 приведена функциональная схема комплекса средств определения координат ИРИ, реализующего предложенный способ;

на фиг.2 - сферическая система координат при пеленговании ИРИ;

на фиг.3 - схема построения вектора измерения;

на фиг.4 - схема построения плоскости измерений;

на фиг.5 - схема определения координат ИРИ.

Комплекс средств определения координат ИРИ (фиг.1), реализующий предлагаемый способ, содержит N разнесенных в пространстве постов 1 пеленгации (ПП 1), каждый из которых включает в себя последовательно соединенные антенную систему 2 (АС 2), приемник 3 (ПР 3), модуль 4 вычисления пеленга (МВП 4), кодек 5 и модуль 6 спутниковой связи (МСС 5). Второй выход антенной системы 2 соединен с вторым входом модуля 7 вычисления пеленга, а выход кодека 5 подключен к второму входу приемника 3. Комплекс содержит также пост 8 обработки информации (ПОИ 8), включающий в себя последовательно соединенные модуль 9 управления (МУ 9), кодер 10 команд (КК 10), модуль 11 приема и передачи данных (МППД 11), декодер 12 сигналов постов пеленгации (ДСПП 12), цифровой сигнальный процессор 13 (ЦСП 13) и модуль 14 картографирования и индикации (МКИ 14). Второй выход модуля 9 управления соединен с вторым входом модуля 14 картографирования и индикации, а второй выход декодера 12 сигналов постов пеленгации через модуль 15 весовой обработки (МВО 15) подключен к второму входу цифрового сигнального процессора 13 и к третьему входу модуля 14 картографирования и индикации. Вход модуля 9 управления является входом поста 8 обработки информации.

Способ определения координат ИРИ КВ диапазона реализуется следующим образом.

При радиомониторинге сигналов в дальней зоне приходится определять координаты ИРИ при удалении в сотни и тысячи километров от ПП (13, с.223). В этих условиях известные способы определения координат ИРИ по результатам его многопозиционного пеленгования, основанные на применении взвешенного усреднения координат точек пересечения пеленгов (засечек), требуют выполнения N*(N-1)/2 решений сферических треугольников, где N - количество пеленгаторов, образующих при суммировании пространственный многогранник возможных координат. Разрешение пространственного многогранника не обеспечивает требуемое быстродействие и точность измерений при местоопределении ИРИ и не позволяет определить точку наиболее вероятных координат ИРИ, необходимую для оценки возможности принятия мер реагирования и их достаточности.

При выполнении предлагаемого способа определения координат ИРИ КВ диапазона используется N ПП (стационарных или мобильных) с известными координатами

i}, i=1, …, N.

С каждой позиции выполняется измерение пеленга на ИРИ

i}, i=1, …, N

с погрешностями измерений (среднеквадратическими ошибками)

i}, i=1, …, N.

В ходе обработки результатов измерений должна быть найдена оценка координат ИРИ:

v ^ = a r g m i n v Ф ( v ) ( 1 )

где Ф(v) - функционал обобщенной квадратичной невязки измерений:

Ф ( v ) = i = 1 N ( Δ Θ i ( v ) σ i ) 2 , ( 2 )

ΔΘi(v)=Θi-fi(v),

fi(v)=azimuth(Пi,v) - пеленг с i-той позиции ПП на точку v.

В трехмерной декартовой системе координат с началом в центре геосферы единичного радиуса

v T v = 1 ( 3 )

где Т - символ транспонирования вектора [13, с.7], отклонение измеренного значения пеленга от истинного направления на точку V на геосфере может быть представлено в виде:

Δ Θ i ( v ) η i T v s i n δ i , ( 4 )

где ηi - единичный вектор нормали к большому кругу i-го пеленга;

δi - угловая дальность до ИРИ от i-ой позиции Пi (угловое разнесение точек при взгляде из центра геосферы).

