Способ демодуляции фазомодулированных сигналов и устройство его реализации

Изобретения относятся к области радиосвязи и могут быть использованы для демодуляции фазоманипулированных, а также фазомодулированных сигналов за счет преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования склона АЧХ высокочастотной части демодулятора с заданной крутизной и в заданной полосе частот и последующей амплитудной демодуляции. Технический результат заключается в обеспечении демодуляции ФМС без использования генератора опорных колебаний. Способ демодуляции фазомодулированных сигналов состоит в том, что фазомодулированный сигнал подают на демодулятор, выполненный из линейного четырехполюсника, двухэлектродного нелинейного элемента и избирательной нагрузки, фазомодулированный сигнал преобразовывают в амплитудно-фазомодулированный сигнал, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем подачи этого сигнала на правый или на левый склон АЧХ, низкочастотную составляющую амплитудно-фазомодулированного сигнала подают на дифференцирующую или на интегрирующую цепь соответственно, с помощью нелинейного элемента разрушают спектр амплитудно-фазомодулированного сигнала на высокочастотные и низкочастотные составляющие, с помощью фильтра нижних частот выделяют информационный низкочастотный сигнал, амплитуда которого изменяется по закону изменения фазы фазомодулированного входного сигнала, при этом четырехполюсник выполняют резистивным, нелинейный элемент включают в поперечную цепь между выходом источника фазомодулированного сигнала и входом четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь вводят высокочастотную нагрузку, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот за счет выбора частотных характеристик мнимых составляющих сопротивлений высокочастотной нагрузки xн и источника высокочастотного сигнала x0 с помощью приводимых математических выражений. Приводится также устройство для реализации данного способа. 2 н.п. ф-лы, 4 ил.

 

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для демодуляции фазоманипулированных, а также фазомодулированных сигналов.

Известен способ демодуляции фазомодулированных сигналов (ФМС), состоящий в том, что на два нелинейных элемента одновременно подаются в противофазе высокочастотный ФМС и в фазе высокочастотное опорное колебание с частотой, равной несущей частоте ФМС. В результате происходит сравнение изменяемой во времени фазы ФМС и постоянной фазы опорного колебания, вследствие чего осуществляется преобразование ФМС в амплитудно-модулированный и фазомодулированный сигнал (АФМС). При этом амплитуда изменяется по закону изменения фазы. Этот сигнал далее испытывает такие же преобразования, как и в амплитудном демодуляторе [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292]. Это означает, что на нелинейных элементах спектр АФМС разрушается (разлагается) на низкочастотные и высокочастотные составляющие. Далее с помощью фильтра нижних частот выделяется низкочастотная составляющая, амплитуда которой изменяется по закону изменения фазы входного ФМС. Затем, с помощью разделительной емкости, включенной в продольную цепь (последовательно), устраняется постоянная составляющая, возникшая на нелинейных элементах в результате взаимодействия с АФМС. После этого низкочастотные колебания, содержащие полезную информацию, выделяются на низкочастотной нагрузке.

Недостаток такого способа и устройства его реализации состоит в том, что для выделения низкочастотного сигнала, амплитуда которого изменяется в соответствии с законом изменения фазы высокочастотного ФМС, необходимо наличие генератора опорных колебаний. Другим недостатком является отсутствие возможности коррекции коэффициента амплитудной модуляции АФМС, что при прохождении через резонансные цепи приводит к уменьшению этой характеристики, то есть к известному явлению частичной демодуляции АФМС или к снижению помехоустойчивости. Основным недостатком является малая величина квазилинейного участка демодуляционной характеристики из-за использования недостаточного количества колебательных контуров и отсутствия выбора их параметров по критерию преобразования ФМС в АФМС в заданной полосе частот или на заданном количестве частот.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ демодуляции фазомодулированных сигналов, состоящий в том, что для демодуляции ФМС используют частотный детектор, состоящий из каскадно-соединенных амплитудного ограничителя, преобразователя частотно-модулированного сигнала (ЧМС) в амплитудно-частотно-модулированный сигнал (АЧМС) в виде параллельного колебательного контура и обычного амплитудного демодулятора. Далее процесс выделения низкочастотной составляющей осуществляется так же, как описано выше. Особенность использования частотного детектора для демодуляции ФМС состоит в том, что если частота несущего сигнала ФМС расположена на правом склоне амплитудно-частотной характеристики (АЧХ) контура, то низкочастотную составляющую подают на дифференцирующую цепь. Если частота несущего сигнала ФМС расположена на левом склоне АЧХ контура, то низкочастотную составляющую подают на интегрирующую цепь [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292]. При необходимости между источником модулированных сигналов и нелинейным элементом или между нелинейным элементом и нагрузкой включают реактивный или резистивный четырехполюсник для согласования и дополнительной селекции сигнала и помехи. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей входного высокочастотного фазомодулированного колебания.

