Способ уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла

Способ уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла заключается в ступенчатом сжатии окислителя с впрыском воды, подогревом сжатой смеси окислителя с водой, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше единицы, а в последней камере - больше единицы. Регулируют расходы окислителя, воды и топлива и поддерживают допустимые значения температуры стенок промежуточных ступеней расширения и их газодинамических трактов, а также температуру горения в последней камере сгорания. На вход и выход компрессора и между его ступенями осуществляют впрыск воды с суммарным расходом 20-40% от общего расхода рабочего тела на выхлопе. В камерах сгорания перед промежуточными ступенями расширения и в газодинамическом тракте поддерживают коэффициент избытка окислителя не ниже 0,5 и температуру стенок промежуточных ступеней расширения и газодинамического тракта не ниже 730 К. В выходной камере осуществляют процесс каталитического горения, обеспечивающий температуру 1500-1100 K, ниже температуры в предшествующих камерах сгорания, и коэффициент избытка окислителя как равный стехиометрическому, так и больше стехиометрического. Изобретение направлено на снижение вредных выбросов в газотурбинной установке при обеспечении высокого КПД преобразования тепла и исключении сажеобразования. 1 ил.

 

Изобретение относится к проблеме вредного воздействия выбросов из газотурбинных установок с регенерацией тепла на окружающую среду. Оно может быть использовано в газотурбинных установках, работающих на газообразном или жидком углеводородном топливе.

Известны способы уменьшения выбросов окислов азота с помощью добавок химических реагентов в выхлопные газы. Эти способы сложны и дороги, так как требуют сооружения крупногабаритных очистительных устройств и значительного расхода химикатов. Известно, что повышенная температура воздуха на входе в камеру сгорания (800-850 К) за счет регенерации тепла полностью исключает возможность использования традиционных диффузионных камер сгорания из-за чрезмерно высокой эмиссии окислов азота, а также и гомогенных камер сгорания из-за невозможности надежного исключения проскока пламени в зону подготовки топливно-воздушной смеси. Поэтому предлагается использовать в ГТУ принципиально новый процесс сжигания топлива - каталитический с регенерацией тепла выхлопных газов. Каталитическое сжигание углеводородного топлива позволяет радикально снизить выбросы продуктов неполного сгорания (СО, НС) и окислов азота. (Пармон В.Н., Исмагилов З.Р., Фаворский О.Н., Белоконь А.А., Захаров В.М. Вестник Российской академии наук. 2007, том 77, №9, с.820).

Однако максимальный термический и соответственно эффективный КПД предложенных ГТУ будет зависеть не от максимально допустимых температур продуктов сгорания, поступающих на вход газовых турбин, а от более низких допустимых температур, определяемых материалами составных каталитических элементов камеры сгорания, что является существенным препятствием для повышения КПД ГТУ.

Наиболее близким техническим решением к предложенному является способ преобразования тепловой энергии в работу, заключающийся в ступенчатом сжатии окислителя с впрыском воды в дополнительный компрессор, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше 1, а перед последней - с коэффициентом избытка окислителя больше 1. (см. а.с. СССР SU 1560749 A1, 02C 3/00 от 30.04.90. Бюл. №16 - прототип)

Основной недостаток известного способа состоит в том, что в последней к выхлопу камере сгорания с обычным не каталитическим горением не поддерживается более сниженная температура горения по отношению к предшествующим камерам сгорания, что в сочетаний с неограниченным значением коэффициента избытка окислителя (>1), особенно для регенеративных газотурбинных установок, не позволит получить требуемого в настоящее время допустимого уровня выброса окислов азота, оксида углерода (СО) и несгоревших углеводородов (СН). Кроме того, любое значение коэффициента избытка окислителя меньшее единицы в предшествующих камерах сгорания и их газодинамических трактов, также недопустимо без поддержания необходимых величин температуры стенок, содержания воды в продуктах сгорания и коэффициента избытка окислителя. Иначе будет происходить сажеобразование, что затруднит применение этого способа.

Решаемой задачей является существенное снижение выбросов окислов азота, оксида углерода и несгоревших углеводородов в ГТУ с регенеративным подогревом сжатой смеси воздуха с водой при обеспечении высокого КПД.

Высокий термический КПД достигается за счет регенерации тепла, а также путем повышения среднетермодинамической температуры подвода тепла и снижения среднетермодинамической температуры отвода тепла, соответственно за счет ступенчатого подвода и отвода тепла.

