Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения



Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения
Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения
Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения

 


Владельцы патента RU 2491227:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ имени М.В. Ломоносова) (RU)

Изобретение относится к области наноматериалов. Предложен способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения реакцией диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим взаимодействием полученных наночастиц кремния с диметилсульфоксидом. Предложенный способ позволяет получить два ансамбля наночастиц размером 2,0-2,5 нм, имеющих максимумы фотолюминисценции при 676 нм и 774 нм. Технический результат - получение гидрофильных биосовместимых и биодеградируемых флуоресцентных меток нанокристаллического кремния, обладающих устойчивой яркой люминесценцией и узкой функцией распределения по размерам, устойчивых к повышенным температурам (до 220°C) без использования токсичных веществ в процессе их синтеза. Полученные наночастицы применимы в качестве in vivo маркеров при визуализации глубоко расположенных тканей и органов.

 

Изобретение относится к области нанотехнологий и наноматериалов, именно способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения, позволяющий получать массовые количества наноматериала.

В настоящее время одним из наиболее распространенных подходов к решению данной проблемы является использование полупроводниковых квантовых точек на основе CdSe, CdTe. Длина волны максимума флуоресценции зависит как от размера ядра, так и природы полупроводника. Данному требованию удовлетворяют следующие полупроводники: CdSe, CdTe, PbSe, PbS, InP. Несколько уступая лучшим флуоресцентным меткам в квантовом выходе флуоресценции (~70% при комнатной температуре), нанокристаллы превосходят их на несколько порядков в величинах сечения поглощения возбуждающего света. В результате яркость свечения нанокристаллов оказывается настолько высокой, что позволяет детектировать единичные объекты с помощью обычного флуоресцентного микроскопа.

В последнее время разработаны методики синтеза фотостабильных нанокристаллов InP, InP/ZnS, но низкая яркость флуоресценции и широкое распределение частиц по размерам ограничивают их использование в биохимии. Недостатками CdSe, CdTe, PbSe, PbS, InP, InP/ZnS также является токсичность входящих в состав квантовых точек ионов, что требует наращивания специальных защитных оболочек. Настороженное отношение к использованию квантовых точек in vivo было высказано недавно в ряде работ: методом ICP MS было продемонарировано накопление кванювых точек в организме животного после введения их внутривенно. Кроме того, нанометровый размер кристаллов может привести к их пассивному либо активному транспорту и накоплению в клеточных органеллах, приводя к непредсказуемым отложенным эффектам. Поэтому поиск квантовых точек, имеющих альтернативный химический состав и не содержащих токсических ионов, является исключительно актуальным. В связи с этим повышенный интерес вызывают квантовые точки на основе нанокремния.

Наиболее близким по совокупности существенных признаков к заявляемому способу получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения является способ, предложенный в работе [Park J.-H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S.N., Sailor M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature materials. 2009. V.8, №4. P.331-336]. В данной работе флуоресцентные наночастицы пористого кремния получали методом электрохимического травления кремниевой подложки в спиртовом растворе плавиковой кислоты, отщеплением пористой кремниевой пленки, последующей обработкой ультразвуком и выделением полученных пористых наночастиц кремния путем фильтрации через мембрану с размером пор 0,22 мкм. Для активации флуоресценции, полученные пористые наночастицы инкубировали в водной среде в течение двух недель. Сразу после формирования пористого слоя оборванные связи кремния на поверхности пор пассивированы главным образом водородом, который со временем заменяется на кислород. Во время стадии активации, в протравленных водородом порах происходит наращивание оксида кремния. Такие структуры проявляют сильную люминесценцию, связанную с дефектами, локализованными на поверхности раздела кремний - диоксид кремния.

Недостатками изобретения являются: большой размер частиц - 126 нм и мономодальное распределение спектральной интенсивности флуоресценции в области 650-900 нм, что не позволяет проводить спектральное кодирование флуоресцентных меток с разными длинами волн флуоресценции в разных соотношениях.