Недостаток способа и устройства его реализации состоит в том, что после преобразования ФМС в АФМС коэффициент амплитудной модуляции АФМС не контролируется и, как правило, бывает незначительным по величине, что ухудшает помехоустойчивость [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Радио и связь, 1986, стр.247-252]. Основным недостатком является малая величина квазилинейного участка демодуляционной характеристики из-за использования недостаточного количества колебательных контуров и отсутствия выбора их параметров по критерию преобразования ФМС в АФМС в заданной полосе частот или на заданном количестве частот. Кроме того, классическая теория радиотехнических цепей предполагает, что нелинейный элемент является чисто резистивным и безынерционным, в связи с чем он никак не реагирует на изменение частоты и фазы входного сигнала, а реагирует только на изменение амплитуды. Между тем, повседневный опыт показывает, что нелинейные элементы имеют внутренние емкости и индуктивности, которые оказывают существенное влияние на формирование зависимости их проводимости (сопротивления или элементов матрицы проводимостей или сопротивлений) от частоты и фазы. Особенно существенно это проявляется с повышением частоты, к чему в настоящее время в основном стремятся проектировщики новых систем и средств радиосвязи.

Техническим результатом изобретения является обеспечение демодуляции ФМС без использования генератора опорных колебаний с преобразованием ФМС в АФМС с помощью высокочастотной части демодулятора при заданном коэффициенте амплитудной модуляции АФМС на высокочастотной нагрузке при одновременном увеличении полосы частот, в которой это преобразование возможно, что повышает помехоустойчивость приемника.

1. Указанный результат достигается тем, что в способе демодуляции фазомодулированных сигналов, состоящем в том, что фазомодулированный сигнал подают на демодулятор, выполненный из линейного четырехполюсника, двухэлектродного нелинейного элемента и избирательной нагрузки, фазомодулированный сигнал преобразовывают в амплитудно-фазомодулированный сигнал, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем подачи этого сигнала на правый или на левый склон АЧХ, низкочастотную составляющую амплитудно-фазомодулированного сигнала подают на дифференцирующую или на интегрирующую цепь соответственно, с помощью нелинейного элемента разрушают спектр амплитудно-фазомодулированного сигнала на высокочастотные и низкочастотные составляющие, с помощью фильтра нижних частот выделяют информационный низкочастотный сигнал, амплитуда которого изменяется по закону изменения фазы фазомодулированного входного сигнала, дополнительно четырехполюсник выполняют резистивным, нелинейный элемент включают в поперечную цепь между выходом источника фазомодулированного сигнала и входом четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь вводят высокочастотную нагрузку, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот за счет выбора частотных характеристик мнимых составляющих сопротивлений высокочастотной нагрузки xн и источника высокочастотного сигнала x0 с помощью следующих математических выражений:

α = d a , β = b a , γ = c a - заданные отношения элементов классической матрицы передачи a, b, c, d резистивного четырехполюсника; m, φ - заданные зависимости модуля и фазы передаточной функции от частоты из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; g, b - заданные зависимости действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента от частоты; r0, rn - заданные зависимости действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки от частоты.