При подстановке выражения (4) в функционал невязки (2):

Ф ( v ) = i = 1 N ( Δ Θ i ( v ) σ i ) 2 = i = 1 N ( η i T v σ i s i n δ i ) 2 = i = 1 N ( v T η i ) ( η i T v ) ( σ i s i n δ i ) 2 = v T A v , ( 5 )

где A = i 1 N η i η i T ( σ i s i n δ i ) 2 ( 6 )

- информационная матрица местоопределения - симметричная 3×3 матрица ковариаций векторов измерения

n i = η i v σ i s i n δ i , ( 7 )

минимизация функционала (5) с ограничением (3) сводится методом множителей Лагранжа к задаче безусловной минимизации обобщенного функционала Ф'(v):

Ф ' ( v ) = v T A v λ v T v , ( 8 )

где λ - множитель Лагранжа [11, с.335],

а после дифференцирования (8) и приравнивания производной к 0 - к задаче о собственных значениях матрицы А:

A v = λ v . ( 9 )

Таким образом, оценка координат (1) сводится к задаче о собственных значениях (9) для информационной матрицы (6), а алгоритм оценки координат - к следующей последовательности действий:

- для каждого полученного пеленга строят трехмерный вектор измерения ni как вектор нормали к плоскости, проходящей через центр Земли [14, с.87] и образующей линию пеленга при пересечении с геосферой;

- для каждого измеренного пеленга находят матрицу Ai измерения размерностью 3×3 путем диадного [12, с.509] произведения вектора измерения на его транспонированное значение;

- суммируют все полученные матрицы измерений Ai;

- строят эллипсоид по задаваемым элементами суммарной матрицы коэффициентам уравнения второго порядка;

- определяют ориентацию эллипсоида в пространстве;

- находят подлежащие регистрации координаты ИРИ как координаты точки пересечения главной оси эллипсоида с поверхностью Земли.

Весь цикл определения координат ИРИ предлагаемым способом может быть реализован с помощью комплекса средств пеленгования ИРИ, функциональная схема которого приведена на фиг.1.

Команда на радиомониторинг заданного района в дальней зоне с модуля 9 управления через кодер 10 команд, причем кодированная команда управления содержит адрес ПП (условный номер) и координаты района пеленгования, и модуль 11 приема и передачи данных подается на модуль 6 спутниковой связи каждого поста 1 пеленгации. Команда декодируется кодеком 5 и поступает на приемник 3, обеспечивающий выделение сигналов ИРИ в широкой полосе КВ диапазона частот.

Сигнал fc ИРИ поступает на антенную систему 2 каждого поста 1

пеленгации и далее на информационный вход приемника 3. Прежде всего приемник 3 определяет электромагнитную доступность сигнала ИРИ для контроля. Вероятность правильного решения о наличии сигнала в полосе Δf определяется в соответствии с выражением [15, с.42]

Pправ=1-Fс+ш(h,ΔfTc),

где Рправ - вероятность правильного решения о наличии сигнала;

Fс+ш(h,ΔfTc)- интегральная функция условного распределения вероятностей процесса на входе решающего устройства приемника 3, соответствующая действию сигнала и шума на входе.

Посты 1 пеленгации, не обеспечивающие требуемого значения Рправ из дальнейшего процесса мониторинга данного ИРИ могут быть исключены.

Выделенный и продетектированный сигнал ИРИ с выхода приемника 3 поступает на модуль 4 вычисления пеленга одновременно с сигналом ориентации антенной системы 2. Полученное значение пеленга подается на кодек 5 и далее по информационной шине на модуль 6 спутниковой связи с командным постом 8. В модуле 6 сигнал пеленга переносится на частоту fПn.

Радиосигналы, содержащие кодированные значения пеленгов ИРИ, поступают на модуль 11 командного поста 8, демодулируется (снимается частота fПn) и подаются на декодер 12 сигналов ПП и далее - на модуль 15 весовой обработки.

Среднеквадратическая ошибка определения дальности при двух симметричных относительно биссектрисы угла ψ схождения пеленгов определяется выражением [16, с.175]:

σ D D σ 2 s i n ( ψ / 2 ) ,

где σ - среднеквадратическая погрешность измерения пеленга;

D - дальность от ПП до ИРИ.

