Изотраекторный масс-спектрометр

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и нано-электроники методами вторично-ионной и лазерной масс-спектрометрии. Технический результат - улучшение чувствительности масс-спектрометров. Изотраекторный масс-спектрометр заряженных частиц обеспечивает угловую фокусировку четвертого порядка типа «ось-кольцо» с центральным углом около 40°, что позволяет достичь величины светосилы Ω/2π по порядку значений 10% и, тем самым, значительно превысить практически допустимый уровень чувствительности при масс-анализе вещества. 1 ил.

 

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых при исследовании объектов твердотельной микро- и нано-электроники методами вторично-ионной и лазерной масс-спектрометрии.

Для обнаружения ионов с характерными массами необходимо пространственно разделить принадлежащие им масс-спектральные линии (пики) на масс-спектрограммах. С этой точки зрения масс-анализатор как «сердце» масс-спектрометра может характеризоваться разрешающей способностью, имеющей несколько физически обоснованных определений, одно из которых формализуется следующим образом - R10=m/Δm, где Δm -разность масс, необходимая для достижения впадины на 10% высоте пика между двумя соседними пиками одинаковой интенсивности на массе m и массе m+Δm.

Другой важной характеристикой приборов для масс-анализа вещества является чувствительность, которая в масс-спектрометрии определяется величиной, задающей количество вещества, которое нужно ввести в масс-спектрометр для того, чтобы оно было надежно обнаружено, и, в конечном счете, зависит от количества частиц с массой m, достигших коллектора и им зарегистрированных.

К одному из наиболее распространенных и используемых во вторично-ионной и лазерной масс-спектрометрии типов масс-спектрометров относятся анализаторы, разделение ионов по массам в которых осуществляется за счет дисперсии частиц при их движении в электромагнитном поле.

Известен масс-спектрометр с двойной фокусировкой на базе использования магнитного и электростатического полей. Ионы, имеющие одинаковую энергию, но различающиеся по массам, входят в магнитное поле перпендикулярно его направлению и пролетают через это поле по круговым траекториям под действием силы Лоренца. Радиусы их траекторий зависят от массы иона, что ведет к дисперсии по массам. Если пучок ионов проходит через щель с определенным углом, то фокус этого пучка лежит позади магнитного поля. Регистрация ионов с различными массами реализуется путем помещения щели (выходной диафрагмы) в точке фокуса позади магнитного поля, что приводит к четко определенным соответствиям масс и радиусов траекторий и возможности выбора специфической массы. Уменьшение ширины щели может быть использовано для увеличения масс-спектрального разрешения, но только в том случае, если ионы являются моноэнергетичными, поскольку любое распределение по энергиям будет ухудшать разрешение.

Для достижения высокого разрешения используется дисперсия энергии частиц в электрическом поле, компенсирующая дисперсию энергии магнита так, чтобы осталась только дисперсия по массам. Магнитный и электростатический анализаторы обладают свойством угловой фокусировки второго порядка и их комбинация фокусирует заряженные частицы и по углам и по энергиям. По этой причине масс-спектрометры с такими анализаторами называют приборами с двойной фокусировкой. Традиционно электростатический анализатор помещается перед магнитом с размещаемой между ними промежуточной диафрагмой. Электростатический анализатор с отклонением 90° в комбинации с магнитным с отклонением 60° известен как геометрия Нира- Джонсона [1].

К недостатку известного устройства относится низкая чувствительность, обусловленная отсутствием аксиальной симметрии и поэтому малым входным телесным углом (светосилой) системы в целом, а также ограниченная вкладом в регистрируемый полезный сигнал тока ионов, находящихся лишь в узкой полосе начальных энергий, пропущенных электростатической ступенью.

