Микроболометр с упрочненными поддерживающими балками и способы его изготовления



Микроболометр с упрочненными поддерживающими балками и способы его изготовления
Микроболометр с упрочненными поддерживающими балками и способы его изготовления
Микроболометр с упрочненными поддерживающими балками и способы его изготовления

 

H01L27/14 - содержащие полупроводниковые компоненты, чувствительные к инфракрасному излучению, свету, коротковолновому электромагнитному или корпускулярному излучению, и предназначенные для преобразования энергии этих излучений в электрическую энергию или для управления электрической энергией с помощью таких излучений (компоненты, чувствительные к излучению, конструктивно связанные только с одним или несколькими электрическими источниками света H01L 31/14; соединение световодов с оптоэлектронными элементами G02B 6/42)

Владельцы патента RU 2490751:

Открытое акционерное общество "Ангстрем" (RU)

Изобретение относится к технике машинного зрения и может быть использовано в фотоприемных устройствах инфракрасного диапазона. В микроболометре, выполненном в исходной структуре в виде поддерживаемого на термоизолирующих балках над вытравленной полостью термоизолированного участка активного слоя полупроводника, содержащего находящийся с ним в тепловом контакте поглощающий элемент, нагреваемый поглощаемым излучением, и температурочувствительный элемент электрической схемы, расположенной вне термоизолированного участка, соединенный с ней проводниками, проходящими по балкам, балки выполнены двухслойными со слоями, разделенными термоизолирующим зазором. Предложены способы изготовления микроболометра с упрочненными поддерживающими балками. Изобретение обеспечивает создание конструкции и технологии изготовления дешевого микроболометра с утоненными, но упрочненными поддерживающими балками. 3 н.п. ф-лы, 3 ил.

 

Изобретение относится к технике машинного зрения и может быть использовано в фотоприемных устройствах инфракрасного диапазона, в частности в дешевых тепловизорах охранных систем для круглосуточного, всепогодного обзора и опознания объектов на охраняемой территории.

Известен, микроболометр, выполненный в исходной структуре, состоящей из активного слоя полупроводника, слоя изолятора и полупроводниковой подложки, в виде поддерживаемого на термоизолирующих балках над вытравленной полостью термоизолированного участка активного слоя полупроводника, содержащего поглощающий элемент, находящийся с ним в тепловом контакте, нагреваемый поглощаемым излучением, и температурочувствительный элемент электрической схемы, расположенной вне термоизолированного участка, соединенный с ней проводниками, проходящими по балкам. См. патенты США: 6,573,504 Y. Iida и др. "Infrared sensor and manufacturing method thereof", 5,789,753 M.V. Wadsworth и др. "Stress tolerant bolometer".

Наиболее близким к заявленному изобретению является устройство, описанное в патенте США 6,573,504. Оно и способ его изготовления, направленные на получение за счет утонения балки ее максимального теплового сопротивления при использовании минимального числа дополнительных операций стандартного технологического процесса изготовления ИС, обеспечивают хорошие параметры и низкую стоимость болометрических приемников, но не обеспечивают хорошей механической прочности, необходимой в ряде применений. В патенте США 7,789,753 предложено для упрочнения длинных тонких балок использовать подставки-столбики. Их недостаток - снижение теплового сопротивления балки.

Техническим результатом настоящего изобретения является создание конструкции и способов изготовления дешевого микроболометра с утоненными, но упрочненными поддерживающими балками.