При разных D величина возможной ошибки может увеличиваться.

Модуль 15 обеспечивает путем попарной обработки отбор (аналогично [10]) пеленгов для определения координат ИРИ, обеспечивающих минимальную среднеквадратическую ошибку. Значения этих пеленгов подаются на цифровой сигнальный процессор 13 для последующей обработки, в ходе которой определяются: векторы измерений ni, матрицы измерений Ai, информационная матрица A, строится информационный эллипсоид местоопределения, находятся вектор главной оси эллипсоида и координаты ИРИ.

С использованием представления вектора измерения ni в выбранной системе координат

n i = ( n i x n i y n i z )

матрица Ai измерений принимает вид:

A i = n i n i T = ( n i x n i y n i z ) ( n i x n i y n i z ) = ( n i x 2 n i x n i y n i x n i z n i x n i y n i y 2 n i y n i z n i x n i z n i y n i z n i z 2 ) ,

а информационная матрица А местоопределения представляется в виде

A = ( a x x a x y a x z a x y a y y a y z a x z a y z a z z ) = i = 1 N A i = i = 1 N n i n i T = ( i = 1 N n i x 2 i = 1 N n i x n i y i = 1 N n i x n i z i = 1 N n i x n i y i = 1 N n i y 2 i = 1 N n i y n i z i = 1 N n i x n i z i = 1 N n i y n i z i = 1 N n i z 2 ) .

Построение информационного эллипсоида местоопределения осуществляется с помощью цифрового сигнального процессора 13 следующим образом. Уравнение эллипсоида в векторном виде:

vTAv=1, где v = ( x y z ) ,

или в координатном виде:

a x x x 2 + a y y y 2 + a z z z 2 + 2 a x y x y + 2 a x z x z + 2 a x z y z = 1 ( 1 0 )

Поворотом [17, с.91] системы координат (СК) при помощи матрицы преобразования координат

V = ( v 1 v 2 v 3 ) T , ( 1 1 )

( x ' y ' z ' ) = V ( x y z ) = ( v 1 v 2 v 3 ) T ( x y z ) = ( v 1 x v 1 y v 1 z v 2 x v 2 y v 2 z v 3 x v 3 y v 3 z ) ( x y z )

где v1, v2, v3 - базис новой СК,

уравнение эллипсоида может быть приведено к каноническому виду:

x ' 2 a 2 + y ' 2 b 2 + z ' 2 c 2 = 1 , ( 1 2 )

где а≥b≥с>0 - полуоси эллипсоида.

При этом оси новой СК совпадают с осями эллипсоида, а векторы v1, v2, v3 нового базиса являются собственными векторами матрицы A, то есть удовлетворяют уравнению (9). Для нахождения вектора главной оси v1, соответствующего оси ОХ' новой СК, находится меньшее из собственных значений матрицы A, которые являются корнями характеристического уравнения det(A-λI)=0, где det(·) - детерминант единичной матрицы [17, с.96], I - единичная матрица:

I = ( 1 0 0 0 1 0 0 0 1 ) .

Уравнение для определения λ:

d e t ( A λ I ) = d e t ( a x x λ a x y a x z a x y a y y λ a y z a x z a y z a z z λ ) = ( a x x λ ) ( a y y λ ) ( a z z λ ) + ( 1 3 ) + 2 a x y a y z a x z a y z 2 ( a x x λ ) a x z 2 ( a y y λ ) a x y 2 ( a z z λ ) = 0

после раскрытия скобок и группировки слагаемых сводится к кубическому относительно λ уравнению

λ 3 + ρ λ 2 + q λ + r = 0 ( 1 4 )

где ρ=-a xx-a yy-a zz;

q = a x x a y y + a x x a z z + a y y a z z a x y 2 a x z 2 a y z 2 ;

r = a x x a y z 2 + a y y a x z 2 + a z z a x y 2 a x x a y y a z z 2 a x y a x z a y z

Решение уравнения (14) дает корни λ1, λ2, λ3, соответствующие полуосям эллипсоида (12):

λ 1 = 1 a 2 , λ 2 = 1 b 2 , λ 3 = 1 c 2 .

