Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов



Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов
Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов

 


Владельцы патента RU 2490690:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)

Область использования: область средств регулирования и контроля газовоздушной среды, может быть использовано в системах управления технологическими процессами, в частности, для поддержания стабильной равновесной влажности в герметизированных контейнерах с гигроскопичными материалами. Технический результат - поддержание стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность периодических технологических вскрытий, в которых хранятся гигроскопичные материалы в течение длительного (порядка 18-20 лет) времени, выделяющие значительное количество влаги. Сущность изобретения: осуществляют динамическое измерение изменения параметров влажности путем помещения образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, и последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с расчетом и заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет. Новый технический результат: поддержание в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытиях, с хранящимися в них гигроскопичными материалами. Дополнительные технические результаты: увеличение продолжительности хранения герметизированного контейнера до 18-20 лет и поддержание в нем стабильной равновесной влажности, повышение достоверности и точности поддержания равновесной влажности в герметизированном контейнере. 2 з.п. ф-лы, 8 ил.

 

Предполагаемое изобретение относится к области средств регулирования и контроля газовоздушной среды и может быть использовано в системах управления технологическими процессами, в частности, для поддержания стабильной равновесной влажности в герметизированных контейнерах с гигроскопичными материалами.

Актуальность решаемой проблемы основана на необходимости поддержания стабильной равновесной влажности при длительном хранении в герметизированных контейнерах, имеющих ограничения по массе и габаритам, для которых установлена потребность периодических технологических вскрытий, гигроскопичных материалов, выделяющих значительное количество влаги, которая негативно сказывается на сохранении параметров электрических приборов, в которых эти материалы содержатся.

Известен способ регулирования содержания антиокисляющего компонента среды хранения в контейнерах (патент РФ №2102860, МПК A01F 25/00, публ. 27.01.1998 г.), включающий помещение гигроскопичных материалов и поглотителя влаги в герметизированный контейнер с использованием датчиков контроля содержания антиокисляющего компонента среды хранения в сочетании с продувкой контейнера для поддержания постоянного состава среды хранения с превышением содержания кислорода над содержанием диоксида углерода.

К недостаткам известного способа относится отсутствие возможности контроля и удаления влаги, содержащейся в хранящихся гигроскопичных материалах.

Известен в качестве наиболее близкого по технической сущности к заявляемому способ регулирования и контроля параметров среды хранения и гроскопичных материалов, включающий помещение гигроскопичных материалов и поглотителя влаги в герметизированный контейнер (патент РФ №2195643, МПК G01N 17/00, публ. 27.12.02 г.), в котором в качестве гигроскопичных материалов использован уран или его сплавы, а в качестве поглотителя влаги и других компонентов среды хранения используется смесь поглотителя и катализатора на основе палладия, селективно поглощающих газообразные примеси из среды хранения.

К недостаткам прототипа относится отсутствие возможности поддержания в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытий, с хранящимися в них гигроскопичными материалами.

Задачей авторов изобретения является разработка способа, обеспечивающего поддержание стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность периодических технологических вскрытий, в которых хранятся гигроскопичные материалы в течение длительного (порядка 18-20 лет) времени, выделяющие значительное количество влаги.

Новый технический результат, обеспечивающий при использовании предлагаемого способа, заключается в поддержании в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах, имеющих жесткое ограничение по массе и габаритам, а также потребность в периодических технологических вскрытий, с хранящимися в них гигроскопичными материалами.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов путем динамического измерения изменения параметров влажности, включающем помещение образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, согласно предлагаемому способу навеску М п о г л 1 первого поглотителя влаги с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 1 = М 1 в о д x 1 / в 1 , - произведению обратной величины фактической динамической влагоемкости - в1 поглотителя и массы избыточной влаги - M1вод в образцах гигроскопичных материалах, и выдерживают в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, затем из контейнера извлекают навеску первого поглотителя влаги и определяют в нем массу поглощенной воды, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания образцов гигроскопичных материалов, после чего в контейнер помещают навеску М п о г л 2 второго поглотителя влаги с остаточным влагосодержанием не более 2-х % массовых, которую берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, далее определяют влагосодержание во втором поглотителе влаги, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания поглотителя влаги, последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет.

Кроме того, по истечении кратных периодов времени хранения контейнера порядка 1-5 лет извлекают отработанный поглотитель влаги и помещают навеску очередного поглотителя влаги, массу которого определяют аналогично второму поглотителю влаги, при общем времени хранения контейнера с образцами гигроскопичных материалов 18-20 лет.