Наиболее близким к предлагаемому является аксиально-симметричный изотраекторный масс-спектрометр на основе простой в изготовлении электродной системы типа цилиндрический конденсатор [2], предназначенный для исследований импульсных потоков (пакетов ионов). Данный прибор построен на принципах изотраекторной оптики, заключающихся в том, что электрические поля, убывающие по закону как 1/t2, обеспечивают движение пакета ионов с любой массой m по одним и тем же траекториям вне зависимости от их энергии, т.е. реализуют изохорный режим с идеальной фокусировкой по энергии. Здесь t - время движения пакета частиц, начиная с момента его вылета из источника. Ионы с массой, отличной от m, движутся по другим траекториям, что приводит к дисперсии по массам. Рассматриваемый изотраекторный цилиндрический масс-спектрометр содержит коаксиально расположенные внешний и внутренний цилиндры, формирующие поле цилиндрического конденсатора; приемник частиц с размещенной перед ним дырочной диафрагмой и блок развертки потенциала V=c(m)/t2, подключенный к внешнему цилиндру спектрометра. Здесь c(m) - заданный постоянный параметр при регистрации ионов массы m, зависящий от конкретной конструкции спектрометра.

Регистрация коллектором пакета вторичных ионов, эмиттированных с поверхности исследуемого объекта за счет воздействия первичного излучения (ионы, лазерные импульсы) и имеющих определенную массу m и произвольную кинетическую энергию, достигается размещением в точке пересечения их траекторий с осью симметрии системы дырочной диафрагмы и подачей на внешний цилиндрический электрод отклоняющего потенциала V=c(m)/t2. Для регистрации пакета ионов другой массы задается соответствующая константа с(m), обеспечивающая прохождение ионов с этой массой через отверстие выходной диафрагмы. Для получения всего спектра масс константа с(m) постепенно меняется с помощью блока развертки при регистрации с некоторой заданной скоростью, значительно более низкой, по сравнению со скоростью движения частиц в спектрометре.

К недостаткам известного устройства относится малая светосила, порядка долей процента, обусловленная отсутствием угловой фокусировки ионного потока, что является ограничением на величину чувствительности масс-анализа вещества.

Техническая задача предлагаемого изобретения состоит в улучшении основного эксплуатационного параметра масс-спектрометров - чувствительности за счет увеличения входного телесного угла (светосилы).

На фиг.1 приведена схема предлагаемого масс-спектрометра.

Решение указанной задачи достигается тем, что аксиально-симметричный изотраекторный масс-спектрометр пакета ионов содержит коаксиально размещенные внутренний цилиндрический 1 и внешний конусообразный 2 электроды, экранирующий электрод 3 коробчатого типа, электрически и механически связанный с внутренним цилиндрическим электродом 1; выполненную на боковой поверхности внутреннего цилиндрического электрода 1 и затянутую мелкоструктурной металлической сеткой входную кольцевую прорезь 4 (входное окно) для пролета пакета вторичных ионов 10, выходную кольцевую диафрагму 5, выполненную на боковой поверхности внутреннего цилиндрического электрода 1; исследуемый образец 6, приемник ионов 7, блок развертки потенциала 8 по закону обратной пропорциональности квадрату времени движения пакета частиц. При этом внешний конусообразный электрод 2, помещенный внутри экранирующего электрода 3 коробчатого типа, формирует электрическое поле в рабочем пространстве спектрометра, обеспечивающее угловую фокусировку четвертого порядка вблизи центрального угла 40°, что позволяет достичь величины светосилы Ω/2π по порядку значений 10% и, тем самым, значительно превысить практически допустимый уровень чувствительности при масс-анализе вещества.

Устройство работает следующим образом.

Исследуемый образец 6 облучается импульсным потоком первичных микрочастиц (ионов, квантов лазерного излучения) 9, в результате чего образец 6 испускает пакет вторичных ионов 10, который преодолев пространство свободного дрейфа за счет начальной энергии Е между образцом 6 и внутренним цилиндрическим электродом 1, через входное окно 4 во внутреннем цилиндрическом электроде 1, затянутое мелкоструктурной металлической сеткой, попадает в отклоняющее и фокусирующее электрическое поле, созданное отрицательным потенциалом V=c(m)/t2 на внешнем конусообразном электроде 8, где t - время, отсчитываемое от начала движения пакета вторичных ионов. Сфокусированный пакет ионов 11 с массой m и во всем диапазоне начальных энергией Е, вследствие реализации в системе изотраекторного режима, проходит через выходную кольцевую диафрагму 5 и попадает на приемник 7 ионов. Поток ионов 12, с массой отличной от массы m, отсекается выходной диафрагмой 5 и оседает на стенках масс-спектрометра.