Результат подстановки λ1 в уравнение (9) дает координаты направляющего вектора v1 главной оси эллипсоида:

v 1 = ( v 1 x v 1 y v 1 z ) = ( a x y a y z ( a y y λ 1 ) a x z ( a x x λ 1 ) a y z a x y a x z ( a x x λ 1 ) ( a x x λ 1 ) a x y 2 ) ( 1 5 )

Отсюда координаты ИРИ:

долгота α = a r c t g ( v 1 z v 1 x ) , широта β = ( v 1 z v 1 x 2 + v 1 y 2 + v 1 z 2 ) .

Выходной сигнал цифрового сигнального процессора 13 подается на модуль 14 картографирования и индикации, одновременно регистрирующий команду и использованные при определении координат пеленги (ПП). Результатом является точка наиболее вероятных координат ИРИ, а повышение быстродействия и точности дает возможность своевременно принимать меры действенного реагирования при обнаружении ИРИ в ходе радиомониторинга.

Графически преобразования в ходе использования предлагаемого способа иллюстрируются фиг.2-5. Фиг.2 приводит СК [14, с.87], адаптированную к предложенному циклу измерений. Фиг.3 показывает графически построение вектора измерения n, фиг.4 - построение плоскости измерений ПИ, фиг.5 - определение координат ИРИ. На фиг.2-5 приняты следующие обозначения: СП - северный полюс; Э - экватор; НМ -начальный меридиан; е - вектор; α - долгота; β - широта; М - меридиан, проходящий через точку е, (П); П - позиция пеленгатора; ЛП - линия пеленга; Θ - значение пеленга; ИЭ - информационный эллипсоид.

Управление постами 1 пеленгации может быть организовано аналогично, например, комплексу средств по патенту RU №2391619 [18] с использованием аппаратных средств, приведенных, например, в книге [19, с.17, 183].

Цифровой сигнальный процессор 13 может быть выполнен, например, на базе процессоров Texas Instruments TMS 320 С 6416/6713 и ПЛИС [20].

Таким образом, предлагаемый способ позволяет существенно повысить быстродействие определения координат ИРИ в дальней зоне радиомониторинга. Компьютерное моделирование показало эффективность и достаточность технических решений. В ходе экспериментальных исследований была показана возможность повышения быстродействия определения координат ИРИ в дальней зоне радиомониторинга в 3-6 раз, при этом точность местоопределения может быть повышена на 15-25%.

Источники информации

1. Головин В.В., Простое С.П. Системы и устройства коротковолновой радиосвязи. - М.: Горячая линия - Телеком, 2006.

2. Основы загоризонтной радиолокации. А. Алебастров и др. Под. ред. А.А. Колосова. - М.: Радиосвязь, 1984.

3. Караваев В.В., Сазонов В.В. Статическая теория пассивной локации. - М.: Радио и связь, 1987.

4. Рембовский A.M., Ашихмин А.В., Козьмин В.А. Радиомониторинг - задачи, методы, средства. - М.: Горячая линия - Телеком, 2010.

5. Куприянов А.И., Шустов Л.Н. Радиоэлектронная борьба. Основы теории. - М.: Вузовская книга, 2011.

6. Кукес И.С., Старик М.Е. Основы радиопеленгации. - М.: «Сов. радио», 1964.

7. Вартанесян В.А., Гойхман Э.Ш., Рогаткин М.И. Радиопеленгация. Военное издательство МО СССР, Москва, 1966.

8. Агафонников Ю.М., Лянной Б.Е., Лобачевская B.C. Влияние ионосферы при флуктуации азимутальных углов прихода радиоволн. Сборник статей «Исследование распространения коротких радиоволн». Изд. «Наука», Москва, 1973.

9. Пассивный метод определения местоположения РЛС. Патент США №4176377, МКИ G01S 5/02, 1979.

