Способ обработки изделий из титана марки вт1-0

Изобретение относится к металлургии, а именно к обработке изделий из титана, и может быть применено в машиностроении, авиастроении. Задача изобретения - для увеличения прочности титана марки ВТ 1-0 в сочетании с повышением пластичности при обработке изделий из титана ВТ 1-0. Способ включает нагрев, который проводят до температуры, превышающей температуру полиморфного превращения. Выдержку осуществляют при температуре нагрева в течение 10-15 минут, а охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса. 1 табл., 1 пр.

 

Изобретение относится к цветной металлургии, а именно к термическим методам обработки, и может быть применено в машиностроении, авиастроении и др.

Известен способ упрочнения металлов и сплавов, включающий увеличение плотности дислокации путем пластической деформации металлов и сплавов, что способствует повышению предела прочности, но приводит к снижению пластичности [Гуляев А.П. Металловедение. Учебник для вузов, 6-е изд. М.: Металлургия, 1986, с.76-79]. Последующий отпуск приводит к уменьшению прочности на 20-30% с одновременным повышением пластичности. Эффект от применения данного способа происходит при плотности дислокации не ниже 1012 см-2, для чего требуются большие деформации металла. Существенным недостатком указанного способа упрочнения является то, что повышение прочности, основанное на увеличении плотности дислокации и уменьшении их подвижности, сопровождается снижением пластичности, вязкости и тем самым надежности. Отпуск приводит к повышению пластичности, но при этом значительно снижается прочность.

Известен способ термической обработки титана ВТ 1-0, заключающийся в нагреве со скоростью 60-80°C/мин до температуры на 260-280°C ниже температуры полиморфного превращения, выдержки при температуре 15-30 мин и охлаждении со скоростью 70-80°C/мин до 20°C опубликован в литературном источнике [Хорев А.И. Современные методы повышения конструкционной прочности титановых сплавов. - М.: Воениздат, 1979, 256 с.]. Этот способ приводит к значительному короблению конструкций, создает высокие термические напряжения в результате неоднородного нагрева по сечению, что усиливается охлаждением с высокой температуры и тем самым не обеспечивает необходимого уровня прочности и пластичности материала.

Наиболее близким по технической сущности к предлагаемому способу является способ термической обработки α-титановых сплавов, раскрытый в SU 979523 А [Авторское свидетельство СССР 979523 A, C22F 1/18, дата публикации 07.12.1982 г.]. Данный способ включает нагрев, выдержку и охлаждение, причем заготовку нагревают со скоростью 4-10°C/мин до температуры на 350-440°C ниже температуры полиморфного превращения, выдерживают при этой температуре 35-100 мин, охлаждают со скоростью 2-6°C/мин до температуры на 630-700°C ниже температуры превращения, а затем охлаждают со скоростью 30-50°C/мин до температуры 10-40°C. Этот способ термообработки пригоден для сплавов, имеющих повышенное содержание легирующих элементов, которые, закрепляясь в процессе перемещения на небольшие расстояния по разветвленной сетке субграниц, создают структуру с более высокой прочностью и хорошей пластичностью.

Недостаток выше описанного способа термической обработки заключается в том, что для технически чистых титановых сплавов, каким является титан марки ВТ 1-0, предложенный способ не обеспечивает повышения механических свойств из-за низкого содержания легирующих элементов и примесей.

Задачей настоящего изобретения является разработка способа обработки титана марки ВТ 1-0, т.е. увеличение прочности титана марки ВТ 1-0 в сочетании с повышенной пластичностью.

Техническим результатом изобретения является повышение прочности титана марки ВТ 1-0 в сочетании с повышенной пластичностью и тем самым повышения уровня механических свойств изделий из данного титана, в частности упругопластических параметров, термической и термомеханической устойчивости изделий.

Решение задачи обеспечивается предложенным способом обработки титана марки ВТ 1-0, включающим нагрев, выдержку и охлаждение. Причем нагрев проводят до температуры, превышающей температуру полиморфного превращения, выдержку осуществляют при температуре в течении 10-15 минут, охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса.

Способ осуществляется следующим образом.

