Способ определения уровня физической работоспособности человека



Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека
Способ определения уровня физической работоспособности человека

 


Владельцы патента RU 2491016:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Марийский государственный университет" (RU)

Изобретение относится к спортивной медицине. Задают тест с постоянной нагрузкой и предъявляют последовательность парных световых импульсов длительностью 200 мс, разделенных начальным межимпульсным интервалом, равным 70 мс, повторяющихся через постоянный временной интервал 1 с. Периодически методом последовательного приближения определяют пороговый межимпульсный интервал, при котором два импульса в паре сливаются в один. Время тестирования определяют по времени резкого уменьшения значений порогового межимпульсного интервала, уровень физической работоспособности определяют по объему выполненной работы A в Дж, как произведение мощности нагрузки на время тестирования. При этом вначале испытуемому задают тест с постоянной нагрузкой, равной 75% должного максимального потребления кислорода, затем тестирование повторяют через двое суток отдыха с нагрузкой, увеличенной на 50 Вт, до тех пор, пока график динамики порогового межимпульсного интервала не будет иметь нисходящий тренд; уровень физической работоспособности определяют по предыдущему графику порогового межимпульсного интервала, имеющему «плато». Способ повышает достоверность оценки физической работоспособности, что достигается за счет задания адекватной нагрузки. 9 ил., 7 табл., 2 пр.

 

Изобретение относится к спортивной медицине и предназначено для определения уровня физической работоспособности человека.

Известен способ определения уровня физической работоспособности человека путем определения мощности физической нагрузки в Вт, при которой достигается максимальное потребление кислорода и его значение выходит на плато [1, 2].

Недостатком способа является то, что показатель максимального потребления кислорода отражает не столько работоспособность организма, сколько интегральную активность окислительных механизмов, причем между этими двумя понятиями нельзя ставить знак равенства [3].

Известен способ определения уровня физической работоспособности человека путем определения мощности физической нагрузки в Вт, при которой частота сердечных сокращений (ЧСС) устанавливается на уровне 170 ударов в минуту [4, 5].

Недостатком способа является недостоверное определение уровня физической работоспособности. Так величины PWC170 у гимнастов высокой квалификации колеблются в тех же пределах, что и у нетренированных людей, хотя физическая работоспособность у них не одинакова [6].

Известен способ определения уровня общей физической работоспособности путем выполнения мышечной нагрузки в виде степ-теста в течение 12 мин, по окончании которого в первые 30 с на 2-й, 3-й и 4-й минутах отдыха подсчитывают ЧСС и рассчитывают индекс 12-минутного степ-теста путем деления величины механической работы, выполненной обследуемым во время степ-теста, на удвоенную сумму ЧСС [7].

Недостатком способа является то, что регистрируя реакцию частоты сердечных сокращений на физическую нагрузку, нельзя определенно сказать, отражает ли она состояние исполнительного органа - сердца, или связана с особенностями вегетативной регуляции сердечной деятельности [2].

Наиболее близким по технической сущности к предлагаемому способу является способ определения уровня физической работоспособности человека, заключающийся в том, что испытуемому задают тест с постоянной нагрузкой и предъявляют последовательность парных световых импульсов длительностью 200 мс, разделенных начальным межимпульсным интервалом, равным 70 мс, повторяющихся через постоянный временной интервал 1 с; периодически методом последовательного приближения определяют пороговый межимпульсный интервал, при котором два импульса в паре сливаются в один; время тестирования определяют по времени резкого уменьшения значений порогового межимпульсного интервала, уровень физической работоспособности определяют по объему выполненной работы A в Дж по формуле:

A=W·t,

где W - мощность нагрузки в Вт; t - время тестирования в сек [8].

Недостатком способа является определение уровня физической работоспособности при нагрузке, не адекватной функциональному состоянию человека. В данном способе величина нагрузки при определении уровня физической работоспособности человека принимается равной 100% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского. Известно, что нагрузка, определяемая по номограммам, является усредненной. Однако одинаковые по интенсивности и длительности воздействия могут быть стресс-факторами для одного человека и не обладать этими свойствами для другого. По данным А.Н. Корженевского и соавторов [9] применение нагрузок одинакового объема и интенсивности приводит к росту функциональных возможностей лишь у 30-40% тренирующихся - у тех, для кого нагрузка оказалась оптимальной. Для более тренированных спортсменов эти нагрузки неэффективны, а для недостаточно подготовленных - неадекватны и ведут к переутомлению.