Указанный результат достигается за счет того, что в известном устройстве микроболометра, выполненного в исходной структуре, состоящей из активного слоя полупроводника, слоя изолятора и полупроводниковой подложки, в виде поддерживаемого на термоизолирующих балках над вытравленной полостью термоизолированного участка активного слоя полупроводника, содержащего поглощающий элемент, находящийся с ним в тепловом контакте, нагреваемый поглощаемым излучением, и температурочувствительный элемент электрической схемы, расположенной вне термоизолированного участка, соединенный с ней проводниками, проходящими по балкам, и в известных способах его изготовления, включающем изготовление КМОП структуры в активном слое полупроводника с формированием соединений и боковой частичной изоляции компонентов диэлектриком, нанесение поглощающих слоев, формирование маски и вертикальное травление в ее зазорах поглощающих и диэлектрических слоев, изотропное травление активного слоя полупроводника, вертикальное травление слоя изолятора, вертикальное травление активного полупроводника, удаление маски, нанесение на все поверхности защитного диэлектрика, вертикальное травление защитного диэлектрика, травление подложечного полупроводника для образования в нем термоизолирующей полости, нанесение на все поверхности защитного диэлектрика, или включающем изготовление КМОП структуры в активном слое полупроводника с формированием соединений и боковой полной изоляции компонентов диэлектриком, нанесение поглощающих слоев, формирование маски и вертикальное травление в ее зазорах поглощающих и диэлектрических слоев, изотропное травление активного слоя полупроводника, вертикальное травление слоя изолятора, травление подложечного полупроводника для образования в нем термоизолирующей полости, удаление маски, нанесение на все поверхности защитного диэлектрика,

предложено:

- балки выполнить двухслойными со слоями, разделенными термоизолирующим зазором;

- при изготовлении КМОП структуры с боковой частичной изоляцией компонентов диэлектриком вертикальное травление в зазорах маски поглощающих и диэлектрических слоев проводить через первую встроенную маску, формируемую при изготовлении КМОП структуры вокруг термоизолируемого участка активного слоя полупроводника над диэлектриком боковой изоляции в виде рамки из жертвенного поликремния шириной не менее половины ширины термоизолирующей балки, удаляемого при изотропном травлении активного слоя полупроводника, травление диэлектриков, активного и подложечного полупроводников проводить через вторую встроенную маску, в качестве которой использовать проводники соединений над балками, выполненные из устойчивого к процессам травления материала;

- при изготовлении КМОП структуры с боковой полной изоляцией компонентов диэлектриком травление в зазорах маски диэлектриков, активного и подложечного полупроводников проводить через дополнительную встроенную маску, в качестве которой использовать проводники соединений над балками, выполненные из устойчивого к процессам травления материала.

Указанный выше технический результат достигается совокупностью перечисленных выше новых признаков изобретения.

Высокая механическая прочность балки при максимальном термосопротивлении и минимальной стоимости изготовления достигается выполнением ее двухслойной со слоями, разделенными термоизолирующим зазором, и предельно технологически утоненными.

Перечень графических материалов, иллюстрирующих устройство, реализующее заявляемое изобретение

Фиг.1 показывает устройство-прототип.

Фиг.2а иллюстрирует предлагаемое устройство микроболометра, изготовленного по способу, предназначенному для КМОП структуры с боковой частичной изоляцией компонентов диэлектриком.

Фиг.2б иллюстрирует предлагаемое устройство микроболометра, изготовленного по способу, предназначенному для КМОП структуры с боковой полной изоляцией компонентов диэлектриком.

Предлагаемый микроболометр состоит (см. фиг.2а, 2б) из выполненного в исходной структуре, состоящей из активного слоя полупроводника (1), слоя изолятора (2) и полупроводниковой подложки (3), в виде поддерживаемого на термоизолирующих балках (4) над вытравленной полостью (5) термоизолированного участка (6) активного слоя полупроводника, содержащего поглощающий элемент (7), находящийся с ним в тепловом контакте, нагреваемый поглощаемым излучением, и температурочувствительный элемент (8) электрической схемы, расположенной вне термоизолированного участка, соединенный с ней проводниками (9), проходящими по балкам, причем балки выполнены двухслойными со слоями, разделенными термоизолирующим зазором (10).

Предложены два способа изготовления микроболометров с двухслойными балками.