10. Способ определения координат источника радиоизлучений при амплитудно-фазовой пеленгации с борта летательного аппарата. Патент RU №2432580 C1, МПК G01S 1/08, приоритет 03.08.2010.

11. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации. - М.: Радио и связь, 1992.

12. Корн Г., Корн Т.. Справочник по математике для научных работников и инженеров. - М.: «Наука». Главная редакция физико-математической литературы, 1984.

13. Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы. - М.: Радио и связь, 1986.

14. Куштин И.Ф.. Геодезия. - М.: «Издательство ПРИОР», 2001.

15. Куприянов А.И., Петренко П.Б., Сычев М.П. Теоретические основы радиоэлектронной разведки. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2010.

16. Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. - М.: Радиотехника, 2008.

17. Александров П.С. Курс аналитической геометрии и линейной алгебры. - М.: Наука, Главная редакция физико-математической литературы, 1979.

18. Комплекс средств автоматизации системы управления боевыми средствами. Патент RU №2391619, МПК F41H 11/02, опубликован 10.06.2010.

19. Спилкер Дж. Цифровая спутниковая связь. - М.: Связь, 1979.

20. Потехин Д.С., Тарасов И.Е. Разработка систем цифровой обработки сигналов на базе ПЛИС. - М.: Горячая линия - Телеком, 2007.

Способ определения координат источника радиоизлучений коротковолнового диапазона, включающий прием радиосигналов несколькими разнесенными в пространстве постами пеленгации, частотную селекцию, определение линий пеленгов, весовую обработку и регистрацию, отличающийся тем, что для каждого полученного пеленга строят трехмерный вектор измерения как вектор нормали к плоскости, проходящей через центр Земли, пеленгационную позицию и образующей линию пеленга при пересечении с поверхностью Земли, для каждого измеренного пеленга находят матрицу измерения размерностью 3×3 путем диадного произведения вектора измерения на его транспонированное значение, суммируют все полученные матрицы измерений, строят эллипсоид по задаваемым элементами суммарной матрицы коэффициентам уравнения второго порядка, определяют ориентацию эллипсоида в пространстве и находят подлежащие регистрации координаты источника радиоизлучений как координаты точки пересечения главной оси эллипсоида с поверхностью Земли.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к пеленгаторам. .

Изобретение относится к радиотехнике и может быть использовано для пеленгования источников радиосигналов с псевдослучайной перестройкой рабочей частоты (ППРЧ) в коротковолновом (KB) диапазоне.

Изобретение относится к радиотехнике и может быть использовано для определения координат источников радиоизлучений (ИРИ), в частности для определения координат ИРИ при амплитудно-фазовой пеленгации с борта летательного аппарата (ЛА).

Изобретение относится к радиотехнике. .

Изобретение относится к способу и системам управления летательными аппаратами и может быть использовано для измерения координат по тангажу и курсу. .

Изобретение относится к радиопеленгации, а именно к системам, обеспечивающим определение пространственного местоположения объекта, например летательного аппарата (ЛА).

Изобретение относится к радиопеленгации, а именно к средствам, обеспечивающим определение пространственного местоположения объекта, например летательного аппарата (ЛА).

Изобретение относится к пеленгации с использованием электромагнитного излучения, в том числе радиопеленгации, а именно к системам, обеспечивающим определение пространственного местоположения объекта, например летательного аппарата (ЛА), и азимутального и угломестного направлений на соответствующий маяк.