Технический результат предлагаемого способа заключается в повышении достоверности определения уровня физической работоспособности путем задания нагрузки, адекватной функциональному состоянию испытуемого.

Технический результат достигается тем, что испытуемому задают тест с постоянной нагрузкой и предъявляют последовательность парных световых импульсов длительностью 200 мс, разделенных начальным межимпульсным интервалом, равным 70 мс, повторяющихся через постоянный временной интервал 1 с; периодически методом последовательного приближения определяют пороговый межимпульсный интервал, при котором два импульса в паре сливаются в один; время тестирования определяют по времени резкого уменьшения значений порогового межимпульсного интервала, уровень физической работоспособности определяют по объему выполненной работы A в Дж по формуле:

A=W·t,

где W - мощность нагрузки в Вт; t - время тестирования в сек,

причем новым является то, что вначале испытуемому задают тест с постоянной нагрузкой, равной 75% должного максимального потребления кислорода, затем тестирование повторяют через двое суток отдыха с нагрузкой, увеличенной на 50 Вт, до тех пор, пока график динамики порогового межимпульсного интервала не будет иметь нисходящий тренд; уровень физической работоспособности определяют по предыдущему графику порогового межимпульсного интервала, имеющему «плато».

На фиг.1 представлена временная диаграмма последовательности парных световых импульсов, предъявляемых испытуемому в процессе тестирования, где tи - длительность светового импульса; τ - длительность межимпульсного интервала; T - длительность временного интервала повторения парных световых импульсов.

На фиг.2 представлена временная диаграмма изменения длительности межимпульсного интервала при определении его порогового значения.

На фиг.3-6 представлены графики динамики порогового межимпульсного интервала при тестировании испытуемого Т., на фиг.7-9 - испытуемого Б.

Предлагаемый способ определения уровня физической работоспособности человека осуществляется следующим образом. Испытуемому задают тест с постоянной нагрузкой, равной 75% должного максимального потребления кислорода, и предъявляют последовательность парных световых импульсов длительностью 200 мс, разделенных начальным межимпульсным интервалом, равным 70 мс, повторяющихся через постоянный временной интервал 1 с (фиг.2, интервал времени 0-T1).

В процессе тестирования периодически методом последовательного приближения определяют пороговый межимпульсный интервал, при котором два импульса в паре сливаются в один (фиг.2, интервал времени T1-T2). По полученным значениям порогового межимпульсного интервала строят график его динамики в координатах «значение порогового межимпульсного интервала - время тестирования». Время тестирования определяют по времени резкого уменьшения значений порогового межимпульсного интервала.

Тестирование повторяют через двое суток отдыха с нагрузкой, увеличенной, согласно рекомендациям [10] на 50 Вт, до тех пор, пока график динамики порогового межимпульсного интервала не будет иметь нисходящий тренд.

Уровень физической работоспособности определяют по предыдущему графику порогового межимпульсного интервала, имеющему «плато», по объему выполненной работы A в Дж по формуле:

А=W·t,

где W - мощность нагрузки в Вт; t - время тестирования в сек.

Предлагаемый способ позволяет повысить достоверность определения уровня физической работоспособности человека, определяя его при нагрузке, адекватной функциональному состоянию испытуемого.

Выход графика порогового межимпульсного интервала в процессе тестирования на «плато» свидетельствует о том, что центральная нервная система находится в квазистационарном режиме, то есть процессы регуляции вегетативных функций во всех органах и системах организма закончены и весь организм действительно находится в состоянии оптимальной работоспособности. В квазистационарном режиме наблюдается вариабельность значений порогового межимпульсного интервала, обусловленная стохастичностью центральной нервной системы как сложного биологического объекта.

Изменения в организме, обусловленные развитием утомления, заключаются в дискоординации процессов в органах и системах организма, увеличении физиологической стоимости работы [11]. Состояние центральной нервной системы, осуществляющей регуляцию процессов, происходящих в организме человека, меняется. Центральная нервная система переходит в состояние напряженности, о чем свидетельствует резкое уменьшение порогового межимпульсного интервала между двумя импульсами в паре.

Таким образом, предлагаемый способ отличается от известных новым свойством, обусловливающим получение положительного эффекта.