Образец из титана марки ВТ 1-0 нагревают до температуры, превышающей температуру полиморфного превращения ~1000°C, выдерживают при данной температуре в течении 10-15 минут, проводят охлаждение - закалку в хладагенте со скоростью 300°C/c с последующим старением под нагрузкой при температуре 18-25°C, при напряжении 0,9 σ0,2, где σ0,2 - предел текучести - данное напряжение не превышает предела текучести при температуре старения. Продолжительность старения под нагрузкой соответствует времени выхода на устойчивую, т.е. постоянную скорость релаксационного процесса. Тепловое воздействие в указанном интервале температур приводит к увеличению диффузионной подвижности атомов и образованию в этих условиях повышенной концентрации точечных дефектов, т.е. происходит увеличение плотности дефектов. Быстрое охлаждение, т.е. закалка в воду со скоростью 300°C/с не только способствует обратному фазовому «β-α» переходу, но и фиксирует в структуре титанового сплава повышенную концентрацию дефектов [Кимура Г., Маддин Р. Влияние закаленных вакансий на механические свойства металлов и сплавов / В кн. «Дефекты в закаленных металлах» // Под ред. д.т.н. А.А.Цветаева. Перевод с англ. В.Н.Бобенко, И.В.Кирилова - М.: Атомиздат, 1969, с.188-270]. Последующий после закалки процесс старения при комнатной температуре под нагрузкой, не превышающей предела текучести σ0,2 при температуре старения, способствует упорядочению концентрационного распределения дефектов в сплаве, закреплению ими дислокации и тем самым обеспечивает улучшение прочности и повышение пластичности титана.

Пример.

Для изготовления образцов использовали лист из титана ВТ 1-0 толщиной 2 мм в состоянии поставки и отжигали в течение 1 часа при 700°C.

При этом механические свойства были следующие:

σв=278 МПа; δ=56%, где σв - статическая прочность, δ - пластичность.

На электроэрозионной установке «Sodick AQ 300 L» вырезали образцы виде лопаток с размерами рабочей части 2×2×12 м. Нагрев образцов осуществляли в муфельной печи до температуры 1000°C и выдерживали при данной температуре в течении 10-15 минут, после чего проводили закалку в воде при 20°C со скоростью 300°C/с.

Механические свойства заготовок после закалки:

σв=650 МПа; δ=37%; ψ=68, где σв - предел прочности.

Старение закаленных образцов осуществлялось на универсальной напольной электромеханической испытательной машине «INSTRON 5882» при скорости нагружения 1,5 мм/мин при комнатной температуре под нагрузкой σн=0,9 σ0,2. Здесь σн - нагрузка на образец; σ0,2 - предел текучести закаленных образцов при комнатной температуре.

Анализируя результаты исследований, приведенные в таблице 1, можно сделать следующие выводы: предложенный способ обработки позволяет увеличить прочностные характеристики с сохранением пластических характеристик в сравнении с результатами обработки по прототипу.

В таблице 1 приведены технологические режимы осуществления описанных способов обработки и полученные при этом показатели механических свойств.

Таблица 1
Некоторые характеристики параметров титана.
Вид обработки Механические характеристики
Предел прочности, (МПа) Пластичность, %
Способ обработки титана ВТ1-0 [аналог]: Нагрев со скоростью 60-80°C/мин до τn 260-280°C. Выдержка 15-30 мин, охлаждение со скоростью 70-80°C/мин 620-670 10-11
Обработка по прототипу: Нагрев со скоростью 10°C/мин до τn 440°C, выдержка 100 мин, охлаждение со скоростью 6°C/мин до τn 440°C, далее охлаждение со скоростью 50°C/мин до температуры 40°C 780 14
Обработка по предложенному способу: Нагрев со скоростью 10°C/мин до температуры 1000°C, выдержка 20 минут, охлаждение со скоростью 300°C/с в воду при 20°C, старение под нагрузкой σн=0,9*σ0,2 при 20°C до выхода релаксационной кривой на постоянную скорость. 650-700 37-40

Способ обработки изделий из титана ВТ1-0, включающий нагрев, выдержку и охлаждение изделий из титана, отличающийся тем, что нагрев проводят до температуры, превышающей температуру полиморфного превращения, выдержку осуществляют при температуре нагрева в течение 10-15 мин, охлаждение ведут в хладагенте со скоростью 300°C/с, после чего осуществляют старение под нагрузкой при температуре 18-25°C, напряжении, не превышающем предела текучести при температуре старения, и времени, необходимом для выхода на устойчивую скорость релаксационного процесса.



 

Похожие патенты:

Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой, в частности, двухфазных альфа-бета титановых сплавов, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях техники, машиностроения, медицины.
Изобретение относится к области металлургии и может быть использовано при изготовлении стержневых деталей с головками из титановых сплавов. .