2. Указанный результат достигается тем, что в устройстве демодуляции фазомодулированных сигналов, включенном между источником фазомодулированных сигналов и низкочастотной нагрузкой и состоящем из преобразователя фазомодулированных сигналов в амплитудно-фазомодулированный сигнал в виде линейного четырехполюсника, двухэлектродного нелинейного элемента, фильтра нижних частот, дополнительно четырехполюсник выполнен в виде П-образного соединения трех резистивных двухполюсников, нелинейный элемент включен в поперечную цепь между выходом источника фазомодулированного сигнала и входом четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь введена высокочастотная нагрузка, причем мнимые составляющие сопротивлений высокочастотной нагрузки xн и источника высокочастотного сигнала x0 реализованы реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны из условия обеспечения операции преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот с помощью следующих математических выражений:

α = r 1 + r 2 r 1 + r 3 ; β = r 2 r 3 r 2 + r 3 ; γ = r 1 + r 2 + r 3 ( r 2 + r 3 ) r 1 - заданные отношения элементов классической матрицы передачи a = 1 + r 2 r 3 ; c = r 1 + r 2 + r 3 r 1 r 3 ; d = 1 + r 2 r 1 резистивного четырехполюсника, равные на четырех заданных частотах ωn=2πfn; n=1, 2, 3, 4 - номер частоты; r1, r2, r3 - заданные значения сопротивлений резистивных двухполюсников П-образного соединения; mn, φn - заданные значения модуля и фазы передаточной функции на четырех заданных частотах из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; gn, bn - заданные значения действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента на четырех заданных частотах; r0n, rнn - заданные значения действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах; k=0,н - индекс, характеризующий действительные и мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки; xkn - оптимальные значения мнимых составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах.

На фиг.1 показана схема устройства демодуляции фазомодулированных радиочастотных сигналов (прототип).

На фиг.2 показана структурная схема предлагаемого устройства по п.2.

На фиг.3 приведена схема четырехполюсника предлагаемого устройства по п.2.

На фиг.4 приведена схема каждого из двухполюсников, формирующих мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки предлагаемого устройства по п.2.

Устройство-прототип (фиг.1) содержит источник 1 фазомодулированных сигналов, четырехполюсник 2, нелинейный элемент 3, фильтр нижних частот 4 на элементах R, C, разделительная емкость 5 на элементе Cp и низкочастотную нагрузку 6 на элементах Rн, Сн.

Принцип действия устройства демодуляции фазомодулированных сигналов (прототипа) состоит в следующем.

Фазомодулированный сигнал от источника 1 подают на демодулятор (фиг.1). Принцип действия устройства, реализующего этот способ, состоит в том, что с помощью реактивного четырехполюсника 2, представляющего собой параллельный колебательный контур и включенного между источником ФМС и нелинейным элементом, преобразовывают ФМС в АФМС, с помощью нелинейного элемента 3 разрушают спектр АФМС на высокочастотные и низкочастотные составляющие. Последние выделяются с помощью фильтра нижних частот 4 и поступают в низкочастотную нагрузку 6. Разделительная емкость 5 устраняет постоянную составляющую. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей высокочастотного АФМС, то есть по закону изменения фазы входного ФМС, изменяющейся по закону изменения амплитуды первичного сигнала.

Недостаток способа и устройства его реализации состоит в том, что при прохождении ФМС через указанную цепь, после преобразования ФМС в АФМС, коэффициент амплитудной модуляции последнего является незначительным. Это связано с большой шириной спектра ФМС или с малой добротностью контура. С другой стороны, чем уже полоса пропускания контура, тем большим искажениям подвергается принятый сигнал. В общем случае коэффициент амплитудной модуляции АФМС уменьшается и становится, как правило, неизвестным. Таким образом, основной недостаток состоит в неразрешимости в рамках прототипа противоречия предъявляемых требований к увеличению крутизны и полосы частот квазилинейного склона АЧХ высокочастотной части демодулятора.

Высокочастотная часть (до фильтра нижних частот) структурной схемы обобщенного предлагаемого устройства по п.2 (фиг.2) состоит из источника ФМС 1, резистивного четырехполюсника 2, двухэлектродного нелинейного элемента 3 и высокочастотной нагрузки 7. Низкочастотная часть структурной схемы содержит фильтр нижних частот 4, разделительную емкость 5 и низкочастотную нагрузку 6. Резистивный четырехполюсник 2 выполнен в виде П-образного соединения трех резистивных двухполюсников (фиг.3), сопротивления которых могут быть выбраны произвольно или из каких-либо физических соображений. Частотные зависимости мнимых составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки выбраны из условия формирования квазилинейного склона АЧХ демодулятора с заданными значениями модулей передаточной функции на четырех заданных частотах требуемой полосы частот. Реализация этих зависимостей осуществлена реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров (фиг.4), значения параметров которых L1k, C1k и L2k, C2k выбраны из условия обеспечения операции преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот с помощью определенных математических выражений. Реальные сопротивления источника высокочастотного сигнала и высокочастотной нагрузки могут быть чисто активными (это часто встречается на практике). В этом случае мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки, реализованные указанным образом, подключаются последовательно к соответствующим активным сопротивлениям. Выполнение четырехполюсника резистивным является дополнительной возможностью увеличения квазилинейного участка склона АЧХ, поскольку параметры резистивных элементов не зависят от частоты в очень большой полосе частот.