Пример 1. Испытуемый Т., 22 лет, кандидат в мастера спорта по лыжным гонкам, выполнил тестирование с использованием велоэргометра модели «Kettler X1» №7681-000 в положении сидя со скоростью педалирования 60 об/мин. Величина нагрузки постоянной мощности принята равной 195 Вт, соответствующей 75% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского. Во время тестирования врачом выполнялся постоянный контроль состояния испытуемого по его внешнему виду, частоте сердечных сокращений и артериальному давлению, изменения которых служили врачу основанием для прекращения тестирования. Определение порогового межимпульсного интервала выполнялось в начале тестирования и через каждые 2 минуты педалирования.

Тестирование прекращено по требованию врача. Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 1, график динамики значений порогового межимпульсного интервала - на фиг.3.

Таблица 1
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 7,9 7,5 6,7 6,5 6,1 5,9 5,8 5,9
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,8 5,8 5,8 5,9 5,8 5,8 5,9 5,7
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 5,8 5,7 5,7 5,8 5,7 5,9 5,8 5,8
Время тестирования, мин 48 50 52 54 56 58 60 62
Значение порогового межимпульсного интервала, мс 5,7 5,9 5,8 5,7 5,7 5,8 5,8 5,7
Время тестирования, мин 64 66 68 70 72 74 76 78
Значение порогового межимпульсного интервала, мс 5,8 5,8 5,8 5,7 5,8 5,7 5,7 5,7
Время тестирования, мин 80 82 84 86 88 90 - -
Значение порогового межимпульсного интервала, мс 5,8 5,8 5,7 5,8 5,7 5,7 - -

Анализ графика динамики порогового межимпульсного интервала в процессе тестирования показывает, что на графике отсутствует резкое уменьшение значений порогового межимпульсного интервала. Это свидетельствует о том, что состояние центральной нервной системы в процессе тестирования не меняется, утомление испытуемого при данной нагрузке, исходя из состояния центральной нервной системы, за время тестирования не наступает.

Испытуемый Т. повторил тестирование через двое суток отдыха с нагрузкой, равной 245 Вт, соответствующей 94% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 2, график динамики значений порогового межимпульсного интервала - на фиг.4.

Таблица 2
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 8,2 7,2 6,7 5,9 5,6 5,5 5,6 5,6
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,5 5,5 5,5 5,6 5,4 5,5 5,6 5,4
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 5,5 5,6 5,5 5,6 5,5 5,6 5,5 5,4
Время тестирования, мин 48 50 52 54 56 58 60 62
Значение порогового межимпульсного интервала, мс 5,5 5,4 5,4 5,3 5,3 5,2 5,2 5,3
Время тестирования, мин 64 66 68 70 72 74 76 78
Значение порогового межимпульсного интервала, мс 5,2 5,2 5,2 5,3 5,2 5,2 5,2 5,1
Время тестирования, мин 80 82 84 - - - - -
Значение порогового межимпульсного интервала, мс 5,0 4,6 4,1 - - - - -

Анализ графика порогового межимпульсного интервала в процессе тестирования позволяет определить время тестирования по времени резкого уменьшения значений порогового межимпульсного интервала, равное 80 минутам. В это время необходимо закончить тестирование, иначе дальнейшая нагрузка приведет к переутомлению.

Испытуемый Т. повторил тестирование через двое суток отдыха с нагрузкой, равной 295 Вт, соответствующей 114% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 3, график динамики значений порогового межимпульсного интервала - на фиг.5.

Таблица 3
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 7,8 6,4 5,7 5,3 5,2 5,3 5,3 5,2
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,2 5,3 5,2 5,2 5,3 5,3 5,2 5,2
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 5,1 5,1 5,0 5,0 5,1 5,0 5,0 5,1
Время тестирования, мин 48 50 52 54 56 58 60 62
Значение порогового межимпульсного интервала, мс 5,0 5,0 4,9 5,0 4,9 5,0 4,7 4,0

Анализ графика порогового межимпульсного интервала в процессе тестирования позволяет определить время тестирования по времени резкого уменьшения значений порогового межимпульсного интервала, равное 58 минутам. В это время необходимо закончить тестирование, иначе дальнейшая нагрузка приведет к переутомлению.

Испытуемый Т. повторил тестирование через двое суток отдыха с нагрузкой, равной 345 Вт, соответствующей 132% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Тестирование прекращено по требованию врача. Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 4, график динамики значений порогового межимпульсного интервала - на фиг.6.