Техническим результатом настоящего изобретения является способ получения гидрофильных биосовместимых и биодеградируемых флуоресцентных меток нанокристаллического кремния, обладающих устойчивой яркой люминесценцией с максимумами интенсивности в области 676 нм и 774 нм, устойчивых к повышенным температурам (до 220°C) без использования токсичных веществ в процессе их синтеза.

Указанный технический результат достигается за счет того, что для получения гидрофильных флуоресцентных меток используют реакцию диспропорционирования монооксида кремния при температуре 950°С в атмосфере воздуха с последующим взаимодействием наночастиц кремния с диметилсульфоксидом, приводящим к образованию двух ансамблей наночастиц со средними размерами 2,0-2,5 нм и узкой функцией распределения по размерам - от 1,3 до 4,0 нм, имеющих максимумы фотолюминесценции при 650 нм и 730 нм.

Используется следующая реакция диспропорционирования тонкоизмельченного монооксида кремния при температуре 950°С для получения нанокристаллического кремния:

где n - число атомов кремния в наночастице кремния (n=29 для наночастицы кремния диаметра 1,0 нм; n=286 для наночастицы кремния диаметра 2,0 нм), с последующим растворением и вымыванием диоксида кремния в подкисленном водном растворе.

Образование нанокристаллического кремния происходит в толще кристаллов, образующихся при спекании монооксида кремния, аналогично распаду твердых растворов, что эффективно защищает нанокристаллический кремний от окисления воздухом. Вместе с тем, отжиг в атмосферном воздухе приводит к образованию примесных центров (Si=O) и (Si-O-Si), энергетические уровни которых лежат внутри запрещенной зоны наночастиц кремния размера 2,0-2,5 нм, что позволяет сдвинуть максимум флуоресценции в требуемую для флуоресцентных меток красную область спектра. Сразу после отжига наблюдают люминесценцию полученного нанокремния при воздействии УФ-излучения в красной области спектра.

Для стабилизации и гидрофилизации поверхности нанокристаллов кремния отожженную смесь в тефлоновом стакане заливают концентрированной плавиковой кислотой, слегка подогревают и помещают в ультразвуковую ванну для интенсификации травления. После растворения побочных продуктов при 313К твердые частицы осаждают центрифугированием и промывают 2 раза этанолом. Полученный люминесцирующий осадок взмучивают и переносят в кварцевую пробирку, содержащую диметилсульфоксид. Пробирку нагревают до 150°C для полного испарения этилового спирта, еще раз взмучивают в ультразвуковой ванне и быстро нагревают до температуры кипения диметилсулфоксида (~189°C). При этом в течение 30 с наблюдают потемнение взвеси и значительное усиление яркости люминесценции. Процесс может быть описан следующим уравнением реакции:

где m - число атомов водорода на поверхности наночастицы (m<n; m=24 для наночастицы кремния диаметра 1,0 нм). Основу золя составляют гидрофильные наночастицы кремния в диметилсульфоксиде, который, как известно, является нетоксичным веществом. Полученная при коагуляции коллоидного раствора кремниевая нанопудра в зависимости от режимов реакции может состоять из частиц с размером до нескольких нанометров в диаметре и имеет выраженную кристаллическую структуру центрального ядра (Фиг.1 и 2).

Наночастицы кремния с размером 2,0-2,5 нм имеют интенсивную собственную люминесценцию в оранжево-красной области спектра с максимумами 676 нм и 774 нм (Фиг.3). Квантовый выход флуоресценции полученных биометок наночастиц составляет более 15%.

Из Фиг.3 отчетливо видно, что предложенный способ получения флуоресцентных биометок дает два ансамбля частиц нанокремния, имеющих максимум флуоресценции при 676 нм (кривая 2) и 774 нм (кривая 3). Флуоресцентные метки, имеющие спектр люминесценции на различных длинах волн позволяют реализовать спектрально кодированные микрочастицы, получение которых открывает пути для разработки тест-систем для экспрессного многопараметрического анализа большого числа биологических объектов, основанного на технике микрочипов. Одним из преимуществ использования в качестве флуорофоров НК с разными длинами волн эмиссии является возможность возбуждения всех кодирующих компонентов одним монохроматическим источником. Для получения раствора флуоресцентных меток проба исходного раствора высушивается при пониженном давлении и разбавляется дистиллированной водой.