Изобретение относится к области металлургии, в частности к способам изготовления тонких листов из жаропрочного псевдо-альфа-титанового сплава. .

Изобретение относится к области металлургии, в частности к листам из чистого титана, которые могут быть использованы для изготовления пластин теплообменников. .

Изобретение относится к области металлургии, а именно к деформационно-термической обработке титановых сплавов, и может быть использовано в авиадвигателестроении при получении заготовок лопаток газотурбинных двигателей (ГТД).

Изобретение относится к области металлургии, а именно к термомеханическим исполнительным механизмам, предназначенным для преобразования тепловой энергии в механическую.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления тонких листов методом холодной прокатки из высокопрочных псевдо- -титановых сплавов, которые могут быть использованы в аэрокосмической, химической отраслях промышленности, машиностроении, медицине и других областях народного хозяйства.

Изобретение относится к области металлургии, в частности к способам обработки полуфабрикатов из титанового сплава ВТ6, и может быть использовано в машиностроении, авиадвигателестроении и медицине.

Изобретение относится к области металлургии, в частности, к пластической деформации металлов, в частности к способам изготовления тонких листов из ( - )-, псевдо- , -титановых сплавов.
Изобретение относится к области металлургии и может быть использовано для изготовления полуфабрикатов и изделий из бета-титановых сплавов путем термомеханической обработки, сопровождающейся изменением свойств материала.

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов в процессе получения толстых листов и плит

Изобретение относится к области металлургии, а именно к способам обработки титанового сплава для использования в выхлопных системах двигателя внутреннего сгорания. В способе обработки титанового сплава, состоящего по существу из, мас.%: 0,2-0,5 железа, 0,02-0,12 кислорода, 0,15-0,6 кремния и остальное титан и неизбежные примеси, первую термообработку проводят при первой температуре с формированием структуры, имеющей более 50% бета-фаза, далее - холодную прокатку. Вторую термообработку при второй температуре ведут с образованием выделений второй фазы, а третью термообработку - при третьей температуре для рекристаллизации сплава без растворения выделений. Получают высокопрочный титановый сплав с высокой стойкостью к окислению и высокой пластичностью при низких температурах. 2 н.з. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, и может быть использовано в авиационной промышленности. Высокопрочный псевдо-бета титановый сплав содержит, мас.%: 5,3-5,7 алюминия, 4,8-5,2 ванадия, 0,7-0,9 железа, 4,6-5,3 молибдена, 2,0-2,5 хрома, 0,12-0,16 кислорода, остальное титан и примеси и, при необходимости, один или более дополнительных элементов, выбранных из N, С, Nb, Sn, Zr, Ni, Co, Cu и Si, причем каждый дополнительный элемент присутствует в количестве менее 0,1%, и общее содержание дополнительных элементов составляет менее 0,5 мас.%. При изготовлении сплава после его получения проводят гомогенизацию при температуре ниже температуры бета-превращения и его дисперсионное упрочнение. Компонент авиационной системы представляет собой шасси или крепежную деталь, изготовленный с использованием титанового сплава. Сплав обладает высокой прочностью, пластичностью, способностью к глубокой закалке. 5 н. и 20 з.п. ф-лы, 4 ил., 3 табл., 3 пр.

Изобретение относится к области получения наноструктурированных материалов путем обработки потоком порошковых частиц с использованием энергии взрыва, высокие физико-механические и химические свойства которых позволяют использовать для целей медицины, в том числе имплантатов. Способ получения наноструктурированного технически чистого титана для биомедицины включает обработку заготовки во взрывном ускорителе высокоскоростным потоком порошковых частиц Ti в режиме сверхглубокого проникновения частиц. При этом частицы Ti размещают под взрывчатым веществом с воздушным зазором. Разгон частиц осуществляют ударной волной в ориентирующем канале ускорителя, стыкующемся с обрабатываемой заготовкой. Обработку ведут потоком частиц дисперсностью 10 мкм со скоростью потока 1,5-2,5 км/с, плотностью 1 г/см3, при давлении соударения частиц с материалом заготовки 12-15 ГПа и времени их взаимодействия 5-7·10-5 с. Повышается прочность и однородность структуры титановой заготовки. 1 ил.