Таблица 4
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 8,0 6,5 5,6 5,3 5,2 5,0 5,1 4,9
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,0 4,8 4,7 4,7 4,5 4,5 4,5 4,4
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 4,4 4,2 4,3 4,1 4,1 4,2 4,1 4,0
Время тестирования, мин 48 50 - - - - - -
Значение порогового межимпульсного интервала, мс 4,1 3,9 - - - - - -

Анализ графика порогового межимпульсного интервала в процессе тестирования показывает, что нагрузка, равная 345 Вт, соответствующая 132% должного максимального потребления кислорода, для испытуемого Т. является чрезмерной, так как график имеет нисходящий тренд.

Уровень физической работоспособности определили по предыдущему графику порогового межимпульсного интервала, имеющему «плато» (фиг.5), по объему выполненной работы A в Дж по формуле:

А=W·t=1026,6 Кдж,

где W - мощность нагрузки, равная 295 Вт; t - время тестирования, равное 3480 сек (таблица 3).

Пример 2. Испытуемый Б., 20 лет, 1 разряд по лыжным гонкам, выполнил, аналогично испытуемому Т., тестирование при нагрузке постоянной мощности, равной 195 Вт, соответствующей 75% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Тестирование прекращено по требованию врача. Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 5, график динамики значений порогового межимпульсного интервала - на фиг.7.

Таблица 5
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 7,4 6,8 6,5 6,4 6,1 6,0 5,8 5,7
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,8 5,7 5,6 5,6 5,7 5,6 5,7 5,5
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 5,6 5,4 5,5 5,5 5,4 5,5 5,6 5,6
Время тестирования, мин 48 50 52 54 56 58 60 62
Значение порогового межимпульсного интервала, мс 5,5 5,5 5,4 5,4 5,5 5,3 5,3 5,4
Время тестирования, мин 64 66 68 70 72 74 76 78
Значение порогового межимпульсного интервала, мс 5,3 5,3 5,4 5,3 5,4 5,4 5,4 5,3
Время тестирования, мин 80 82 84 86 88 90 - -
Значение порогового межимпульсного интервала, мс 5,4 5,3 5,3 5,4 5,4 5,3 - -

Анализ графика динамики порогового межимпульсного интервала в процессе тестирования показывает, что на графике отсутствует резкое уменьшение значений порогового межимпульсного интервала. Это свидетельствует о том, что состояние центральной нервной системы в процессе тестирования не меняется, утомление испытуемого при данной нагрузке, исходя из состояния центральной нервной системы, за время тестирования не наступает.

Испытуемый Б. повторил тестирование через двое суток отдыха с нагрузкой, равной 245 Вт, соответствующей 94% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 6, график динамики значений порогового межимпульсного интервала - на фиг.8.

Таблица 6
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 7,8 6,9 6,6 6,1 5,9 5,6 5,6 5,5
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 5,6 5,5 5,4 5,5 5,5 5,4 5,5 5,4
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 5,4 5,3 5,4 5,4 5,3 5,4 5,3 5,3
Время тестирования, мин 48 50 52 54 56 58 60 62
Значение порогового межимпульсного интервала, мс 5,4 5,3 5,3 5,4 5,3 5,3 5,2 5,3
Время тестирования, мин 64 66 68 70 72 74 - -
Значение порогового межимпульсного интервала, мс 5,2 5,2 5,2 5,0 4,7 4,2 - -

Анализ графика порогового межимпульсного интервала в процессе тестирования позволяет определить время тестирования по времени резкого уменьшения значений порогового межимпульсного интервала, равное 68 минутам. В это время необходимо закончить тестирование, иначе дальнейшая нагрузка приведет к переутомлению.

Испытуемый Б. повторил тестирование через двое суток отдыха с нагрузкой, равной 295 Вт, соответствующей 114% должного максимального потребления кислорода, определяемого по номограммам Б.П. Преварского.

Тестирование прекращено по требованию врача. Данные значений порогового межимпульсного интервала в процессе тестирования представлены в таблице 7, график динамики значений порогового межимпульсного интервала - на фиг.9.