Изобретение относится к радиотехнике и используется как аварийно-спасательный радиомаяк для передачи аварийного сообщения через искусственные спутники Земли системы КОСПАС-САРСАТ на станции приема и обработки информации аварийного сообщения. Достигаемый технический результат - улучшение чистоты спектра выходного сигнала, уменьшение фазовых шумов, повышение точности определения координат, сокращение времени поиска, повышение надежности радиомаяка, уменьшение его массы и габаритов. Указанный результат достигается за счет того, что аварийный радиобуй содержит радиомодуль с аварийным и приводным каналами, передающую антенну, блок питания, программируемую логическую интегральную схему (ПЛИС), диплексер, навигационный приемник с приемной антенной, инфракрасный светодиод, постоянное запоминающее устройство и память конфигурации, при этом ПЛИС содержит сформированные в цифровом формате функциональные модули для программирования синтезаторов, формирования сигналов модуляции аварийного и приводного каналов радиомаяка и изменения литеры несущей частоты радиобуя и соединительные контакты, аварийный канал радиобуя включает задающий генератор, первый синтезатор с генератором, управляемым напряжением, второй синтезатор с генератором, управляемым напряжением, цифроаналоговый преобразователь, смеситель, последовательно соединенные фильтр нижних частот, усилитель мощности и полосовой фильтр частоты 406 МГц, приводной канал содержит задающий генератор, синтезатор с генератором, управляемым напряжением, усилитель мощности и полосовой фильтр. 3 з.п. ф-лы, 3 ил.

Устройство обработки сигналов навигационного радиолокатора может быть использовано в судовых радиолокаторах надводной обстановки. Достигаемый технический результат - уменьшение времени швартовки без уменьшения безопасности движения судна. Указанный результат достигается благодаря введению отражателя в месте швартовки судна, при отсутствии судна, телевизионного датчика, встроенного в индикатор, видеоконтрольного устройства и датчика координат места швартовки, при этом передающее устройство имеет электромагнитную связь через отражатель в месте швартовки судна, при отсутствии судна, с приемным устройством, при этом оптический выход индикатора соединен с оптическим входом телевизионного датчика, встроенного в индикатор, причем телевизионный датчик имеет группу выходов, соединенную с группой входов видеоконтрольного устройства и первой группой входов блока вторичной обработки, вторая группа входов которого соединена с группой выходов датчика координат места швартовки. 1 ил.

Изобретение относится к радиотехнике и может использоваться для определения местоположения источника радиоизлучения (ИРИ). Достигаемый технический результат - повышение селективности ИРИ. Указанный результат достигается за счет многократной пеленгации и фиксации параметров радиоизлучения с разных точек траектории полета, сравнения текущих значений этих параметров с их значениями от каждого предыдущего отсчета и регистрации полученных данных только в случае совпадения в допустимых пределах сравниваемых значений, что обеспечивает высокую достоверность идентификации истинного ИРИ и снижает вероятность ложных тревог, учитывают также исключительно те значения координат, которые попадают в поле допуска, зафиксированного относительно полученных по результатам предыдущего отсчета. 2 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике и может быть использовано при пеленгации источников радиоизлучений (ИРИ) коротковолнового (KB) диапазона. Достигаемый технический результат изобретения - повышение быстродействия обработки сигналов ИРИ KB диапазона, находящихся в трехмерном пространстве, при многоканальной фазовой пеленгации. Указанный результат достигается за счет того, что в заявленном устройстве осуществляют частотную селекцию принятого сигнала и измерение фазы сигнала на каждом элементе АР, затем на частоте ИРИ оценивают фазу сигнала в геометрическом центре АР, на каждом элементе АР определяют фазу сигнала относительно фазы в геометрическом центре АР, формируют матрицу координат и матрицу направленности АР, определяют сферическую поверхность нахождения вектора прихода плоской волны, находят вспомогательный вектор, определяющий центр области возможных ошибок измерения волнового вектора, строят семейство подобных эллипсоидов ошибок с общим найденным центром, определяют точку касания эллипсоида из построенного семейства с сферической поверхностью, после чего находят вектор прихода сигнала и соответствующие ему азимут и угол места. 2 ил.