Способ, включающий КМОП структуру в активном слое полупроводника (1) с формированием соединений (9) и боковой частичной изоляции компонентов диэлектриком (11), нанесение поглощающих слоев (7), формирование маски над термоизолированным участком (6) активного слоя полупроводника (не показана) и вертикальное травление в ее зазорах (12) поглощающих и диэлектрических слоев (7), изотропное травление активного слоя полупроводника (1), вертикальное травление, слоя изолятора (2), вертикальное травление оставшихся при изотропном травлении участков активного полупроводника (не показаны), удаление маски, нанесение на все поверхности защитного диэлектрика (не показан), вертикальное травление защитного диэлектрика, травление подложечного полупроводника (3) для образования в нем термоизолирующей полости (5), нанесение на все поверхности защитного диэлектрика (13), отличающийся тем, что вертикальное травление в зазорах (12) маски поглощающих и диэлектрических слоев, проводится через первую встроенную маску, формируемую при изготовлении КМОП структуры вокруг термоизолируемого участка (6) активного слоя полупроводника над диэлектриком боковой изоляции (11) в виде рамки из жертвенного поликремния (не показана) шириной не менее половины ширины термоизолирующей балки (4), удаляемого при изотропном травлении активного слоя полупроводника (1), травление диэлектриков, активного и подложечного полупроводников проводится через вторую встроенную маску, в качестве которой используются проводники (9) соединений над балками (4), выполненные из устойчивого к процессам травления материала.

Способ, включающий КМОП структуру в активном слое полупроводника (1) с формированием соединений (9) и боковой полной изоляции (14) компонентов диэлектриком, нанесение поглощающих слоев (7), формирование маски над термоизолированным участком (6) активного слоя полупроводника (не показана) и вертикальное травление в ее зазорах (12) поглощающих и диэлектрических слоев (7), изотропное травление активного слоя полупроводника (1), вертикальное травление слоя изолятора (2), травление подложечного полупроводника (3) для образования в нем термоизолирующей полости (5), удаление маски, нанесение на все поверхности защитного диэлектрика (13), отличающийся тем, что травление в зазорах (12) маски диэлектриков, активного (1) и подложечного (3) полупроводников проводится через дополнительную встроенную маску, в качестве которой используются проводники (9) соединений над балками (4), выполненные из устойчивого к процессам травления материала.

Устройство работает следующим образом.

Лучи от сцены попадают на поглощающий элемент (7), который нагреваясь (или остывая) передает свою температуру термоизолированному участку полупроводника (6) и соответственно температурочувствительному элементу (8) электрической схемы, расположенной вне термоизолированного участка, соединенному с ней проводниками (9), проходящими по балкам (4). Электрическая схема (не показана) преобразует изменение температуры в пропорциональный электрический сигнал. Утечка тепла по балке (4) от термоизолированных элементов (6, 7, 8) согласно изобретению снижена ее утонением, а прочность повышена благодаря двухслойной конструкции.

Изготовление согласно предложенным двум способам производится следующим образом.

После изготовления КМОП структуры в активном слое полупроводника (1) с формированием соединений (9) и боковой частичной изоляции компонентов диэлектриком (11) производится нанесение поглощающих слоев (7). Затем формируется маска, предотвращающая выполнение последующих операций над термоизолированным участком (6, 7, 8). Проводится вертикальное травление в зазорах (12) маски поглощающих и диэлектрических слоев (7) до рамки жертвенного поликремния и проводников (9) над балкой (4), служащих дополнительными встроенными масками. В результате остаются низлежащие диэлектрики под поликремнием и проводником (9), поэтому изотропное травление активного слоя полупроводника (1) удаляет его из-под первого слоя балки до изолятора (11), но не доходит вбок до термоизолируемого участка полупроводника (6). При этом также удаляется и поликремниевая маска. После вертикального травления слоя изолятора (2) и затем вертикального травления оставшихся при изотропном травлении участков активного полупроводника (не показаны) удаляется верхняя (фоторезистивная) маска. Остается не стравленным второй слой балки (4) из изолятора (11), заслоненный проводником (9). Затем производятся: нанесение на все поверхности защитного диэлектрика (не показан), вертикальное травление защитного диэлектрика (на верхних поверхностях), изотропное или анизотропное травление подложечного полупроводника (3) для образования в нем термоизолирующей полости (5) и нанесение на все поверхности защитного диэлектрика (13).

По второму способу производятся те же операции, что и по первому кроме формирования жертвенного поликремния и связанных с ним операций вертикального травления оставшихся при изотропном травлении участков активного полупроводника, промежуточного нанесения на все поверхности защитного диэлектрика и его вертикального травления. Эти операции оказываются излишними в следствии полной боковой изоляции компонентов, выполняемой на стадии изготовления КМОП структуры.