Кроме того, после помещения в контейнер навески поглотителя влаги производят дополнительно контроль относительной влажности воздуха в контейнере по показаниям датчика влажности до момента достижения равновесной влажности по графику зависимости относительной влажности воздуха в контейнере от времени его хранения.

Предлагаемый способ поясняется следующим образом.

Первоначально в герметизированный контейнер для хранения гигроскопичных материалов помещают образцы гигроскопичных материалов и навеску поглотителя влаги. В качестве образцов гигроскопичных материалов в предлагаемом способе использованы полимерные материалы с максимальным влагосодержанием, соответствующим равновесной относительной влажности воздуха (порядка ~70%) при температуре хранения 20°C. В качестве поглотителя влаги используют силикагель с остаточным влагосодержанием не более 2-х % массовых.

На фиг.1 схематично представлен герметизированный контейнер с хранящимися в нем гигроскопичным материалом и поглотителем влаги, где: 1 - контейнер; 2 - крышка контейнера; 3 - фланец контейнера; 4 - герметизирующая прокладка; 6 - образцы гигроскопических неидентичных полимерных материалов; 7 - поглотитель влаги; 8 - датчик влажности.

В контейнер (1) со снятой крышкой (2) первоначально помещают образцы полимерных материалов (6), каждый из которых имеет определенную гигроскопичность, характеризующуюся влагосодержанием этого образца гигроскопичного материала, зависящим от равновесной относительной влажности окружающего воздуха.

На фиг.2 представлен вид предварительно определенной графической зависимости равновесной относительной влажности воздуха (РВМ, %) от фактического влагосодержания образцов гигроскопичных материалов (МВМ, г). Из графика видно, какая величина влагосодержания в образцах гигроскопичных материалов соответствует равновесной относительной влажности воздуха, например, величине равновесной относительной влажности воздуха ~70% соответствует влагосодержание образцов гигроскопичных материалов ~90 граммов, а величине равновесной относительной влажности воздуха ~50%, требуемой для хранения, соответствует влагосодержание образцов гигроскопичных материалов ~50 граммов.

Равновесная относительная влажность воздуха характеризует установившееся фактическое значение содержания влаги в воздухе контейнера по отношению к максимально возможному ее содержанию при данной температуре и данном влагосодержании образцов гигроскопичных материалов.

Под влагосодержанием образцов понимается абсолютное содержание влаги в образцах гигроскопичных материалов при данной температуре, которое в предлагаемом способе подвергается регулированию.

Фактическая динамическая влагоемкость поглотителя влаги представляет собой отношение массы воды (г), поглощенной поглотителем влаги при краткосрочном (10-90 суток) его нахождении при данной температуре и равновесной относительной влажности, к массе поглотителя влаги (г).

Фактическая равновесная (статическая) влагоемкость поглотителя влаги представляет собой отношение массы воды, поглощенной поглотителем влаги при длительном (более 90 суток) его нахождении при данной температуре и равновесной относительной влажности, к массе поглотителя влаги (г).

Для определения величины избыточного содержания влаги в образцах гигроскопичных материалов на основании приведенного графика (фиг.2), необходимо из начального фактического влагосодержания в образцах гигроскопичных материалов (например, 90 г) вычесть заданное конечное влагосодержание в исследуемых образцах гигроскопичных материалов (в рассматриваемом случае - 50 г), что составляет 90-50=40 граммов.

Поэтому навеску первого поглотителя М п о г л 1 с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 1 = М 1 в о д x 1 / в 1 , т.е произведению обратной величины фактической динамической влагоемкости в1 поглотителя и массы избыточной влаги M1вод в образцах гигроскопичных материалах., и выдерживают ее в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, т.е. в данном случае при величине фактической (заранее измеренной) динамической влагоемкости поглотителя влаги 0,18 г/г, масса первого поглотителя влаги равна 40×(1/0,18)=222,2 грамма.

Аналогично определяют массу второго поглотителя М п о г л 2 влаги, при этом учитывают, что величина начального влагосодержания образцов гигроскопичных материалов увеличилась относительно предыдущего конечного ее значения (50 г) на величину поглощенной образцами гигроскопичных материалов влаги за период технологического вскрытия контейнера (например, на 6 г). В итоге величина начального влагосодержания образцов гигроскопичных материалов (в данном случае) равна ~56 г, что соответствует на графике (фиг.2) величине равновесной относительной влажности воздуха в контейнере ~53%.

Поэтому навеску второго поглотителя с остаточным влагосодержанием не более 2-х % массовых берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, т.е. в данном случае при величине фактической (заранее измеренной) равновесной влагоемкости поглотителя влаги 0,2 г/г, масса второго поглотителя влаги равна 6×1/0,2=30 граммов. Навеску второго поглотителя влаги выдерживают в герметизированном контейнере до истечения времени хранения 1-5 лет, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов.