Принцип действия данного устройства состоит в том, что при подаче ФМС от источника 1 с сопротивлением z0 в результате специального выбора значений элементов реактивных двухполюсников будет сформирован левый или правый склон АЧХ демодулятора с заданными значениями модулей передаточной функции на четырех заданных частотах требуемой полосы частот. Это обеспечивает заданный коэффициент амплитудной модуляции АФМС в большей полосе частот, что повышает помехоустойчивость приемника. Одновременно спектр АФМС разрушается при помощи нелинейного элемента 3, включенного между источником ФМС и четырехполюсником. В результате низкочастотное колебание, амплитуда которого изменяется по закону изменения фазы входного ФМС, выделяется на низкочастотной нагрузке 6.

Докажем возможность реализации указанных свойств.

Пусть известны зависимости действительных составляющих комплексных сопротивлений нагрузки zн=rн+jxн и источника ФМС z0=r0+jx0 от частоты. Известна также зависимость проводимости двухполюсного управляемого элемента y=g+jb при выбранной рабочей точке от частоты. Здесь и далее аргумент (частота) для простоты опущен. Таким образом, нелинейный элемент характеризуется матрицей передачи:

A н э = | 1 0 у 1 | . ( 1 )

Резистивный четырехполюсник (РЧ) описывается матрицей передачи:

A = a | 1 β γ α | , ( 2 )

где α = d a ; β = b a ; γ = c a ; a, b, c, d - элементы классической матрицы передачи.

Общая нормированная классическая матрица передачи генератора/модулятора получается путем перемножения матриц (1) и (2) с учетом условий нормировки:

A = a | z n z 0 β 1 z 0 z n ( у + γ ) z 0 z n ( β y + α ) z 0 z n | . ( 3 )

Используя известную связь элементов матрицы рассеяния с элементами матрицы передачи (3) [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с], получим выражение для коэффициента передачи высокочастотной части (до фильтра нижних частот) демодулятора S21:

S 2 1 = 2 z 0 z n a [ ( z n + β ) ( g 2 2 0 + j b 2 2 0 ) + ( γ z n + α ) z 0 ] , ( 4 )

где g220=1+gr0-bx0; b220=gx0+br0.

Входящий в (4) корень можно представить в виде комплексного числа a+jb, где

a = ± x 2 + у 2 + x 2 ; b = ± x 2 + у 2 x 2 ; x=r0xн+r0xн; у=r0xн+r0xн.

После денормировки коэффициента передачи (4) путем умножения на z н z 0 последнее выражение изменяется a=rn; b=xn.

Денормированный коэффициент передачи связан с физически реализуемой передаточной функцией следующим образом H = 1 2 S 2 1 .

Пусть требуется определить частотные зависимости мнимых составляющих сопротивлений нагрузки xн и источника ФМС x0, оптимальные по критерию обеспечению заданных зависимостей модуля m и фазы φ передаточной функции от частоты в интересах формирования АЧХ и ФЧХ высокочастотной части демодулятора с требуемой крутизной и в заданной полосе частот:

S 2 1 = m ( c o s ( ϕ ) + j s i n ( ϕ ) ) . ( 5 )

Подставим (4) в (5) и после несложных преобразований и разделения комплексного уравнения на действительную и мнимую части, получим систему двух алгебраических уравнений, эквивалентных заданным зависимостям модуля m и фазы φ передаточной функции от частоты:

r н m a ( R c o s ϕ I s i n ϕ ) = 0 ; x н m a ( I c o s ϕ + R s i n ϕ ) = 0 , ( 6 )

где R=(rн+β)g220+r0(α+γrн)-хнb220-γx0xн; I=(rн+β)b220+x0(α+γrн)+xнg220+ухнr0.