Дешевизна обоих способов связана с использованием только одной дополнительной к стандартному КМОП процессу фоторезистивной маски и последующих стандартных для него операций.

Настоящее описание изобретения, в т.ч. состава и работы устройства, включая предлагаемый вариант его исполнения, предполагает его дальнейшее возможное совершенствование специалистами, и не содержит каких-либо ограничений в части реализации. Все притязания сформулированы исключительно в формуле изобретения.

1. Микроболометр, выполненный в исходной структуре, состоящей из активного слоя полупроводника, слоя изолятора и полупроводниковой подложки, в виде поддерживаемого на термоизолирующих балках над вытравленной полостью термоизолированного участка активного слоя полупроводника, содержащего поглощающий элемент, находящийся с ним в тепловом контакте, нагреваемый поглощаемым излучением, и температурочувствительный элемент электрической схемы, расположенной вне термоизолированного участка, соединенный с ней проводниками, проходящими по балкам, отличающийся тем, что балки выполнены двухслойными со слоями, разделенными термоизолирующим зазором.

2. Способ изготовления микроболометров с двухслойными балками по п.1, включающий изготовление КМОП структуры в активном слое полупроводника с формированием соединений и боковой частичной изоляции компонентов диэлектриком, нанесение поглощающих слоев, формирование маски и вертикальное травление в ее зазорах поглощающих и диэлектрических слоев, изотропное травление активного слоя полупроводника, вертикальное травление слоя изолятора, вертикальное травление активного полупроводника, удаление маски, нанесение на все поверхности защитного диэлектрика, вертикальное травление защитного диэлектрика, травление подложечного полупроводника для образования в нем термоизолирующей полости, нанесение на все поверхности защитного диэлектрика, отличающийся тем, что вертикальное травление в зазорах маски поглощающих и диэлектрических слоев проводится через первую встроенную маску, формируемую при изготовлении КМОП структуры вокруг термоизолируемого участка активного слоя полупроводника над диэлектриком боковой изоляции в виде рамки из жертвенного поликремния шириной не менее половины ширины термоизолирующей балки, удаляемого при изотропном травлении активного слоя полупроводника, травление диэлектриков, активного и подложечного полупроводников проводится через вторую встроенную маску, в качестве которой используются проводники соединений над балками, выполненные из устойчивого к процессам травления материала.

3. Способ изготовления микроболометров с двухслойными балками по п.1, включающий изготовление КМОП структуры в активном слое полупроводника с формированием соединений и боковой полной изоляции компонентов диэлектриком, нанесение поглощающих слоев, формирование маски и вертикальное травление в ее зазорах поглощающих и диэлектрических слоев, изотропное травление активного слоя полупроводника, вертикальное травление слоя изолятора, травление подложечного полупроводника для образования в нем термоизолирующей полости, удаление маски, нанесение на все поверхности защитного диэлектрика, отличающийся тем, что травление в зазорах маски диэлектриков, активного и подложечного полупроводников проводится через дополнительную встроенную маску, в качестве которой используются проводники соединений над балками, выполненные из устойчивого к процессам травления материала.



 

Похожие патенты:

Изобретение относится к твердотельному датчику изображения, способу его изготовления и камере. .

Изобретение относится к фототранзистору и к дисплейному устройству, содержащему этот фототранзистор. .

Изобретение относится к твердотельному датчику изображения, способу его производства и системе формирования изображения. .

Изобретение относится к областям полупроводниковой фотоэлектроники, фотоэлектроэнергетики, к возобновляемым источникам энергии, к преобразователям энергии лазерного излучения.

Изобретение относится к чувствительным элементам для создания приемных устройств миллиметрового и субмиллиметрового диапазонов длин волн. .

Изобретение относится к твердотельному устройству формирования изображения, которое представляет собой устройство с датчиком изображения типа CMOS (КМОП, комплементарный металлооксидный полупроводник).

Изобретение относится к твердотельным устройствам формирования изображений. .

Изобретение относится к области телевизионной техники, предназначено для формирования видеосигнала изображения объектов от фотоэлектрической КМОП-матрицы с цифровыми пикселами (Digital Pixel Sensor, DPS).

Изобретение относится к регистрации электромагнитного излучения с использованием многослойных структур металл-полупроводник. .