В течение последующего времени хранения образцов гигроскопичных материалов с очередным поглотителем влаги в герметизированных контейнерах производят динамический контроль относительной влажности воздуха в контейнере, а по истечении кратных (порядка 1-5 лет) периодов хранения контейнера удаляют отработанный поглотитель влаги (7) и вносят в контейнер (1) навеску очередного поглотителя влаги, массу которого определяют аналогично тому, как в случае со вторым поглотителем влаги, с учетом того факта, что при очередном вскрытии контейнера масса поглощенной образцами гигроскопичных материалов остается величиной постоянной и равной, например, ~6 г.

На фиг.3 представлен вид предварительно определенной графической зависимости равновесной относительной влажности воздуха (РВМ, %) от фактического влагосодержания поглотителя (МВС, г), массой 30 г. Из графика видно, какая величина влагосодержания поглотителя массой 30 г соответствует равновесной относительной влажности воздуха, т.е. величине равновесной относительной влажности воздуха, например, ~50% соответствует влагосодержание данного поглотителя ~6 граммов.

При очередном технологическом вскрытии контейнера из него извлекают навеску очередного отработанного поглотителя и методом взвешивания определяют его фактическое влагосодержание, на основании чего графически (фиг.5) определяется величина равновесной относительной влажности воздуха в контейнере за период нахождения поглотителя в контейнере между технологическими вскрытиями (1-5 лет).

На фиг.4 представлен вид графической зависимости текущей относительной влажности воздуха (ВТ1(τ1), %) в контейнере (1) от времени (τ1, сутки), из которой видно, что по истечение времени (например, 1 года) хранения образцов гигроскопичных материалов и поглотителя влаги с определенными выше показателями (массой, влагосодержанием и т.д.) величина относительной влажности воздуха в контейнере стабилизируется во времени на уровне 50%.

Преимущество предлагаемого способа над известным оценивается путем сравнения результатов поддержания равновесной (см. фиг.5) и текущей (фиг.6) относительной влажности воздуха в контейнере, полученных с использованием предлагаемого способа, подтверждающих, что хранение образцов в течение 3 лет и при периоде между очередными вскрытиями контейнера ~1 год сопровождается стабилизацией равновесной относительной влажности воздуха (порядка 50%) в контейнере, с аналогичными результатами, полученными с применением одной навески поглотителя влаги меньшей массы (порядка 20 г) - (см. фиг.7) и навески поглотителя влаги большей массы (порядка 200 г) - (см. фиг.8), где стабилизации такого уровня нет.

Это результат остается неизменным в течение более длительного (порядка 18-20 лет) времени хранения гигроскопичных материалов и поглотителя влаги в герметизированных контейнерах.

Таким образом, при использовании предлагаемого способа обеспечивается поддержание в течение длительного (порядка 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах с хранящимися в них гигроскопичными материалами, имеющих жесткое ограничение по массе и габаритам, для которых установлена потребность в периодических технологических вскрытиях.

Возможность промышленного применения предлагаемого способа подтверждается следующим примером выполнения.

Пример 1.