Решение системы (6) относительно x0, хн имеет смысл зависимостей мнимых составляющих сопротивления источника сигнала и высокочастотной нагрузки от частоты, оптимальных по критерию обеспечения заданных АЧХ и ФЧХ (аппроксимирующих функций):

Для реализации оптимальных характеристик (7) методом интерполяции необходимо сформировать двухполюсники с сопротивлениями x0, xn из не менее чем N (числа частот интерполяции) реактивных элементов, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсников на заданных частотах, определенным по формулам (7), и решить сформированную таким образом систему N уравнений относительно N выбранных параметров реактивных элементов. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например, из условия физической реализуемости.

В соответствии с этим алгоритмом получены математические выражения для определения значений параметров L1k, C1k и L2k, C2k реактивного двухполюсника в виде последовательно соединенных двух параллельных контуров (фиг.4), оптимальных по критерию обеспечения указанных условий совпадения реальных сопротивлений с характеристиками (7) на четырех частотах:

Исходная система уравнений:

Реализация оптимальных аппроксимаций частотных характеристик (7) с помощью (8), (9) обеспечивает увеличение полосы частот, в пределах которой склон АЧХ отличается от линейного не более чем заданная некоторая малая величина, поскольку выполняются условия совпадения (9) реальных частотных характеристик (8) с оптимальными (7) на четырех частотах заданной полосы частот. Это позволяет при разумном выборе положений заданных частот относительно друг друга ω12, ω13, ω14, ω23, ω24, ω34 расширить квазилинейный участок склона АЧХ высокочастотной части демодулятора и фазовой демодуляционной характеристики. При этом индекс n (номер частоты) необходимо учесть в обозначениях всех частотно-зависимых величин.

В качестве резистивного четырехполюсника может быть выбрана любая типовая схема с известными элементами классической матрицы передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с], например П-образное соединение трех резистивных двухполюсников (фиг.3), для которого:

a = 1 + r 2 r 3 ; b = r 2 ; c = r 1 + r 2 + r 3 r 1 r 3 ; d = 1 + r 2 r 1 ; α = r 1 + r 2 r 2 + r 3 ; β = r 2 r 3 r 2 + r 3 ; γ = r 1 + r 2 + r 3 ( r 2 + r 3 ) r 1 .          ( 1 0 )

Значения сопротивлений r1, r2, r3 могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условий физической реализуемости параметров, определяемых с помощью (9), или из условия дополнительного увеличения полосы частот, в пределах которой сохраняется заданное отклонение склона АЧХ от линейной зависимости модуля передаточной функции от частоты.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестен способ, обеспечивающий формирование левого или правого склона АЧХ демодулятора с заданными зависимостями модуля и фазы передаточной функции устройства демодуляции ФМС от частоты в заданной полосе частот, что позволяет осуществить преобразование ФМС в АФМС с заданным коэффициентом амплитудной модуляции АФМС в большей полосе частот, причем устройство демодуляции состоит из нелинейного двухэлектродного элемента, включенного между выходом источника ФМС и входом резистивного четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь введена высокочастотная нагрузка, при этом четырехполюсник выполнен в виде П-образного соединения трех резистивных двухполюсников, а мнимые составляющие сопротивлений высокочастотной нагрузки xn и источника высокочастотного сигнала x0 реализованы реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны по соответствующим математическим выражениям.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника резистивным в виде указанной выше схемы, включение двухполюсного нелинейного элемента между выходом источника ФМС и входом резистивного четырехполюсника в поперечную цепь, введение высокочастотной нагрузки между четырехполюсником и фильтром нижних частот в поперечную цепь, реализация мнимых составляющих сопротивлений и источника высокочастотного сигнала реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны по соответствующим математическим выражениям из условия обеспечения заданного коэффициента амплитудной модуляции АФМС осуществляет преобразование ФМС в АФМС без наличия источника опорного сигнала в большей полосе частот.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды (параметрические диоды, p-i-n диоды, ЛПД, диоды Ганна и т.д.), индуктивности и емкости, сформированные в заявленную схему реактивных двухполюсников. Значения сопротивлений реактивных двухполюсников, индуктивностей и емкостей могут быть определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении операции преобразования входного ФМС в АФМС с заданным коэффициентом амплитудной модуляции за счет формирования квазилинейного склона АЧХ с заданной крутизной в большей полосе частот, что способствует повышению помехоустойчивости.