Решение указанной задачи достигается тем, что в способе уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла, заключающемся в ступенчатом сжатии окислителя с впрыском воды, подогревом сжатой смеси окислителя с водой, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше 1, а в последней - больше 1. Новым здесь является то, что путем регулировки расходов окислителя, воды и топлива и поддержанием допустимых значений температуры стенок на вход и на выход компрессора и между его ступенями осуществляют впрыск воды с суммарным расходом 20-40% от общего расхода рабочего тела на выхлопе, при этом в камерах сгорания перед промежуточными ступенями расширения и в газодинамическом тракте поддерживают коэффициент избытка окислителя не ниже 0,5 и температуру стенок промежуточных ступеней расширения и газодинамического тракта не ниже 730 К, а в выходной камере осуществляют процесс каталитического горения, обеспечивающей температуру 1500-1100 К, ниже температуры в предшествующих камерах сгорания, и коэффициент избытка окислителя как равный стехиометрическому, так и больше стехиометрического.

Предлагаемый способ предотвращает образование окислов азота, оксида углерода и несгоревших углеводородов, сверх допустимых норм их выброса, несмотря на наличие регенерации тепла, благодаря возможности поддерживать практически любой пониженный уровень температур в последней (выхлопной) камере сгорания, приемлемый для каталитического горения.

Известно, что как повышенная температура, так и избыток кислорода, для обычного не каталитического горения, существенно увеличивают уровень образования окислов азота. Если для снижения уровня образования окислов азота целесообразно максимально возможное уменьшение коэффициента избытка окислителя, то с точки зрения сажеобразования это уменьшение необходимо ограничивать. Предлагаемый способ позволяет устранить сажеобразование, поддерживая допустимые значения коэффициента избытка окислителя и температуры стенок газодинамического тракта соответственно содержанию паров воды в продуктах сгорания.

На фиг.1 приведена схема газотурбинной установки, реализующая способ уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла,

Схема содержит компрессор 12, состоящий из ступеней сжатия 1 и смесительных камер 2, в которых происходит изобарное охлаждение воздуха за счет испарения распыленной воды, ступени расширения газовых турбин 3, 5, 7, рекуперативный регенератор тепла 9, регулирующие расход задвижки 11 и электрогенератор 10, кинематически связанный со ступенями газовых турбин и компрессора.

Способ осуществляют следующим образом. С помощью компрессора 12 сжимают смесь воды с воздухом. Распыленную с помощью форсунок воду подают в смесительные камеры 2, далее сжатую смесь подают в регенератор 9, после регенератора - в камеры сгорания 3, 5, 7. В камеры сгорания 3 и 5, кроме смеси воды с воздухом подают топливо. С помощью регулирующей аппаратуры 11 в камерах сгорания 3 и 5, в соответствии с содержанием паров воды и температурой стенок газодинамического тракта, поддерживают допустимый коэффициент избытка окислителя меньше 1, исключая сажеобразование. В камерах сгорания 3 и 5, поддерживается максимально допустимая температура. После расширения в ступенях газовых турбин 4 и 6, продукты неполного сгорания поступают в камеру сгорания 7, где также с помощью регулирующей аппаратуры 11 поддерживают температуру горения в пределах 1500-1100 К, ниже чем в камерах сгорания 3 и 5, и коэффициент избытка окислителя равный стехиометрическому или больше стехиометрического, осуществляя каталитическое дожигание топлива. Из ступени газовой турбины 8 продукты сгорания поступают в регенератор, где нагревают сжатую смесь воды и воздуха, и затем охлажденные продукты сгорания выбрасываются в атмосферу. Вся полученная работа расширения преобразуется в электрическую энергию с помощью электрогенератора 10. Для иллюстрации применимости предлагаемого способа было проведено численное моделирование процесса для приведенной схемы.

Топливом является синтезгаз, полученный из Березовского угля с помощью его воздушной газификации с Н2О. Синтезгаз после «горячей» очистки в циклоне и в «горячем» фильтре имеет температуру 870 К. Коэффициент избытка окислителя и соответственно температура в 3 камере сгорания 0,61 и 1600 К, в 5 камере сгорания - 0,59 и 1600 К, в 7 камере сгорания - 1,1 и 1489 К. Относительный расход воды - 20,4%. Давление соответственно в 3, 5. 7 камерах сгорания - 7,0 МПа, 2,433 МПа, 0,846 МПа. Внутренний КПД турбин и компрессоров принимается равным 0,85. Теплотворная способность угля - 26127 КДж/кг. Для указанных параметров расчетная величина КПД установки составила 0,536 при температуре выхлопа 443,4 К. Каталитическая камера сгорания 7 может быть снабжена, например, высокотемпературным катализатором предложенным авторами Института катализа им. Г.К. Борескова СО РАН см. Патент №2185238 от 20.07.2002. В зависимости от калорийности топлива и допустимой температуры лопаток турбины, количество камер сгорания и, соответственно, ступеней расширения, для предложенного способа, может быть произвольным, но не менее двух.