В лабораторных условиях предлагаемый способ реализован на опытном образце герметизированного контейнера, схематично изображенного на фиг.1, где: 1 - контейнер; 2 - крышка контейнера; 3 - фланец контейнера; 4 - герметизирующая прокладка; 5 - прижимные болты; 6 - электрические приборы с гигроскопичными материалами; 7 - навеска поглотителя влаги; 8 - датчик влажности. В контейнер (1) со снятой крышкой (2) первоначально помещают электрические приборы (6), которые содержат полимерные материалы различных марок и масс, имеющие определенную гигроскопичность, характеризующуюся предварительно определенной графической зависимостью (см. фиг.2) равновесной относительной влажности воздуха (РВМ, %) от влагосодержания гигроскопичных материалов (МВМ, г). В начальный период времени гигроскопичные материалы содержат избыточную влагу, масса которой (M1вод) соответствует: 90 г (максимальное влагосодержание гигроскопичных материалов) - 50 г (минимально допустимое влагосодержание гигроскопичных материалов) = 40 г (см. фиг.2). Затем в контейнер (1) помещают навеску поглотителя влаги (7) - силикагель марки КСМГ по ГОСТ 3956-76 массой М1погл=222,2 г, в 1/0,18=5,56 раз превышающей массу избыточной влаги в гигроскопичных материалах. Начальное требуемое влагосодержание силикагеля не должно превышать 2-х % массовых. Контейнер (1), с помещенными в него электрическими приборами (6) и навеской поглотителя влаги (7), герметизируют, прижимая болтами (5) крышку (2) с прокладкой (4) к фланцу (3). В таком состоянии контейнер (1) хранят в стационарном отапливаемом помещении в течение времени порядка 30 суток. Затем из контейнера (1) извлекают и взвешивают навеску поглотителя влаги (7), контролируют массу поглощенной им влаги как разницу между конечной и начальной массами навески поглотителя влаги. По графической зависимости (см. фиг.2) равновесной относительной влажности воздуха в контейнере от влагосодержания гигроскопичных материалов определяют равновесную относительную влажность воздуха в контейнере (1) на момент извлечения поглотителя влаги из контейнера. После чего, в контейнер (1) помещают навеску второго поглотителя влаги (7) - силикагель марки КСМГ по ГОСТ 3956-76, массой М2погл=30 г, в 1/0,2=5 раз превышающей массу избыточной влаги М2вод=6 г в гигроскопичных материалах, равную массе воды, поглощаемой ими за время разгерметизации контейнера (1) для замены поглотителя влаги (7) и за время хранения контейнера (1) с навеской второго поглотителя влаги (7). Начальное требуемое влагосодержание силикагеля не должно превышать 2-х % массовых. После помещения в контейнер навески первого и второго поглотителей влаги (7) в герметизированном контейнере производят дополнительно измерения относительной влажности воздуха с помощью датчика влажности (8). По истечении периода хранения контейнера (1) с навеской второго поглотителя (7) - порядка 3-5 месяцев, и при достижении равновесной влажности в контейнере (1), что определяется по графику зависимости (см. фиг.3) текущей относительной влажности воздуха (ВТ1(τ1), %) в контейнере (1) от времени (τ1, сутки), навеску второго поглотителя (7) извлекают из контейнера (1), взвешивают и контролируют массу поглощенной воды навеской второго поглотителя влаги (7) как разницу между конечной и начальной массами этой навески. На основании полученного результата контроля массы поглощенной воды навеской второго поглотителя влаги (7) и предварительно определенной графической зависимости (см. фиг.3) равновесной относительной влажности воздуха (РВС, %) в контейнере от влагосодержания (МВС, г) навески второго поглотителя влаги (7), производят контроль равновесной относительной влажности воздуха в контейнере (1) на момент извлечения второго поглотителя влаги из контейнера, равной в данном примере 50%. Достоверность и точность поддержания равновесной относительной влажности воздуха в контейнере (1) с применением предлагаемого способа определяют путем сравнения полученных результатов (см. фиг.4) контроля влажности воздуха (~50%) датчиком влажности (8) и соответствующих данных (50%), полученных на основании графической зависимости (см. фиг.3).

Возможность более продолжительного времени (τ2, сутки) поддержания стабильной равновесной относительной влажности воздуха (BR2(τ2), %) в контейнере (1) с гигроскопичными материалами (см. фиг.5) проверяется в результате длительного (порядка 1-5 лет) периода хранения контейнера, что сопровождается построением графической зависимости (см. фиг.6) текущей относительной влажности воздуха в контейнере при прямом ее измерении датчиком влажности от времени хранения, как и в результате более длительного (порядка 9-10 лет или 18-20 лет) периодов хранения контейнера с навеской второго поглотителя влаги (7). Графики имеют циклический характер, обусловленный необходимостью технологического вскрытия контейнеров и замены навески очередного поглотителя влаги.

Для подтверждения преимуществ заявляемого способа поддержания стабильной равновесной влажности были поставлены эксперименты с использованием одной навески поглотителя влаги, меньшей (20 г) или большей (200 г) массы, результаты которых проиллюстрированы на графиках соответственно фиг.7 и фиг.8.

Таким образом, как это подтвердили эксперименты, при использовании предлагаемого способа обеспечивается поддержание в течение длительного (до 9-10 лет и 18-20 лет) времени стабильной равновесной влажности в герметизированных контейнерах с хранящимися в них гигроскопичными материалами, имеющих жесткое ограничение по массе и габаритам, для которых установлена потребность в периодических технологических вскрытиях.