Группа изобретений относится к навигационным системам. Достигаемый технический результат - расширение ассортимента радиокомпасов, что достигается за счет использования в них определителя рассогласования продольной оси радиокомпаса с направлением на радиомаяк. Указанный результат достигается тем, что определяют направление на радиомаяк посредством излучения в сторону радиомаяка и переизлучения им электромагнитной энергии обратно следующим образом. Из двух точек радиокомпаса (как выполнен, смотри ниже), с базовым L расстоянием между точками, на радиомаяк излучают два непрерывных сигнала с частотной модуляцией по одностороннему пилообразно линейно возрастающему закону (НЛЧМ сигнал), с близкими частотами f1 и f2 НЛЧМ сигнала и одинаковыми его частотой модуляции Fm и девиацией частоты dfm, которые: принимают на радиомаяке, усиливают по мощности и переизлучают в сторону радиокомпаса, где их перемножают с излученными НЛЧМ сигналами и выделяют сигналы: Fpi=2DiFmdfm/C-2Vif1/C и Fpj=2DjFmdfm/C-2Vif2/C, где Di и Dj - расстояние между антеннами радиокомпаса и антенной радиомаяка, перемещающегося со скоростью Vi, C - скорость света, а затем, после перемножения сигналов с частотами Fpi и Fpj, выделяют разностный сигнал частотой f3=Fpi-Fpj, величина которой, при совпадении линии расположения антенн радиокомпаса с направлением на радиомаяк, или перпендикуляра, восстановленного из середины линии расположения антенн радиокомпаса, с направлением на радиомаяк, независимо от расстояния между радиокомпасом и радиомаяком, является конкретной и позволяет утверждать, что при обнаружении на радиокомпасе сигнала частотой f3, направление на радиомаяк определено. Радиокомпас содержит радиомаяк и двухчастотный частотный дальномер с двумя антеннами, установленными на базовом L расстоянии между собой, выходы фильтров разностных частот которого, через последовательно соединенные смеситель и узкополосный полосовой фильтр, подключены к схеме включения сигнализации. А радиомаяк содержит антенну, полосовой фильтр и усилитель мощности. 3 н.п. ф-лы.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Достигаемый технический результат - возможность селекции источника сигналов в трехмерном пространстве. Технический результат достигается тем, что устройство для определения направления на источник сигнала содержит первую магнитную антенну, вторую магнитную антенну, перпендикулярную первой магнитной антенне, третью антенну, шесть усилителей, двенадцать аналого-цифровых преобразователей (АЦП), персональную электронно-вычислительную машину (ПЭВМ или микропроцессору), содержит также блок системы единого времени (GPS или Глонасс) и блок связи с абонентами, подключенные к ПЭВМ, три смесителя, двенадцать управляемых фильтров, шесть коммутаторов, четыре цифроаналоговых преобразователя (ЦАП), три калибратора, формирователь, гониометр, выполненный определенным образом, причем первый, второй, третий, четвертый, пятый и шестой усилители выполнены управляемыми по фазовому сдвигу и усилению с управляющими входами, подключенными к ПЭВМ, третья антенна выполнена магнитной и ориентирована перпендикулярно первой и второй магнитным антеннам. Перечисленные средства выполнены и соединены между собой определенным образом. 2 ил.
Изобретение относится к области обеспечения поисково-спасательных операций при авариях летательных и подводных объектов. Способ определения места крушения движущегося объекта характеризуется использованием устройств, снабженных воздухо- и водоплавающими носителями, активируемыми после отделения устройств от объекта, радиомаяками, идентификатором и навигатором, накопителями информации о состоянии объекта, системой связи и демаскирующими элементами для уверенного поиска и определения координат цепочки устройств на поверхности, по которой локализуют трассу и место непосредственно крушения объекта. Изобретение направлено на повышение эффективности поисково-спасательных работ. 2 з.п. ф-лы.