Внутренний цилиндрический электрод 1 и экранирующий электрод 3 спектрометра, а также образец 6 заземлены. Экранирующий электрод 3 выполняет роль электростатического экрана.

Изотраекторный масс-спектрометр имеет полосовую функцию пропускания, т.е. на вход приемника 7 попадают ионы, масса которых лежит в определенной полосе Δm. Дискретным изменением константы с(m), задающей в каждом акте регистрации отклоняющий потенциал V=c(m)/t2, через интервал времени, превышающий время полета частиц от образца 6 до приемника 7, можно снять весь массовый спектр ионов, испускаемых образцом 6.

В регистрирующем устройстве (не показано), соединенном с приемником 7, масс-спектр анализируется, в результате чего выявляются массовые пики ионов, по которым можно судить об элементном составе поверхности образца.

При внешнем радиусе экранирующего электрода 3, равном 51 мм, длина устройства составляет 47 мм, радиус внутреннего цилиндрического электрода 1 составляет 10 мм, угол наклона образующей конуса конусообразного электрода 2 по отношению к оси симметрии приблизительно равен 40°, протяженность конусообразного электрода 2 вдоль оси симметрии составляет около 21.5 мм, задающая отклоняющий потенциал V=c(m)/t2 для центральной массы m=0.993 константа с(m)=9, ширина выходной диафрагмы 5 составляет около 0.5 мм.

Масс-спектрометр обладает угловой фокусировкой четвертого порядка типа «ось-кольцо» и обеспечивает разрешающую способность m/Δm=500 при светосиле порядка 10%.

ЛИТЕРАТУРА

1. Edgar G. Johnson and Alfred O. Nier. Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles // Phys. Rev. - 1953.- V.91. - P.10.

2. Матышев А.А. Изотраекторная корпускулярная оптика,- СПб.: «Наука», 2000. - 375 с.

Аксиально-симметричный изотраекторный масс-спектрометр пакетов ионов, содержащий коаксиально размещенные внутренний цилиндрический и внешний конусообразный электроды, экранирующий электрод коробчатого типа, электрически и механически связанный с внутренним цилиндрическим электродом; выполненную на боковой поверхности внутреннего цилиндрического электрода и затянутую мелкоструктурной металлической сеткой входную кольцевую прорезь (входное окно) для пролета пакета вторичных ионов, выходную кольцевую диафрагму, выполненную на боковой поверхности внутреннего цилиндрического электрода; исследуемый образец, приемник ионов, блок развертки потенциала по закону обратной пропорциональности квадрату времени движения пакета частиц, отличающийся тем, что внешний конусообразный электрод, помещенный внутри экранирующего электрода, формирует электрическое поле в рабочем пространстве спектрометра, обеспечивающее угловую фокусировку четвертого порядка вблизи центрального угла 40°.



 

Похожие патенты:

Изобретение относится к аналитическому приборостроению и может быть использовано в конструкторских разработках и в производстве приборов для быстрого масс-спектрометрического анализа твердотельных проб и сухих остатков растворов.

Изобретение относится к ионно-оптическим устройствам. .

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе.

Изобретение относится к разделению ионов в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки на базе различий этих ионов в энергиях появления, в массах, зарядах, подвижности, сечениях захвата медленных электронов и метастабильно возбужденных частиц, а также в эффективности образования путем перезарядки на ионах буферного газа при воздействии на эти ионы переменных и постоянных электрических полей, создаваемых внутри ловушки, в том числе и зарядами ионов с относительно малыми m/z, сфокусированных вокруг оси ловушки.