Изобретение относится к устройствам формирования изображений. Техническим результатом является повышение качества изображения. Результат достигается тем, что устройство формирования изображений включает в себя пиксельный блок, усилительный транзистор и модуль управления. Пиксельный блок включает в себя первый модуль фотоэлектрического преобразования, формирующий первый заряд на основе падающего света первого цвета, второй модуль фотоэлектрического преобразования, формирующий второй заряд на основе падающего света первого цвета, и третий модуль фотоэлектрического преобразования, формирующий третий заряд на основе падающего света второго цвета. Усилительный транзистор предусмотрен общим для первого-третьего модулей фотоэлектрического преобразования и выводит сигнал на основе первого, второго и третьего зарядов, сформированных первым, вторым и третьим модулями фотоэлектрического преобразования соответственно. Модуль управления устанавливает пиксельный блок в выбранное состояние или невыбранное состояние согласно электрическому потенциалу управляющего контактного вывода усилительного транзистора. 6 н. и 7 з.п. ф-лы, 8 ил.

Изобретение относится к твердотельным устройствам захвата изображения и способам изготовления таких устройств. Способ для изготовления твердотельного устройства захвата изображений, которое включает в себя подложку, включающую в себя блок фотоэлектрического преобразования, и волновод, скомпонованный на подложке, причем волновод соответствует блоку фотоэлектрического преобразования и включает в себя сердечник и оболочку, включает в себя первый этап и второй этап, причем на первом этапе и втором этапе элемент, который должен быть сформирован в сердечник, формируют в отверстии в оболочке посредством высокоплотного плазмохимического осаждения из паровой фазы, причем после первого этапа на втором этапе элемент, который должен быть сформирован в сердечник, формируют посредством высокоплотного плазмохимического осаждения из паровой фазы при условиях, в которых соотношение радиочастотной мощности на стороне задней поверхности подложки к радиочастотной мощности на стороне лицевой поверхности подложки превышает соотношение на первом этапе. Изобретение обеспечивает повышение адгезии встроенного элемента и исключение деформации в структуре. 5 н. и 10 з.п. ф-лы, 15 ил., 1 табл.

Изобретение относится к фотоэлектрическому преобразующему устройству, имеющему конфигурацию светонаправляющего тракта. Сущность изобретения: фотоэлектрический преобразующий элемент для создания светового тракта к упомянутому участку фотоэлектрического преобразования включает в себя средний участок и периферийный участок, имеющий показатель преломления, отличающийся от показателя преломления среднего участка, в пределах некоторой плоскости, параллельной светоприемной поверхности участка фотоэлектрического преобразования, и в пределах другой плоскости, расположенной ближе к светоприемной поверхности, чем упомянутая некоторая плоскость, и параллельной светоприемной поверхности, причем периферийный участок выполнен неразрывным со средним участком и окружает средний участок, показатель преломления периферийного участка больше, чем показатель преломления изолирующей пленки, а толщина периферийного участка в пределах упомянутой другой плоскости меньше, чем толщина периферийного участка в пределах упомянутой некоторой плоскости. Изобретение обеспечивает повышение чувствительности фотоэлектрических преобразующих элементов, повышая эффективность использования падающего света. 14 н. и 14 з.п. ф-лы, 11 ил.