Разработка достаточно простого способа получения биосовместимых и биодеградируемых флуоресцентных меток на основе нанокристаллического кремния, обладающего яркой устойчивой фотолюминесценцией в видимой области спектра в массовых количествах открывает возможности их применения в медицине и биологии для флуоресцентной диагностики, фотодинамической и фототермической терапии, фотохимической стерилизации запасов крови, а также в экологии для очистки воды от органических загрязнений и патологической микрофлоры.

Уникальные оптические свойства нанокремния, такие как фотостабильность и широкий диапазон полос флуоресценции в зависимости от диаметра ядра наночастицы, в том числе и в ближнем инфракрасном диапазоне, делают их привлекательными для использования в качестве in vivo маркеров при визуализации глубоко расположенных тканей и органов. Другой вариант использования полученных флуоресцентных меток - проточная цитофлуориметрия, позволяющая анализировать спектральные свойства каждой из проходящих через детектор наночастицы. Использование спектрально кодированных наночастиц предполагает анализ каждой флуоресцентной метки для выявления присутствия в анализируемой пробе каждого из детектируемых объектов.

Данное изобретение найдет широкое применение в медицине для диагностики опухолей различных типов. Например, для визуализации глубоко расположенных опухолей в условиях in vivo длина волны возбуждения флуоресценции наночастиц кремния должна быть выбрана в ближне-красной области спектра для того, чтобы получить максимальное поглощение излучения тканью и минимальное поглощение такими хромофорными белками, как, например, гемоглобин.

Способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения, отличающийся тем, что для получения гидрофильных флуоресцентных меток используют реакцию диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим взаимодействием наночастиц кремния с диметилсульфоксидом, приводящим к образованию двух ансамблей наночастиц размером 2,0-2,5 нм, имеющих максимумы фотолюминесценции при 676 нм и 774 нм.



 

Похожие патенты:

Изобретение относится к способам получения кристаллических алюмосиликатов, с помощью которых производится удовлетворение потребностей использующих их по прямому назначению соответствующих отраслей промышленного производства, а именно: электротехнической, химической, а также к устройствам для осуществления такого рода технологий.

Изобретение относится к процессам и аппаратам для получения поликристаллического кремния высокой чистоты. .

Изобретение относится к технологии получения поликристаллического полупроводникового кремния из природных кремнийсодержащих концентратов. .

Изобретение относится к области цветной металлургии и позволяет увеличить выход по току и снизить температуру электролиза. .

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины.

Изобретение относится к биологически разрушаемой высоконаполненной термопластичной композиции, применяемой в производстве пленок и потребительской тары. .

Изобретение относится к области неорганической химии, а именно к способу выделения одностенных углеродных нанотруб (ОУНТ) из продуктов синтеза. .

Изобретение относится к технологии углеродных материалов, конкретно - к технологии получения углеродных наноматериалов, в частности нанотрубок и нановолокон, методом химического осаждения из газовой фазы.

Изобретение относится к способу получения нанокомпозитов на основе полиолефинов, используемых при получении различных изделий, таких как пленки, листы, трубы, нити и волокна.
Изобретение относится к области химической технологии получения лакокрасочных материалов. .

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий.

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. .
Изобретение относится к технологии синтеза неорганических сорбентов, которые могут быть использованы в экологии, водоподготовке, радиохимии и переработке жидких радиоактивных отходов.

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии. .
Изобретение относится к медицине, а именно к эндоскопии, и может быть использовано для диагностики неопластических изменений слизистой оболочки пищеварительного тракта.
Изобретение относится к контрастному средству для ультразвуковой визуализации в виде дозированной препаративной формы. .

Изобретение относится к визуализирующим агентам, подходящим для оптической визуализации in vivo организма млекопитающего. .

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).

Изобретение относится к медицине и может быть использовано для получения композиции с целью диагностики/мониторинга пациента, страдающего болезненным состоянием, опосредованным активированными макрофагами.
Наверх