Изобретение относится к области приборостроения и касается дальнейшего совершенствования амплитудных датчиков фасеточного типа, участвующих в решении задач навигации, ориентации, стабилизации и положения мобильных объектов по Солнцу или источнику иной интенсивности. Способ разрешает проблему синтеза положенной относительной пеленгационной характеристики датчика, которая определяет позицию энергетического центра отдаленного лучистого источника относительно главной оси прямоугольной системы координат мобильного объекта. Сущность способа заключается в замене пассивных детекторов излучения - фотонных приемников датчика на гибридные пассивные модули, включающие пассивный детектор излучения с фронтально-плоской чувствительной поверхностью и пару тонких светонепроницаемых вертикальных стенок, расположенных по бокам вдоль угловой оси прямоугольной системы координат датчика, синтезировании с помощью гибридных пассивных модулей положенной относительной пеленгационной характеристики. Синтезирование - объединение конкретного набора гибридных модулей, что разрешает оптимизировать измерительные параметры датчика под решаемую задачу. Устройство - датчик (пассивный пеленгатор), реализующее способ, демонстрирует при соответствующем конструктивном и технологическом подходе построения путь получения минимальных значений величин массы, объема и электропотребления. Способ и устройство, реализующее способ, открывают новое направление построения пассивных фотоэлектрических пеленгаторов с обзорными окнами 10-360 градусов, по каждой координате, при минимальной погрешности угловых измерений в них. 2 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к радиотехнике и может быть использовано для определения координат наземных источников радиоизлучения (ИРИ) при радиопеленговании с борта летательного аппарата (ЛА). Достигаемый технический результат - повышение точности определения координат наземных ИРИ и снижение вычислительных затрат при радиопеленговании с борта ЛА. Указанный результат достигается за счет того, что осуществляют прием радиосигналов бортовой пеленгаторной антенной (БПА), частотную селекцию радиосигналов, определение линий радиопеленгов в азимутальной плоскости БПА, регистрацию полученных данных периодически отсчетами, формирование не менее одной независимой пары пересекающихся полуплоскостей положения наземного ИРИ, ортогональных азимутальной плоскости БПА, проходящих через каждую полученную линию радиопеленга, выбор и весовую обработку пар независимых отсчетов данных, учитывающих зависимости дисперсий оценок координат наземного ИРИ от взаимного расположения в пространстве ЛА и наземного ИРИ. При этом дополнительно введены операции формирования нормалей к полуплоскостям положения наземного ИРИ, определения не менее одной линии положения наземного ИРИ как линии пересечения независимой пары пересекающихся полуплоскостей положения наземного ИРИ, параметры которой определяют из условия ортогональности к вышеупомянутым нормалям, и определения координат наземного ИРИ как точки пересечения линии положения наземного ИРИ с поверхностью Земли с использованием итерационной процедуры ее поиска. Кроме того, при выборе и весовой обработке пар независимых отсчетов данных дополнительно учтены зависимости дисперсий оценок координат наземного ИРИ от параметров угловой ориентации БПА и от углов пересечения линии положения и нормалей к полуплоскостям положения наземного ИРИ с поверхностью Земли. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области гидроакустических навигационных систем, а более конкретно к способам приведения автономных необитаемых подводных аппаратов при помощи гидроакустических средств. Достигаемый технический результат - сокращение до минимума набора регистрируемых параметров, необходимых для приведения подводного аппарата, при отсутствии синхронизации между маяком и подводным аппаратом. Технический результат достигается тем, что для приведения автономного необитаемого подводного аппарата используется один опорный гидроакустический маяк, излучающий сигналы через равные промежутки времени, для аппарата задается постоянная скорость движения , аппарат принимает сигналы от маяка, с помощью системы экстремального регулирования (СЭР) производится поиск оптимального угла пеленга на маяк; производят настройку маяка на периодическое излучение двух типов фазоманипулированных шумоподобных сигналов S1 и S2 с мощностью P(S1)>P(S2) и периодом T(S1)≥T(S2); по ходу движения аппарата регистрируют сигналы с помощью многоканального приемника, каждый из каналов которого настроен на определенное изменение длительности и частоты сигналов S1 и S2, вызванное влиянием эффекта Допплера; путем анализа корреляционной функции в каждом из каналов с помощью селектора максимума идентифицируют сигнал и производят оценку скорости взаимного сближения аппарата и маяка ; полученную оценку подают на вход СЭР и производят управление движительно-рулевым комплексом аппарата для поиска и поддержания курса, соответствующего максимальному значению ; при регистрации сигнала S2 уменьшают скорость движения аппарата ; при получении отрицательной оценки на выходе селектора максимума (прохождении аппаратом точки расположения маяка) производят остановку подводного аппарата. 4 ил.
Наверх