1. Способ регулирования и контроля влажности в герметизированных контейнерах для хранения гигроскопичных материалов путем динамического измерения изменения параметров влажности, включающий помещение образцов гигроскопичных материалов и навески поглотителя влаги в герметизированный контейнер, отличающийся тем, что навеску М п о г л 1 первого поглотителя влаги с остаточным влагосодержанием не более 2 мас.% берут равной М п о г л 1 = М 1 в о д x 1 / в 1 - произведению обратной величины фактической динамической влагоемкости в1 поглотителя и массы избыточной влаги М1вод в образцах гигроскопичных материалах, и выдерживают в герметизированном контейнере до истечения времени хранения порядка 10-90 суток, необходимого для поглощения избытка влаги в образцах гигроскопичных материалов, затем из контейнера извлекают навеску первого поглотителя влаги и определяют в нем массу поглощенной воды, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания образцов гигроскопичных материалов, после чего в контейнер помещают навеску М п о г л 2 второго поглотителя влаги с остаточным влагосодержанием не более 2 мас.%, которую берут равной М п о г л 2 = М 2 в о д x 1 / в 2 , т.е. произведению обратной величины фактической равновесной влагоемкости в2 поглотителя влаги и массы избыточной влаги М2вод в образцах гигроскопичных материалах, поглощенной ими за время разгерметизации контейнера для замены навески поглотителя влаги и за время хранения контейнера с навеской этого поглотителя влаги, далее определяют влагосодержание во втором поглотителе влаги, с учетом которой вычисляют равновесную относительную влажность в контейнере на основании графической зависимости ее от влагосодержания поглотителя влаги, последующую серию технологических вскрытий герметизированного контейнера и контроля параметров влажности в герметизированном контейнере осуществляют в сочетании с заменой очередного поглотителя влаги по истечении периода хранения контейнера порядка 1-5 лет.

2. Способ регулирования и контроля влажности в герметизированных контейнерах по п.1, отличающийся тем, что по истечении кратных периодов времени хранения контейнера порядка 1-5 лет извлекают отработанный поглотитель влаги и помещают навеску очередного поглотителя влаги аналогично второму поглотителю влаги и периодичность такой замены продлевают до истечения периода хранения 18-20 лет.

3. Способ регулирования и контроля влажности в герметизированных контейнерах по п.1, отличающийся тем, что после помещения в контейнер навески поглотителя влаги производят дополнительно контроль относительной влажности воздуха в контейнере по показаниям датчика влажности до момента достижения равновесной влажности по графику зависимости относительной влажности воздуха в контейнере от времени его хранения.



 

Похожие патенты:
Изобретение относится к устройству для регулирования относительной влажности в среде, которое содержит проницаемый для паров воды контейнер в форме саше, состоящий из микроперфорированного материала сложный полиэфир/бумага/полиэтилен, и отвержденный состав увлажнителя в контейнере.

Изобретение относится к области атомной энергетики и используется на реакторных установках с водо-водяными и водографитовыми реакторами, в особенности при разгерметизации 1-го контура.

Изобретение относится к области сельского хозяйства и предназначено для автоматизации полива. .

Изобретение относится к теплотехнике, может быть использовано для нагрева или охлаждения жидких материалов для технологических нужд. .

Изобретение относится к автоматике и может быть использовано для дистанционного регулирования влажности сыпучих материалов преимущественно в порционных мешалках.

Изобретение относится к системам регулирования неэлектрических величин и может использоваться в устройствах для автоматического регулирования влажности сыпучих материалов в потоке.

Изобретение относится к способу регулирования относительной влажности в воздушном тракте системы двигателя внутреннего сгорания, оснащенного системой рециркуляции отработавших газов низкого давления. Способ оценивания относительной влажности во всасывающем патрубке двигателя внутреннего сгорания, имеющего впускной трубопровод, соединенный с всасывающим патрубком, выхлопной патрубок и трубопровод EGR низкого давления (LPE), который с возможностью движения текучей среды соединяет выхлопной патрубок с точкой соединения упомянутого всасывающего патрубка, заключается в том, что сперва вычисляют относительную влажность в выхлопном патрубке, в зависимости от концентрации О2 в упомянутом выхлопном патрубке, определяют удельную влажность окружающей среды. Затем вычисляют относительную влажность на участке всасывающего патрубка между упомянутой точкой соединения и упомянутым впускным трубопроводом в зависимости от потока наружного воздуха, поступающего в упомянутый всасывающий патрубок, потока отработавших газов, поступающего из упомянутого трубопровода EGR низкого давления (LPE), удельной влажности в упомянутом выхлопном патрубке и удельной влажности окружающей среды. Далее вычисляют относительную влажность на упомянутом участке всасывающего патрубка в зависимости от его удельной влажности. Техническим результатом является обеспечение защиты воздушного тракта от повреждений и коррозии конструктивных элементов воздушного тракта, а также устранение конденсации воды в воздушном тракте. 5 н. и 12 з.п. ф-лы, 3 ил., 1 табл.
Наверх