1. Способ демодуляции фазомодулированных сигналов, состоящий в том, что фазомодулированный сигнал подают на демодулятор, выполненный из линейного четырехполюсника, двухэлектродного нелинейного элемента и избирательной нагрузки, фазомодулированный сигнал преобразовывают в амплитудно-фазомодулированный сигнал, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем подачи этого сигнала на правый или на левый склон АЧХ, низкочастотную составляющую амплитудно-фазомодулированного сигнала подают на дифференцирующую или на интегрирующую цепь соответственно, с помощью нелинейного элемента разрушают спектр амплитудно-фазомодулированного сигнала на высокочастотные и низкочастотные составляющие, с помощью фильтра нижних частот выделяют информационный низкочастотный сигнал, амплитуда которого изменяется по закону изменения фазы фазомодулированного входного сигнала, отличающийся тем, что четырехполюсник выполняют резистивным, нелинейный элемент включают в поперечную цепь между выходом источника фазомодулированного сигнала и входом четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь вводят высокочастотную нагрузку, преобразование фазомодулированного сигнала в амплитудно-фазомодулированный сигнал осуществляют путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот за счет выбора частотных характеристик мнимых составляющих сопротивлений высокочастотной нагрузки xн и источника высокочастотного сигнала x0 с помощью следующих математических выражений

α = d a , β = b a , γ = c a - заданные отношения элементов классической матрицы передачи a, b, c, d резистивного четырехполюсника; m, φ - заданные зависимости модуля и фазы передаточной функции от частоты из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; g, b - заданные зависимости действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента от частоты; r0, rn - заданные зависимости действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки от частоты.

2. Устройство демодуляции фазомодулированных сигналов, включенное между источником фазомодулированных сигналов и низкочастотной нагрузкой и состоящее из преобразователя фазомодулированных сигналов в амплитудно-фазомодулированный сигнал в виде линейного четырехполюсника, двухэлектродного нелинейного элемента, фильтра нижних частот, отличающееся тем, что четырехполюсник выполнен в виде П-образного соединения трех резистивных двухполюсников, нелинейный элемент включен в поперечную цепь между выходом источника фазомодулированного сигнала и входом четырехполюсника, между выходом четырехполюсника и фильтром нижних частот в поперечную цепь введена высокочастотная нагрузка, причем мнимые составляющие сопротивлений высокочастотной нагрузки xn и источника высокочастотного сигнала x0 реализованы реактивными двухполюсниками в виде последовательно соединенных двух параллельных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны из условия обеспечения операции преобразования фазомодулированного сигнала в амплитудно-фазомодулированный сигнал путем формирования квазилинейного склона АЧХ высокочастотной части демодулятора в заданной полосе частот с помощью следующих математических выражений

- заданные отношения элементов классической матрицы передачи резистивного четырехполюсника, равные на четырех заданных частотах ωn=2πfn; n=1, 2, 3, 4 - номер частоты; r1, r2, r3 - заданные значения сопротивлений резистивных двухполюсников П-образного соединения; mn, φn - заданные значения модуля и фазы передаточной функции на четырех заданных частотах из условия формирования квазилинейных склонов АЧХ и ФЧХ с заданной крутизной и в заданной полосе частот; gn, bn - заданные значения действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента на четырех заданных частотах; r0n, rнn - заданные значения действительных составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах; k=0, н - индекс, характеризующий действительные и мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки; xkn - оптимальные значения мнимых составляющих сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки на четырех заданных частотах.



 

Похожие патенты:

Изобретение относится к технике сверхвысоких частот и предназначено для объединения или разделения сигналов на двух несущих частотах. .

Изобретение относится к технике СВЧ, а именно к способам изготовления полосовых фильтров на диэлектрических резонаторах. .

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для перестраиваемого по частоте согласования произвольных комплексных сопротивлений в заданной полосе частот.

Изобретение относится к радиотехнике сверхвысоких частот и может использоваться в радиосхемах с применением направленных ответвителей с сильной связью в полосковом исполнении.