Таблица 7
Время тестирования, мин 0 2 4 6 8 10 12 14
Значение порогового межимпульсного интервала, мс 7,6 6,6 6,2 5,9 5,4 5,2 5,0 5,0
Время тестирования, мин 16 18 20 22 24 26 28 30
Значение порогового межимпульсного интервала, мс 4,9 4,8 4,8 4,9 4,8 4,7 4,8 4,6
Время тестирования, мин 32 34 36 38 40 42 44 46
Значение порогового межимпульсного интервала, мс 4,6 4,4 4,5 4,4 4,5 4,3 4,4 4,2
Время тестирования, мин 48 50 52 54 56 - - -
Значение порогового межимпульсного интервала, мс 4,2 4,3 4,1 4,1 4,0 - - -

Анализ графика порогового межимпульсного интервала в процессе тестирования показывает, что нагрузка, равная 295 Вт, соответствующая 114% должного максимального потребления кислорода, для испытуемого Т. является чрезмерной, так как график имеет нисходящий тренд.

Уровень физической работоспособности определили по предыдущему графику порогового межимпульсного интервала, имеющему «плато» (фиг.8), по объему выполненной работы A в Дж по формуле:

А=W·t=999,6 Кдж,

где W - мощность нагрузки, равная 245 Вт; t - время тестирования, равное 4080 сек (таблица 6).

Таким образом, предлагаемый способ позволяет повысить достоверность определения уровня физической работоспособности человека, вычисляя его при нагрузке, адекватной функциональному состоянию испытуемого.

Источники информации

1. Фарфель B.C., Михайлов В.В. Максимальное потребление кислорода как показатель объема окислительных процессов и общей работоспособности организма. - Киев: Наук, думка, 1966. - 254 с.

2. Карпман В.Л., Белоцерковский З.Б., Гудков И.А. Тестирование в спортивной медицине. - М.: Физкультура и спорт, 1988. - 208 с.

3. Зайцева В.В., Сонькин В.Д., Бурчик М.В. и др. Оценка информативности эргометрических показателей работоспособности. // Физиология человека. - 1997. - Т.23. - №6. - С.58-63.

4. Карпман В.Л., Белоцерковский З.Б., Любина В.Г. PWC170-проба для определения физической работоспособности. // Теор. и практ. физич. культ. - 1969. - №10. - С.37-40.

5. Карпман В.Л., Белоцерковский З.Б., Гудков И.А. Исследование физической работоспособности у спортсменов. - М: Физкультура и спорт, 1974. - 95 с.

6. Аулик И.В. Определение физической работоспособности в клинике и спорте: 2-е изд., перераб. и доп. - М.: Медицина, 1990. - 192 с.

7. Патент 2309722 РФ, A61H 1/00, A61B 5/00, A61B 5/024. Способ определения уровня общей физической работоспособности. / М.Ф. Сауткин (РФ) - Опубл. 11.10.2007.

8. Патент 2372063 РФ, МПК A61F 9/00, A61B 3/02. Способ оценки уровня физической работоспособности человека. / Полевщиков М.М., Роженцов В.В. (РФ) - Опубл. 10.11.2009.

9. Корженевский А.Н., Дахновский B.C., Подливаев Б.А. Диагностика тренированности борцов. // Теория и практика физической культуры. - 2004. - №2. - С.28-32.

10. Зайцева В.В., Сонькин В.Д., Бурчик М.В., Корниенко И.А. Оценка информативности эргометрических показателей работоспособности. // Физиология человека. - 1997. - Т.23. - №6. - С.58-63.

11. Смирнов К.М. Напряженность труда. // Успехи физиологических наук. - 1984. - Т.15. - №1. - С.76-99.

Способ определения уровня физической работоспособности человека, заключающийся в том, что испытуемому задают тест с постоянной нагрузкой и предъявляют последовательность парных световых импульсов длительностью 200 мс, разделенных начальным межимпульсным интервалом, равным 70 мс, повторяющихся через постоянный временной интервал 1 с; периодически методом последовательного приближения определяют пороговый межимпульсный интервал, при котором два импульса в паре сливаются в один; время тестирования определяют по времени резкого уменьшения значений порогового межимпульсного интервала, уровень физической работоспособности определяют по объему выполненной работы A, Дж, по формуле
A=W·t,
где W - мощность нагрузки, Вт; t - время тестирования, с, отличающийся тем, что вначале испытуемому задают тест с постоянной нагрузкой, равной 75% от должного максимального потребления кислорода, затем тестирование повторяют через двое суток отдыха с нагрузкой, увеличенной на 50 Вт, до тех пор, пока график динамики порогового межимпульсного интервала не будет иметь нисходящий тренд; уровень физической работоспособности определяют по предыдущему графику порогового межимпульсного интервала, имеющему «плато».