Изобретение относится к области газового анализа, а именно к технике генерации заряженных ионов в воздушной среде или в других газах, и может быть использовано в качестве источника ионов в спектрометрах ионной подвижности, масс-спектрометрах и других аналитических приборах.

Изобретение относится к области масс-спектрометрии, а именно к конструкции линейной ионной ловушки, ее системы электродов, формирующей удерживающее поле. .

Изобретение относится к области оптики заряженных частиц и масс-спектрометрии, а именно к радиочастотным системам транспортировки и манипулирования заряженными частицами.

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов твердотельной электроники методами электронной спектроскопии

Изобретение относится к способу и устройству измерения газовых субстанций газов

Изобретение относится к области электронной и ионной оптики и масс-спектрометрии, где используется движение заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкций и технологий изготовления устройств пространственно-временной фокусировки и масс-разделения заряженных частиц. Способ образования двумерных линейных электрических полей заключается в формировании с помощью устройства из плоских дискретных и гиперболических электродов на границах рабочей области линейного по одной координате распределений среднего значения потенциала. Причем плоские дискретные электроды состоят из равномерно распределенных по границам области тонких заземленных металлических нитей, а расположенные в каждом квадранте по одному гиперболические электроды имеют малые размеры полуосей. Под действием противоположных потенциалов на смежных гиперболических электродах в плоскостях дискретных электродов создаются линейные по одной оси распределения среднего значения потенциала, под действием которых в рабочей области образуется двумерное линейное электрическое поле. Технический результат - минимизация размеров и улучшение конструктивно-технологических параметров электродных систем для образования двумерных линейных электрических полей с протяженными вдоль одной оси рабочими областями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области плазменной техники. Технический результат - повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке. Устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух электродов - анода и катода, между которыми создается разность потенциалов. Источник ионов выполнен в виде резервуара с жидкостью, соединенного с нагревательным элементом или с криогенной установкой, внутри которого установлен анод, причем анод и стенки резервуара расположены с зазором, создающим капиллярное движение потока жидкости из резервуара, катод выполнен в форме пластины со щелью, расположенной над анодом, который выполнен в виде системы соосных цилиндров, расположенных относительно друг друга с зазором, а катод выполнен в форме пластины с системой щелей. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных электрических полях и может использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Технический результат - усовершенствование конструкции электродных систем для образования двумерных линейных высокочастотных электрических полей с целью достижения при изготовлении высокой точности реализации их расчетной геометрии с помощью современных технологий. Способ основан на формировании на плоских поверхностях дискретно-линейных распределений высокочастотного потенциала с помощью параллельных емкостных делителей. Система состоит из 3-х плоских электродов, одного заземленного и двух с противофазными дискретно-линейными распределениями вдоль одной оси высокочастотных потенциалов. Дискретные электроды выполнены из тонких диэлектрических пластин с нанесенными на них проводящими поверхностями. Внешние поверхности разделены по диагонали на две половины, одни из которых заземлены, а к другим приложены высокочастотные потенциалы. Внутренние поверхности, гальванически не соединенные с другими частями анализатора, образованы из равномерно распределенных вдоль одной оси проводящих полосок. Между внутренними и внешними проводящими поверхностями образуются емкостные делители высокочастотного напряжения с линейно изменяющимся по одной координате коэффициентом деления. 2 н.п. ф-лы, 2 ил.
Метод масс-спектрометрического секвенирования пептидов и определения их аминокислотных последовательностей основан на фрагментировании в ионном источнике масс-спектрометра между соплом и скиммером молекулярных ионов пептидов под воздействием электрического поля управляемой величины и на последующем анализе масс-спектров фрагментов. Пептид поступает в источник ионов, электрогазодинамическая система транспортировки которого позволяет управлять степенью фрагментации молекулярного иона при помощи изменения электрического поля. Далее ионы разделяют в масс-анализаторе и направляют в детектор, где осуществляют регистрацию масс-спектра пептида и его фрагментов с различной глубиной фрагментации одновременно в одном спектре. Масс-спектры фрагментов пептида, полученные при разных значениях напряженности электрического поля, обрабатывают системой регистрации, анализируют, в результате чего определяют аминокислотную последовательность исходного пептида. Управляемая степень фрагментации в источнике ионов под воздействием варьируемого электрического поля в диапазоне 122-104 В/м и давлениях остаточного газа в диапазоне 100-2000 Па позволяет определять аминокислотную последовательность пептидов, содержащих до 10-15 аминокислотных остатков, что соответствует средней длине пептидов - продуктов ферментативного гидролиза белков. Технический результат - упрощение и ускорение способа.