Устройство считывания с временной задержкой и накоплением сигналов с многоэлементных фотоприемников инфракрасного излучения относится к области интегральной микроэлектроники и предназначено для систем обработки оптической информации. Устройство содержит m каналов считывания. Каждый канал считывания выполнен из блока считывания с n ячейками считывания, блока каскадов ВЗН сигналов с n каскадами ВЗН сигналов и снабжен k-разрядным сдвиговым регистром, k - число разрядов распределенного аналого-цифрового преобразователя. Блок считывания соединен N разрядной шиной сигналов сравнения напряжений с блоком каскадов ВЗН. Каждая ячейка считывания соединена с соответствующим N-тым разрядом N разрядной шины сигналов сравнения напряжений. Ячейка считывания выполнена в составе интегрирующего усилителя, ячейки выборки и хранения, компаратора, триггера-защелки, логического элемента «И». Аналоговые элементы - интегрирующий усилитель, ячейка выборки и хранения, компаратор последовательно соединены в указанном порядке относительно одного из входов каждого аналоговыми шинами. Интегрирующий усилитель соединен с фотоприемником. Каскад ВЗН выполнен в составе параметрического мультиплексора сигналов сравнения, логического элемента «И», k-разрядного счетчика, k-разрядного элемента с тремя состояниями на выходе, последовательно соединенных в указанном порядке, а также содержит дополнительный k-разрядный сдвиговый регистр. Один из N разрядных входов параметрического мультиплексора соединен с N разрядной шиной сигналов сравнения напряжений. Выход k-разрядного элемента, являющийся выходом каскада ВЗН, соединен К разрядной шиной считывания данных из канала считывания с k-разрядным сдвиговым регистром канала считывания. Выход k-разрядного сдвигового регистра каждого канала считывания соединен шиной передачи данных сдвиговых регистров каналов считывания в направлении увеличения номера канала считывания с k-разрядным сдвиговым регистром следующего по номеру канала считывания. Выход m-того канала считывания соединен с шиной выходных данных устройства. Технический результат заключается в расширении динамического диапазона и возможности считывания сигналов каждым каналом с неограниченного количества фоточувствительных элементов фотоприемника. 6 з.п. ф-лы, 5 ил.

Изобретение может найти применение для регистрации излучений в ядерной физике, в физике высоких энергий, а также при создании цифровых рентгеновских аппаратов, преимущественно маммографов. Рабочий объем детектора выполнен из пластины полуизолирующего монокристаллического полупроводникового материала, например арсенида галлия, на которой сформированы конденсаторы, у которых первая обкладка лежит непосредственно на рабочем объеме. Поверх конденсаторов нанесен слой разделительного диэлектрика, а электронные ключи на полевых транзисторах созданы на слое разделительного диэлектрика, на котором также создана вся разводка схем, включая шины, соединяющие затворы транзисторов (лежащие на разделительном диэлектрике) вдоль строк матрицы, а также шины, соединяющие стоки транзисторов вдоль столбцов, причем в слое диэлектрика сформированы окна, заполненные металлом, через которые осуществляется соединение первых обкладок конденсаторов с истоками транзисторов и вторых обкладок конденсаторов с земляными шинами в каждом элементе матрицы. Изобретение обеспечивает возможность расширения спектра полупроводниковых материалов, пригодных для использования в качестве рабочего объема детектора. 1 ил.

Изобретение относится к твердотельному датчику изображения, способу его изготовления и аппарату для съемки. Твердотельный датчик изображения включает в себя первую полупроводниковую область первого типа проводимости, вторую полупроводниковую область второго типа проводимости, расположенную в контакте с нижней поверхностью первой полупроводниковой области и функционирующую в качестве области накопления зарядов, третью полупроводниковую область, включающую в себя боковые поверхности, окруженные второй полупроводниковой областью, четвертую полупроводниковую область второго типа проводимости, расположенную на удалении от второй полупроводниковой области, и затвор переноса, который образует канал для переноса зарядов, накапливаемых во второй полупроводниковой области, в четвертую полупроводниковую область. Третья полупроводниковая область является областью первого типа проводимости или второго типа проводимости, а концентрация примеси в ней ниже, чем концентрация примеси во второй полупроводниковой области. Третья полупроводниковая область включает в себя верхнюю поверхность, которая контактирует со второй полупроводниковой областью. Изобретение обеспечивает возможность удовлетворения требований, предъявляемых к количеству зарядов в состоянии насыщения, рабочим параметрам переноса и чувствительности заявляемого датчика изображения. 3 н. и 9 з.п. ф-лы, 9 ил.