 

Похожие патенты:

Изобретение относится к медицине, в частности к офтальмологии, а именно к периметрам для субъективного обнаружения наличия тестового стимула, и может быть использовано для ранней диагностики первичной глаукомы и других заболеваний, ограничивающих поле зрения глаза человека.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для дифференциальной диагностики глаукомы с нормальным давлением и частичной атрофии зрительного нерва на глазах с наличием экскавации диска зрительного нерва.

Изобретение относится к медицинской технике, в частности к офтальмологии, и может быть использовано для ранней диагностики первичной глаукомы и других заболеваний, ограничивающих поле зрения глаза человека.

Изобретение относится к медицинской технике и может использоваться для скрининговой офтальмологической диагностики зрения детей, взрослых, лиц с нарушениями интеллектуального развития, речи.

Изобретение относится к медицине и медицинской технике и предназначено для увеличения точности определения времени инерционности зрительной системы человека. .

Изобретение относится к медицине и медицинской технике и предназначено для увеличения точности определения времени восприятия зрительной информации. .

Изобретение относится к медицинской технике и может использоваться для офтальмологического тестирования зрения детей, взрослых и особых групп населения, включая лиц с ограниченными возможностями по здоровью, а также для проведения других видов интерактивного тестирования.

Изобретение относится к медицинской технике и предназначено для измерения разрешающей способности зрения по частоте световых мельканий. .

Изобретение относится к области медицины, а именно к офтальмологии. У пациентов с подозрением на БШ, начиная с возраста 5-6 лет и старше, проводят визометрию, исследование полей зрения, регистрацию скотопической, фотопической электроретинограммы, визуальный осмотр глазного дна, проверку цветного зрения, флюоресцентную ангиографию (ФАГ), регистрацию аутофлюоресценции (АФ) глазного дна, оптическую когерентную томографию (ОКТ). По сочетанию и количеству выявленных нарушений диагностируют начальную стадию, развитую стадию, далекозашедшую стадию или терминальную стадию болезни Штаргардта. Способ позволяет повысить достоверность дифференциальной диагностики, что достигается за счет установления количественных критериев тяжести заболевания. 8 ил., 4 пр.