Изобретение относится к области металлургии, а именно к производству проволоки волочением, и может быть использовано для нагрева при изготовлении тонкой и тончайшей проволоки из никелида титана. Способ нагрева проволоки перед волочением, включающий дозированный нагрев потоком инфракрасного излучения перед фильерой, отличающийся тем, что дозированный нагрев осуществляют набором расположенных вокруг входа фильеры полупроводниковых излучающих диодов с направленной характеристикой излучения, максимум которой ориентируют на ось проволоки, при этом дозированный нагрев производят изменением тока питания излучающих диодов. Повышается качество проволоки за счет уменьшения вероятности появления дефектов и обрывов. 3 ил.

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей. Способ термообработки отливок из сплавов на основе гамма алюминида титана включает горячее изостатическое прессование, охлаждение до комнатной температуры и последующий нагрев при температуре ниже эвтектоидного превращения сплава. Горячее изостатическое прессование проводят при температуре выше эвтектоидного превращения сплава в фазовой области α+β+γ при следующем количестве фаз в сплаве, мас.%: бета-фаза (β) от 7 до 18, гамма-фаза (γ) от 5 до 16, альфа-фаза (α) - остальное. Снижается время термообработки, при этом сплавы имеют высокий уровень механических свойств. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен с размером менее 0,1 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%. Более чем 50% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 15° до 90°. Способ получения прутка из наноструктурированного сплава титан-никель с эффектом памяти формы включает термомеханическую обработку, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг. Интенсивную пластическую деформацию проводят в два этапа, на первом этапе осуществляют равноканальное угловое прессование с достижением накопленной степени деформации е≥4. На втором этапе осуществляют деформацию кузнечной вытяжкой и/или волочением. Отжиг проводят в процессе и/или после каждого этапа деформации. Равноканальное угловое прессование проводят при температуре не выше 400°С. Кузнечную вытяжку и волочение проводят с общей накопленной деформацией ε более 60% при постепенном снижении температуры в интервале t=450-200°C, а отжиг проводят при температуре, равной t=400-200°C. Повышаются механические и функциональные свойства сплава. 2 н.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к способам термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl и α2-Ti3Al. Способ термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl+α2-Ti3Al, затвердевающих полностью через β-фазу, содержащих легирующие элементы, по крайней мере, бор и элементы, стабилизирующие β-фазу, включает охлаждение заготовок от температур β-фазовой области. Охлаждению подвергают заготовки непосредственно после затвердевания или после нагрева и выдержки при температурах β-фазовой области. При этом до температур (α+γ)- или (α+β+γ)-фазовой области заготовки охлаждают в зависимости от размера на воздухе, или принудительно на воздухе, или на воздухе в контейнере с формированием термодинамически неравновесной структуры, но со скоростью меньшей, чем скорость охлаждения при закалке выбранного состава сплава. Далее от температур (α+γ)- или (α+β+γ)-фазовой области до комнатной температуры заготовки охлаждают вместе с печью или продолжают охлаждать на воздухе с последующим отжигом при температурах (α+γ)- или (α+β+γ)-фазовой области и охлаждением после отжига вместе с печыо. Повышаются эксплуатационные свойства заготовок при сохранении высокой технологической пластичности. 4 з.п. ф-лы, 5 ил., 7 табл., 3 пр.

Изобретение относится к области металлургии, а именно к получению труб из технически чистого титана с радиальной структурой. Для получения трубы из технически чистого титана с радиальной текстурой изготавливают заготовки в виде колец, деформируют с уменьшением толщины их стенок и увеличением их диаметра, а затем сваривают торцами встык с получением трубы. Деформацию колец с уменьшением толщины стенок осуществляют прокаткой на кольцепрокатном стане или ковкой на оправке на кузнечном оборудовании. Радиальная текстура сохраняется по длине трубы. 2 з.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении термомеханической детали турбомашины из бета- или альфа/бета-титанового сплава. Поковку упомянутой детали получают из слитка из титанового сплава, имеющего температуру Tβ превращения в бета-фазу. При этом осуществляют по меньшей мере один этап черновой ковки слитка при температуре T1, которая ниже температуры Tβ превращения в бета-фазу. Во время ковки слиток пластически деформируют с обеспечением во всех его точках локальной деформации, составляющей по меньшей мере 0,2. Полученную заготовку охлаждают и осуществляют этап окончательной ковки заготовки при температуре T2, которая выше температуры Tβ превращения в бета-фазу. Полученную поковку охлаждают. В результате обеспечивается возможность получения поковки с мелкозернистой и однородной структурой с размером зерна порядка от 50 до 100 мкм. 4 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к металлургии, а именно к обработке изделий из титана, и может быть применено в машиностроении, авиастроении

Наверх