Изобретение относится к области электроники сверхвысоких частот, а именно к дискретным фазовращателям проходного типа, и может быть использовано в качестве электронно-управляемых устройств в проходной фазированной антенной решетке

Изобретение относится к области радиотехники сверхвысоких частот (СВЧ), а более конкретно к волноводным фазовращателям и предназначено, главным образом, для построения антенных решеток с электронным сканированием луча, например, миллиметрового диапазона длин волн. Технический результат - снижение вносимых потерь волноводного фазовращателя при быстром электрическом управлении фазой. Для этого электромагнитную волну поперечно-электрического типа (ТЕ-волну) пропускают через секцию прямоугольного волновода с варакторами, подают управляющее электрическое напряжение на варакторы, которое изменяет эффективную ширину волновода, и тем самым управляют длиной ТЕ-волны в волноводе, что при неизменной геометрической длине секции волновода обеспечивает быстрое управление фазой при низких вносимых потерях на проход волны. Предлагается устройство, которое содержит источник управляющего электрического напряжения и секцию прямоугольного волновода, состоящего из четырех проводящих (металлических) стенок, пропускающую ТЕ-волну в продольном направлении, отличающееся включением, по крайней мере, вдоль одной из узких стенок волновода продольной варакторной вставки с зависящей от прилагаемого управляющего электрического напряжения емкостью, перемыкающей широкие стенки волновода по СВЧ току, наводимому пропускаемой ТЕ-волной. 2 н. и 2 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов. Способ генерации и частотной модуляции высокочастотного сигнала отличается тем, что цепь прямой передачи выполняют из трехполюсного нелинейного элемента, в качестве цепи обратной связи используют внешнюю обратную связь в виде произвольного четырехполюсника, соединенного с трехполюсным нелинейным элементом, к управляющему и общему электродам трехполюсного нелинейного элемента подключают второй двухполюсник с комплексным сопротивлением. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний и использовании реактивного базиса с сосредоточенными параметрами. 2 н.п. ф-лы, 3 ил.

Модуль свч // 2497241
Изобретение относится к технике сверхвысоких частот (СВЧ), а именно к конструкции корпусов интегральных модулей СВЧ-диапазона, используемых в радиоэлектронной аппаратуре. Техническим результатом является повышение технологичности изготовления модуля СВЧ. Модуль СВЧ содержит: корпус, разделенный, по крайней мере, одной экранной перегородкой на отсеки, внутри которых на основаниях расположены платы с микрополосковыми линиями, а также межплатный СВЧ-переход, установленный в экранной перегородке и соединяющий микрополосковые линии плат, расположенных в смежных отсеках, с наружной стороны корпуса, на участке сопряжения днища корпуса с экранной перегородкой, перпендикулярно плоскости микрополосковых плат выполнен паз, в котором установлен СВЧ-переход, причем геометрические размеры паза выбраны с возможностью обеспечения необходимого позиционирования внутреннего проводника СВЧ-перехода относительно соединяемых микрополосковых линий плат во время установки СВЧ-перехода в пазе экранной перегородки, при этом зазор между внешним проводником СВЧ-перехода и внутренней поверхностью паза заполнен припоем, а с наружной стороны корпуса внешний проводник СВЧ-перехода, посредством пайки соединен с экранными сторонами микрополосковых плат. 4 ил.

Изобретение относится к многополосному соединительному устройству излучения и приема с очень широкой частотной полосой пропускания типа ортомодового соединительного устройства (ОМТ), предназначенному для сверхвысокочастотных телекоммуникационных антенн. Соединительное устройство содержит порт (Р1) распространения всей совокупности частот, корпус и порт (Р2) распространения частотных полос высокой частоты, причем три эти части являются коаксиальными, и щели (24А) связи, предназначенные для распространения низких частотных полос, выполнены в упомянутом корпусе, и каждая из этих щелей связана с волноводом, и это устройство отличается тем, что его корпус (24), объединяющий два упомянутых порта, представляет форму тела вращения, профиль которого изменяется в соответствии с полиномиальным законом и постоянно уменьшается от порта (Р1), имеющего наибольшее поперечное сечение, до порта (Р2), имеющего наименьшее поперечное сечение. Соединительное устройство обеспечивает соединение и разделение очень широких частотных полос пропускания, и две или четыре щели связи широкой частотной полосы необходимы для распространения, как линейной поляризации, так и круговой поляризации после рекомбинации. 4 з.п. ф-лы, 8 ил.