Изобретение относится к области аналитического приборостроения. Источник ионов для масс-спектрометра первому варианту включает камеру (1), в первом торце (2) камеры (1) выполнено отверстие (3), в котором размещено устройство (4) электрораспыления пробы. В боковой стенке (5) камеры (1) у первого торца (2) установлена по касательной к боковой стенке (5) по меньшей мере одна трубка (7) для подачи в камеру (1) нагретого сжатого газа. Во втором торце (9) камеры (1) установлен первый электрод (11) с центральным отверстием (12) для выхода ионов, окруженный вторым электродом (13) с отверстием (14) в центральной области, образующим с первым электродом (9) электростатическую фокусирующую линзу для ионов (15). В боковой стенке (5) камеры (1) выполнено по меньшей мере одно отверстие (13) для выхода газа и неиспарившихся капель пробы, отстоящее от второго торца (8) на расстояние d, удовлетворяющее определенному соотношению. По второму варианту отверстие (44), в котором размещено устройство (4) электрораспыления пробы, выполнено в боковой стенке (43) камеры (40), а в первом торце (41) камеры (40) выполнено отверстие (42) для выхода газа. Технический результат - повышение доли заряженных частиц, в первую очередь ионов, поступающих из источника ионов на вход в масс-спектрометр. 2 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к области анализа смесей химических соединений на основе разделения ионов, выведенных из приосевой зоны, в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки по отношениям массы к заряду и на базе различий в устойчивости ионов к столкновительно-индуцированной диссоциации. Для предотвращения излишней гибели анализируемых ионов внутренние стенки входной и выходной диафрагм разрезаны на сегменты, и к ним приложены альтернированные или переменные напряжения. Регистрация масс-спектров ионов-продуктов в процессе столкновительно-индуцированной диссоциации осуществляется с помощью масс-анализатора, сопряженного с ловушкой, в частности на времяпролетном масс-анализаторе с ортогональным вводом ионов. Технический результат - получение количественной информации об исследуемых соединениях и повышение точности структурно-химического анализа. 14 з.п. ф-лы, 7 ил.

Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосфере воздуха, имеет применение в газовой хроматографии в качестве чувствительного детектора. Технический результат - улучшение стабильности и воспроизводимости результатов анализа газовых сред, увеличение срока эксплуатации ионизатора. Дифференциальный спектрометр ионной подвижности содержит цилиндрическую камеру для формирования ионов аналита, источник ионизации, в области которого происходит образование реактант-ионов, систему электродов, ионную апертуру, аналитический зазор, образованный двумя концентрическими цилиндрическими электродами, ионный регистратор, генератор периодического несимметричного по полярности напряжения, обеспечивающий выход на участок нелинейной полевой зависимости подвижности ионов, источник компенсирующего напряжения, источник высокочастотного напряжения, концентрически расположенную относительно внутреннего цилиндрического электрода дополнительную камеру, имеющую вход и выход для ионизирующего газа, в которой размещен источник ионизации и подключен генератор выталкивающего напряжения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований, и может быть использовано в ходе натурного эксперимента для измерения элементного состава собственной внешней атмосферы космического аппарата. Технический результат - расширение диапазона исследуемых масс с увеличением разрешающей способности. Циклический масс-спектрометр газовых частиц содержит приемник ионов, три тороидальных дефлектора, блок обработки ионных спектров и заземленные сетки, дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключены к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов. В пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца. 1 ил.
Наверх