Способ термической обработки изделий типа штоков



Способ термической обработки изделий типа штоков
Способ термической обработки изделий типа штоков

 

C21D1/46 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)
C21D1/42 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)
C21D1/06 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2491355:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" (RU)

Изобретение относится к металлургии и может использоваться при термической обработке изделий типа штоков. Для повышения физико-механических свойств штоков и увеличения срока службы осуществляют нагрев штока под закалку в соляных ваннах, охлаждают, затем подвергают отпуску и отмывке. После отмывки проводят поверхностную закалку штока с нагревом токами высокой частоты до температуры 950-1000°С при частоте вращения изделия n=100-130 мин-1 и перемещении S=250-320 мм/мин. 4 табл., 2 ил.

 

Изобретение относится к металлургии и может использоваться при комбинированном упрочнении изделий с повышенной износостойкостью.

Известен способ термической обработки штоков [1], включающий закалку стали на мартенсит до температуры, превышающей А3, затем следует подогрев всего сечения изделия до 130-250°С и скоростной нагрев (10-50°С/сек) до температуры T1 - 30°С с последующей повторной закалкой.

Недостатками способа являются низкие эксплуатационные свойства (срок службы 1 год), низкая твердость и прочность штоков.

Техническим результатом предлагаемого изобретения является повышение эксплуатационных и физико-механических свойств штоков введением поверхностной закалки токами высокой частоты, что увеличивает срок службы штоков до 5 лет и повышает физико-механические свойства.

Техническая задача решается тем, что в способ термической обработки изделий типа штоков, включающий нагрев под закалку в соляных ваннах, охлаждение, отпуск и отмывку, затем производят поверхностную закалку поверхности при t=950-1000°С токами высокой частоты при частоте вращения детали 100-130 мин-1 и скорости перемещения 250-320 мин/м.

Для пояснения способа на фиг.1 показана исходная структура образца, увеличение 500., на фиг.2 показана микроструктура упрочненного слоя образца, закаленного по 2 режиму, а - поверхностный слой, б - сердцевина, увеличение 630.

Способ осуществляют следующим образом:

Детали: образцы из стали 5, ⌀16 штоки компрессионной установки

1. Нагрев до 880°С в растворе 75% BaCl2+25% NaCl выдержка 8 минут.

2. Закалка в масло индустриальное И-20.

3. Отпуск в расплаве солей 50% KNO3+50% NaNO3 при 550°С два крата по 60 минут.

4. Отмывка солей.

5. Поверхностная закалка токами высокой частоты по различным режимам.

Повышение износостойкости штока обеспечивается за счет упрочнения поверхности, которую выявили при микроскопическом анализе.

Изучение микроструктуры упрочненных образцов проводили на металлографическом микроскопе ММР-2 с последующим фотографированием.

Анализ микроструктур показывает, что в процессе поверхностной закалки происходит измельчение зерен с поверхности, по краю образца структура ничем не отличается от той, которая в сердцевине, то есть имеет место однородная структура.

После проведения поверхностной закалки ТВЧ мы видим совершенно другую микроструктуру края образцов, получилась переходная зона, которая образовалась в процессе поверхностной закалки. Структура упрочненного слоя представляет собой мелкоигольчатый мартенсит с твердостью 66,5 HRC, структура сердцевины осталась без изменения.

По результатам анализа микроструктуры закаленных образцов штоков, можно сделать вывод, что наиболее благоприятной структурой обладают образцы, прошедшие поверхностную закалку ТВЧ по режиму 1 при частоте вращения детали n=130 мин-1 и перемещении S=320 мм/мин, что соответствует температуре нагрева от 950 до 980°С, время перемещения 20 с. Также данный образец имеет небольшую переходную зону 1,2-1,5 мм, с твердостью 45-50 HRC. По сравнению с другими образцами, этот образец имеет более равномерное распределение твердости как на поверхности, так и в области переходной зоны, и более равномерную глубину закаленного слоя и переходной зоны. Величина коробления составляет в пределах до 0,05 мм.

После закалки на поверхности измерили твердость по методу Роквелла. Результаты представлены в таблице 1.

Таблица 1
№ образца Твердость на поверхности, HRC
1 укол 2 укол 3 укол Средняя
1 45 44 50 46
2 43 43 47 44
3 48 55 54 52
4 43 56 45 48
5 48 53 48 50
6 49 51 49 50
7 49 55 52 52
8 46 49 48 48

По режиму 2 поверхностной закалки (S=300 мм/мин, n=115 мин-1) температура нагрева составляла примерно 980-1000°С, время перемещения детали 22 с. Результаты представлены в таблице 2.

Таблица 2
№ образца Твердость на поверхности, HRC
1 укол 2 укол 3 укол Средняя
1 57 59 59 58
2 55 60 60 57
3 60 60 60 60
4 60 59 59 59
5 52 55 58 55
6 57 58 61 59
7 54 58 59 55
8 55 59 58 57

При этом структура переходной зоны представляла собой трооститную смесь. Твердость переходного слоя составляет от 55 до 60 HRC.