Изобретение относится к технике сверхвысоких частот и предназначено для селекции СВЧ-сигнала. Техническим результатом является получение высокой крутизны склонов полосы заграждения на частоте F0 и сдвиг паразитной полосы заграждения дальше чем 3F0. Полосно-заграждающий фильтр состоит из высокодобротных керамических резонаторов и содержит основной токонесущий проводник, расположенный на одной стороне диэлектрической подложки, на второй поверхности которой размещены отрезки полосковых проводников, имеющие лицевую связь с основным токонесущим проводником и которые имеют гальваническую связь с керамическими резонаторами, причем расположение паразитной полосы заграждения зависит от толщины диэлектрической подложки. 3 ил.

Изобретение относится к области радиотехники, а именно к СВЧ переключателям на PIN-диодах. СВЧ переключатели применяются в приемопередающих системах для работы приемников и передатчиков в дуплексном режиме на одну антенну на одной частоте. Технический результат - улучшение частотной избирательности, массогабаритных параметров системы, за счет объединения в одном устройстве коммутирующих и фильтрующих элементов. Устройство содержит: разделительные емкости, входящие в последовательные колебательные LC-контуры цепей развязки (С1, С4, С7); контурные емкости, входящие в параллельные колебательные LC-контуры цепей фильтрации (С2, С5, С8); контурные емкости, входящие в параллельные колебательные LC-контуры цепей развязки (С3, С6); блокировочные емкости (С9, С10); индуктивности, входящие в последовательные колебательные LC-контуры цепей развязки (L1, L4, L7); индуктивности, входящие в параллельные колебательные LC-контуры цепей фильтрации (L2, L5, L8); индуктивности, входящие в параллельные колебательные LC-контуры цепей развязки (L3, L6); ограничительные резисторы (R1, R2, R3); PIN-диоды (VD1, VD2, VD3, VD4); сигнальные выводы устройства (11, 12, 13); источники управляющего напряжения (26, 27). 5 ил.

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Технический результат заключается в расширении высокочастотной полосы заграждения полосно-пропускающего микрополоскового фильтра и уменьшении его размеров. Микрополосковый фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземленное основание, а на вторую сторону параллельно друг другу нанесены прямолинейные полосковые проводники резонаторов, связанные электромагнитно и кондуктивно, и дополнительные полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами, причем только проводники наружных резонаторов одним концом короткозамкнуты, а дополнительные полосковые проводники разомкнуты. 3 ил.

Изобретение относится к электронной технике СВЧ. Достигаемый технический результат - расширение рабочей полосы частот и снижение прямых потерь СВЧ при сохранении допустимой входной мощности. Защитное устройство СВЧ содержит центральный проводник, один конец которого предназначен для входа сигнала СВЧ, другой - для выхода, соединенный с ним отрезок линии передачи, полупроводниковый прибор, выполненный в виде полевого транзистора с барьером Шотки, соединенный с другим концом отрезка линии передачи, резистор, включенный параллельно полупроводниковому прибору, емкость и индуктивность, отрезок линии передачи выполнен в виде отрезка одиночной линии передачи длиной, равной одной восьмой длины волны в отрезке линии передачи на центральной частоте рабочей полосы частот, и волновым сопротивлением, равным удвоенному значению волнового сопротивления центрального проводника, при этом величины емкости С и индуктивности L и сопротивление резистора выбраны в соответствии с заданными соотношениями. 4 ил.
Изобретение относится к области нанесения на подложки металлических покрытий, а именно к нанесению электропроводящего слоя на полимерную или бумажную подложку при изготовлении антенн, работающих в диапазоне ультравысокой частоты. На подложку наносят масочное покрытие, в качестве которого используют перфторполиэфир. Затем методом селективной вакуумной металлизации наносят слой меди или алюминия с поверхностным сопротивлением порядка 90-110 Ом/м2, после чего методом трафаретной печати наносят токопроводящий слой серебросодержащей краски с содержанием серебра в количестве 70-90%. Измеряют поверхностное сопротивление полученного токопроводящего покрытия методом четырехзондового контроля. Проводят отбраковку участков подложки не соответствующих необходимым техническим характеристикам, определяемым из условия допустимого разброса поверхностного сопротивления не более 15% в абсолютных единицах. Обеспечивается повышение технологичности производства, расширение эксплуатационных возможностей, снижение производственных издержек, повышение точности измерения. 1 з.п. ф-лы, 1 табл.
Наверх