Изобретение относится к датчикам электромагнитного излучения и, в частности, к массивам твердотельных датчиков изображения, имеющим световые рецепторы с размерами меньше дифракционного предела, и к цветовым фильтрам, с которыми они используются. Устройство для формирования изображения содержит массив световых рецепторов с размерами меньше дифракционного предела, сформированный на подложке, имеющей светоприемную поверхность. Каждый световой рецептор сконфигурирован для вывода многобитового элемента со скалярным значением и изменения состояния на основе поглощения по меньшей мере одного фотона. Устройство также содержит систему оптических фильтров, расположенную над светоприемной поверхностью, при этом система оптических фильтров включает массив пикселей фильтров, каждый из которых имеет ассоциированную с ним спектральную характеристику полосы пропускания. Элемент данных, получаемый из указанного массива световых рецепторов с размерами меньше дифракционного предела, включает комбинацию множества выходных значений многобитовых элементов из множества световых рецепторов, которые расположены под пикселями фильтров, имеющих по меньшей мере две различные спектральные характеристики полосы пропускания. Изобретение обеспечивает увеличение оптической чувствительности датчика и улучшение точности цвета. 2 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к твердотельному устройству захвата изображения. В твердотельном устройстве захвата изображения участок фотоэлектрического преобразования, участок удержания зарядов, участок переноса и узел считывания формируются в кармане p-типа. Участок удержания зарядов сконфигурирован, чтобы включать в себя полупроводниковую область n-типа, которая является первой полупроводниковой областью, удерживающей заряды в участке, отличном от участка фотоэлектрического преобразования. Полупроводниковая область p-типа, имеющая более высокую концентрацию, чем карман p-типа, располагается под полупроводниковой областью n-типа. Изобретение обеспечивает разрешение переноса зарядов при низком напряжении, во-первых, пресекая расширение обедненного слоя во время переноса зарядов из участка удержания зарядов в плавающую диффузионную область, и, во-вторых, предотвращая сужение канала переноса между участком удержания зарядов и плавающей диффузионной областью. 3 н. и 30 з.п. ф-лы, 13 ил.

Изобретения могут быть использованы в устройствах для формирования изображения, определения координат исследуемых объектов, оптической пеленгации, автоматического управления, контроля и измерения параметров излучения, экологического мониторинга, медицинской диагностики и неразрушающего контроля. Изобретения направлены на повышение чувствительности и обеспечение оптического управления характеристиками фотовольтаического детектора, в частности динамическим диапазоном и чувствительностью. Указанный результат в части способа достигается тем, что способ предусматривает создание опорной эдс за счет пространственного разделения зарядов, возникающих при облучении структур, формируемых на основе полупроводниковых материалов и включающих в себя потенциальный барьер и массив квантово-размерных объектов в области барьера, излучением с энергией частиц в области фундаментального поглощения в структурах или при инжекции носителей заряда через потенциальный барьер вследствие облучения таких структур излучением с энергией частиц, достаточной для инжекции носителей заряда, облучение квантово-размерных объектов детектируемым электромагнитным излучением, регистрацию изменения эдс при облучении структуры детектируемым электромагнитным излучением. Указанный результат в части устройства достигается тем, что оно содержит формируемую на основе полупроводниковых материалов структуру с потенциальным барьером, в области которого создан массив квантово-размерных объектов, источник опорного излучения для облучения структуры с целью создания опорной эдс и прибор, регистрирующий изменение эдс при облучении устройства детектируемым электромагнитным излучением. 2 н. и 12 з.п. ф-лы, 6 пр., 3 ил.

Изобретение относится к устройствам захвата изображения. Твердотельное устройство захвата изображения включает в себя множество пикселей, причем каждый из множества пикселей содержит участок фотоэлектрического преобразования, сконфигурированный для генерации зарядов в соответствии с падающим светом, участок удержания заряда, сконфигурированный так, чтобы включать в себя первую полупроводниковую область первого типа проводимости, и участок передачи, сконфигурированный так, чтобы включать в себя электрод передающего затвора, который управляет потенциалом между участком удержания заряда и узлом считывания. Участок удержания заряда включает в себя управляющий электрод. Вторая полупроводниковая область второго типа проводимости расположена на поверхности полупроводниковой области между управляющим электродом и электродом передающего затвора. Третья полупроводниковая область первого типа проводимости расположена под второй полупроводниковой областью. Третья полупроводниковая область расположена в более глубоком местоположении, чем первая полупроводниковая область. Изобретение обеспечивает увеличение эффективности передачи заряда от участка удержания заряда к плавающей диффузионной области. 2 н. и 6 з.п. ф-лы, 7 ил.
Наверх