Изобретение относится к области эргономики, психологии труда, медицине и может быть использовано для диагностики функционального состояния человека, а именно к исследованию и оценки усталости глаз пользователя компьютера, и искривления позвоночника пользователя ПК. Предварительно с помощью программного средства фиксируют нормальное вертикально ориентированное положение позвоночника пользователя, отклонение положения позвоночника от нормального его положения на недопустимую величину. Производят коррекцию положения позвоночника путем его возврата в нормальное вертикально ориентированное положение. Нормальное вертикально ориентированное положение позвоночника пользователя фиксируют встроенной фронтальной видеокамерой с последующей передачей видеоизображения на программный сервис компьютера. С помощью программы и видеокамеры определяют проекцию расстояния между центрами глаз, зафиксированное на видеоизображении при комфортном расстоянии между пользователем и экраном компьютера, которое составляет не менее 2-х диагоналей экрана. Путем съемки видеокамерой регистрируют динамику изменения проекции расстояния между центрами глаз в кадре во времени. Если расстояние между пользователем и экраном компьютера составляет менее 2-х диагоналей экрана, выводят предупреждение на экран. В качестве предупреждения выводят наложение на изображение экрана визуальных эффектов и/или звуковых и/или вибросигналов. При этом чем меньше расстояние между пользователем и экраном, тем сильнее воздействие визуальных эффектов в виде размытия экрана и/или звуковых и/или вибросигналов. Для самоконтроля пользователя при фиксации изменения расстояния между центрами глаз в проекции кадра в качестве визуального эффекта используют затенение экрана и/или изображение анимационных персонажей. После 30-минутной работы программы выводят на экран сообщение о необходимости перерыва и отдыха для глаз и выводят игровые расслабляющие упражнения для глаз или рекомендацию о перерыве на 5 минут, после чего визуальный эффект экрана и дополнительные сигналы выключают. Для экономии программно-аппаратного ресурса используют алгоритм разложения видеоряда на серию кадров с последующим анализом лишь каждого пятого кадра. Способ позволяет предотвратить усталость глаз и одновременного искривления позвоночника пользователя за счет поддержания безопасного расстояния от экрана до глаз человека. 3 з.п. ф-лы, 1 ил., 1 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Пациенту предлагают воспользоваться сенсорным экраном планшетного устройства, на котором установлен тест 3STAG. Пациенту необходимо выбрать наименьшую интенсивность маркера и последовательно выполнить 3STAG тест для каждого глаза. Критериями для оценки состояния макулы, а именно сетчатки, служили результаты комплексной оценки при использовании STAG. Ими являлись следующие показатели: относительное число нераспознанных ячеек - ОЧНЯ - (% от 3465 ячеек), абсолютный объем дефекта поля зрения - АОДПЗ (deg^2%), отношение объема дефекта поля зрения к холму видения - ООДПЗХВ - % от 69300.00 (deg^2%), площадь дефекта поля зрения ПДПЗ на разных уровнях контрастности - (deg^2%), и степень потери поля зрения СППЗ в %. На основании анализа комплекса полученных данных - данных, полученных при использовании теста 3STAG, а так же степени аметропии и степени амблиопии делают вывод о наличии степени макулярной дисфункции. Способ позволяет провести точную диагностику за счет комплексного анализа объективных данных, учитывающих в том числе особенности нарушений макулярной области. 4 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Проводят исследование с 3D-CTAG (3D-компьютерным тестом Амслера). Во время исследования пациенту предлагают отметить на экране в центральной зоне участки сетки Амслера, которые не видны, а также участки, где выявляются искажения линий, причем пациент отмечает указанные участки на разных уровнях серой шкалы, соответствующих пяти уровням контрастной чувствительности, начиная с нулевого. Полученные данные обрабатывают. При выявлении 1 дефекта, расположенного в центре и на всех уровнях, при нулевом уровне контраста 13% и более, отношении объема потери поля зрения к холму зрения 5,0-15,0%, итоговой потерянной площади менее 100%, уровне контрастности, на котором площадь дефекта наибольшая, 2, определяют наличие послеоперационного кистозного макулярного отека. При выявлении 2-10 дефектов, расположенных на 2-х и более уровнях, при нулевом уровне контраста 4% и более, отношении объема потери поля зрения к холму зрения 2,0-15,0%, любых итоговой потерянной площади и уровне контрастности, на котором площадь дефекта наибольшая, определяют наличие неартифакичного кистозного макулярного отека. При выявлении 1 дефекта, расположенного в центре и на всех уровнях, при нулевом уровне контраста 13-23%, отношении объема потери поля зрения к холму зрения 2,0-5,0%, итоговой потерянной площади менее 60%, любом уровне контрастности, на котором площадь дефекта наибольшая, определяют наличие макулярного разрыва. При выявлении 1 дефекта, расположенного в центре и на всех уровнях, при нулевом уровне контраста 24% и более, отношении объема потери поля зрения к холму зрения 41,0% и более, итоговой потерянной площади менее 100%, любом уровне контрастности, на котором площадь дефекта наибольшая, определяют наличие фиброзного рубца. Способ позволяет оптимизировать определение функционального состояния макулярной области при патологии сетчатки за счет использования 3D-CTAG теста, обеспечивающего возможность трехмерного изображения дефектов полей зрения и возможность количественной оценки изменений. 1 табл., 6 пр.
Изобретение относится к области медицины, а именно к офтальмологии. Выявляют анамнестические данные: наличие у родственников ЦНДС, возраст появления первых жалоб на снижение остроты зрения у обследуемого; клинические данные: острота зрения, вид очага в макулярной области; изменения параметров 3D-CTAG. На основании полученных данных диагностируют заболевание ЦНДС. При наличии родственников с ЦНДС Штаргардта, появлении первых жалоб на снижение остроты зрения у обследуемого в возрасте 10-20 лет; клинических данных: в макулярной области фовеолярный рефлекс отсутствует, появляются атрофические очаги типа «битого металла», «бычьего глаза», «кованой бронзы» или атрофия хориоидеи; данных 3D-CTAG: наличие одного центрального дефекта, распространяющегося на все уровни контраста, имеющего различную площадь на разных контрастных уровнях, итоговая потерянная площадь менее 100%, диагностируют центральную дистрофию сетчатки Штаргардта. При наличии родственников с дистрофией Беста, появлении первых жалоб на снижение остроты зрения у обследуемого в возрасте 5-15 лет; клинических данных: в макуле округлое четко отграниченное образование, напоминающее яичный желток; данных 3D-CTAG: наличие одного центрального дефекта, распространяющегося на все уровни контраста, имеющего почти одинаковую площадь на разных контрастных уровнях, занимающего 1.0-2.0% от холма зрения, нулевой уровень контраста 4-10%, итоговая потерянная площадь около 100%, диагностируют вителлиформную дистрофию Беста. При наличии родственников с пигментным ретинитом, появлении первых жалоб на снижение остроты зрения у обследуемого в возрасте до 30 лет; клинических данных: в макулярной области типичные пигментные очаги - «костные тельца»; данные 3D-CTAG: наличие одного центрального дефекта, распространяющегося на все уровни контраста, имеющего различную площадь на разных контрастных уровнях, итоговая потерянная площадь менее 100%, диагностируют центральную форму пигментного ретинита. Способ позволяет провести точную диагностику за счет комплексного анализа объективных данных, учитывающих в том числе особенности нарушений макулярной области. 2 пр.