По режиму 3 поверхностной закалки (S=250 мм/мин, n=100 мин-1) температура нагрева составляла примерно 1000°С, время перемещения детали 24 с. Результаты представлены в таблице 3.

Таблица 3
№ образца Твердость на поверхности, HRC
1 укол 2 укол 3 укол Средняя
1 64 66 60 63
2 62 60 67 63
3 67 67 68 67
4 67 67 69 68
5 59 61 65 62
6 65 68 68 67
7 61 63 59 61
8 60 66 64 63

При этом структура переходной зоны представляла собой трооститно-сорбитную смесь. Твердость переходного слоя составляет от 60 до 69 HRC.

В связи с поверхностной закалкой максимальная глубина прокаливания составляет от 0,2 до 0,5 мм и данный поверхностный слой имеет более высокую твердость, при этом площадь живого сечения снижается всего на 12%, что не существенно может сказаться на снижение ударной вязкости.

Таким образом, по сравнению с прототипом, заявляемый способ термической обработки изделий типа штоков, вследствие использования после изотермической закалки поверхностной закалки токами высокой частоты, обеспечивает повышение твердости в 2 раза и сроков эксплуатации в 5 раз за счет использования поверхностной закалки токами высокой частоты, что повышает физико-механические свойства штоков в 2-3 раза, что отражено в таблице 4.

Таблица 4
Режим t, °C n, мин-1 Твердость, HRC
Прототип - - 20
Заявляемый 1 режим 950-980 130 40-45
Заявляемый 2 режим 980-1000 115 55-60
Заявляемый 3 режим 1000 100 60-65

Способ термической обработки изделия типа штока, включающий нагрев под закалку в соляной ванне, охлаждение, отпуск, отмывку и дополнительную закалку, отличающийся тем, что дополнительную закалку осуществляют путем нагрева поверхности штока токами высокой частоты до 950-1000°С при частоте его вращения 100-300 мин-1 и скорости перемещения 250-320 мм/мин.



 

Похожие патенты:

Изобретение относится к оси, выкованной из бесшовной трубы, химический состав которой позволяет гарантировать высокую усталостную прочность, улучшенный предел текучести и прочность на разрыв, и имеющей уменьшенный вес для использования в железнодорожном транспортном средстве, и к способу изготовления ее, который включает этапы: плавку из чугуна или лома, разливку, нагрев в нагревательной печи, прошивку заготовок, удлинение прошитых заготовок, отделку полых заготовок, ковку и завершающую механическую обработку, а также последующую термообработку и неразрушающий контроль поверхностных дефектов на оси.

Изобретение относится к плазменной обработке изделия, в частности к способам для плазменной поверхностной закалки и отпуска металлов и сплавов. .

Изобретение относится к технологии изготовления и ремонта деталей машин и может быть использовано в машиностроении и ремонтом производстве. .

Изобретение относится к области термосиловой обработки маложестких осесимметричных деталей типа «вал». .

Изобретение относится к области машиностроения, в частности к устройствам для обработки маложестких осесимметричных деталей типа «вал». .

Изобретение относится к области металлургии и может быть использовано, предпочтительно, для упрочнения наружной поверхности деталей железнодорожного подвижного состава.

Изобретение относится к полуавтомату для непрерывно-последовательной закалки цилиндрических деталей одинакового сечения индукционным нагревом - шейки валов, пальцев трактора, биттеров трубок.

Изобретение относится к трубопрокатному производству, а именно к способу изготовления и эксплуатации технологического инструмента, и может быть использовано при изготовлении и эксплуатации дорнов пилигримовых станов для прокатки горячекатаных труб большого и среднего диаметров (273-550 мм).

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, в частности к охлаждающим устройствам при горячей прокатке стальной полосы. .

Изобретение относится к области металлургии, в частности к охлаждающим устройствам при горячей прокатке стальной полосы. .

Изобретение относится к области металлургии, в частности к получению отливок из высокопрочных чугунов с шаровидным графитом. .

Изобретение относится к области металлургии, в частности к получению отливок из высокопрочных чугунов с шаровидным графитом. .

Изобретение относится к плазменной обработке изделия, в частности к устройствам для плазменной поверхностной закалки металлов и сплавов, и может быть использовано для плазменной обработки плоских изделий.

Изобретение относится к плазменной обработке изделия, в частности к устройствам для плазменной поверхностной закалки металлов и сплавов, и может быть использовано для плазменной обработки плоских изделий.

Изобретение относится к области термической обработки и к конструктивным элементам железнодорожных грузовых тележек, в частности к конструкциям литых фрикционных клиньев из чугуна для восприятия и гашения колебаний надрессорной балки тележки грузового вагона.

Изобретение относится к области металлургии. .
Наверх