Изобретение относится к области медицины и может быть использовано в физиологических, гигиенических, офтальмологических, инженерно-психологических исследованиях для оценки степени зрительного утомления и функционального состояния органа зрения, направленных на оптимизацию зрительно-напряженной трудовой деятельности. Проводят адаптацию испытуемого к условиям освещения с последующим измерением зрительного утомления по площади проекции слепого пятна методом кампиметрии до и после напряженной зрительной нагрузки. Степень зрительного утомления оценивают в соответствии с математической формулой. Способ позволяет повысить точность и достоверность определения степени зрительного утомления по состоянию сетчатки при физиологических, гигиенических, офтальмологических, инженерно-психологических исследованиях, направленных на оптимизацию зрительно-напряженной трудовой деятельности. 1 табл.

Изобретение относится к офтальмологии. До и после лечения проводят микропериметрию. Определяют амплитуду нистагма и плотность области фиксации в центре макулы. При снижении амплитуды нистагма на 10% и более, увеличении плотности области фиксации в центре макулы на 10% и более оценивают лечение как эффективное. Способ позволяет повысить достоверность оценки эффективности лечения, что достигается за счет определения и оценки плотности фиксации в центре макулы. 12 ил., 3 пр.

Изобретение относится к области медицины, а именно к офтальмологии. Регистрируют зрительные вызванные потенциалы (ЗВП) на фотостимуляцию, монокулярно, дискретно при условии оптической коррекции зрения. Фотостимул подают в ограниченный сектор поля зрения с углом обзора в 45 градусов. Исследование проводят в четырех основных меридианах поля зрения при последовательном предъявлении фотостимула от максимальной позиции к минимальной в 40 градусов, 20 градусов и 10 градусов по дуге периметра, при этом регистрируют электроэнцефалограмму и выявленные на ней ЗВП, свидетельствуют о наличии зрения в секторе, который соответствует предъявляемой позиции фотостимула. Способ позволяет сократить время исследования и при этом объективно оценить локальные нарушения поля зрения при проведении медико-социальной экспертизы, что достигается за счет подачи фотостимула в ограниченный сектор поля зрения при одновременной регистрации ЗВП на электроэнцефалограмме. 2 ил., 1 пр.

Группа изобретений относится к медицине. Тестер зрения содержит: дисплей; камеру; средство управления, связанное с дисплеем и камерой. При этом средство управления выполнено с возможностью: допуска пользователя к переключению операций тестера зрения, применения камеры для обнаружения, когда глаза пользователя находятся в пределах допустимого расстояния от дисплея, применения дисплея для представления разных форм пользователю для самотестирования зрения и приема откликов, введенных пользователем, на разные формы. Способ тестирования зрения содержит этапы работы с данным тестером зрения. Применение данной группы изобретений позволит повысить качество тестирования зрения. 2 н. и 15 з.п.ф-лы, 18 ил.
Изобретение относится к медицине, а именно к офтальмологии. При минимальных изменениях на глазном дне и неинформативности данных визометрии и оптической когерентной томографии (ОКТ) у пациента с симптомами впервые возникшего ретробульбарного неврита проводят микропериметрию с использованием программы macula-8, тестирующей 45 точек восьми градусов центрального поля зрения стимулом Goldmann III размером 0,43 градуса длительностью 200 мс. При определении средней светочувствительности в носовом, верхне- или нижненосовом сегментах менее 16 дБ в пределах 8 градусов центрального поля зрения в проекции папилломакулярного пучка диагностируют ретробульбарный неврит при дебюте рассеянного склероза. Способ позволяет повысить достоверность диагностики в неясных случаях течения заболевания, что достигается дополнительным использованием микропериметрии с программой macula-8. 2 пр.
Наверх