Способ уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла, заключающийся в ступенчатом сжатии окислителя с впрыском воды, подогревом сжатой смеси окислителя с водой, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше единицы, а в последней камере - больше единицы, отличающийся тем, что регулируя расходы окислителя, воды и топлива и поддерживая допустимые значения температуры стенок промежуточных ступеней расширения и их газодинамических трактов, а также температуру горения в последней камере сгорания, на вход и выход компрессора и между его ступенями осуществляют впрыск воды с суммарным расходом 20-40% от общего расхода рабочего тела на выхлопе, при этом в камерах сгорания перед промежуточными ступенями расширения и в газодинамическом тракте поддерживают коэффициент избытка окислителя не ниже 0,5 и температуру стенок промежуточных ступеней расширения и газодинамического тракта не ниже 730 К, а в выходной камере осуществляют процесс каталитического горения, обеспечивающий температуру 1500-1100 K, ниже температуры в предшествующих камерах сгорания, и коэффициент избытка окислителя как равный стехиометрическому, так и больше стехиометрического.



 

Похожие патенты:

Изобретение относится к проблеме вредного воздействия выбросов из газотурбинных установок с регенерацией тепла, в первую очередь, окислов азота на окружающую среду.

Изобретение относится к двигателестроению, Камерно-инжекторно-турбинный двигатель содержит сообщенные между собой посредством вала турбину и компрессор с электрогенератором, камеры сгорания, системы управления, охлаждения и зажигания.
Изобретение относится к области производства механической энергии в первичных тепловых двигателях роторного типа с газообразным рабочим телом, в которых повышение КПД осуществляется за счет регенерации тепла отработавших газов с использованием эндотермических процессов водно-парового преобразования углеводородного топлива.

Изобретение относится к области энергетики и может быть направлено на создание высокоэкономичных газотурбинных установок и двигателей, в том числе и авиационных. .

Изобретение относится к системам переработки вредных газов. .

Изобретение относится к области газотурбинных установок для промышленной теплоэнергетики для привода электрогенераторов. .

Изобретение относится к двигателестроению, а именно к камерам сгорания, и может быть использовано в газотурбинных двигателях различного назначения. .

Изобретение относится к области двигателе строения, а именно к камерам сгорания, и может быть использовано в газотурбинных двигателях различного назначения. .

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) с впрыском жидкости в контур ГТУ оснащена системой подачи и смешения активатора горения с жидкостью, подаваемой в контур ГТУ. Активатор горения представляет собой вещество, которое при повышенных температурах легко диссоциирует с образованием гидроксильных радикалов, что ускоряет сгорание топлива и продуктов его высокотемпературных превращений. Также представлена Газотурбинная установка с впрыском жидкости в контур ГТУ, содержащая двухступенчатый компрессор, перегреватель смеси жидкости и активатора горения, а также котел-утилизатор теплоты продуктов сгорания. Изобретение позволяет увеличить подачу в камеру сгорания мелкодисперсной влаги, благодаря чему удается повысить КПД и удельную мощность, уменьшить удельный расход топлива, увеличить ресурс за счет снижения температурных градиентов в контуре ГТУ и одновременно понизить в выбросах содержание СО и оксидов азота. 2 н.п. ф-лы, 2 ил.

Газотурбинная установка с подачей паро-топливной смеси содержит компрессор для сжатия воздуха, топливный насос для подачи топлива, средства для подачи паро-топливной смеси, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемая паро-топливная смесь, далее происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, смеситель для получения паро-топливной смеси. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с паро-топливной смесью, подаваемой в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания, в атмосферу. 2 ил.

Газотурбинная установка с впрыском водяного пара в контур ГТУ содержит компрессор для сжатия воздуха, топливный насос, средства для подачи топлива, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемое топливо и происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, систему впрыска пара в камеру сгорания. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с водяным паром, впрыскиваемым в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов в атмосферу токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания. 1 ил.

Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности работы осевого многоступенчатого компрессора осуществляется путем впрыска воды. Воду в воздушный поток подают через калиброванные выпускные каналы, выполненные на поверхности лопаток направляющего аппарата. Впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления в ступенях компрессора и перепада давления в указанных выпускных каналах. Впрыск воды начинают проводить в ступенях компрессора, где температура среды становится выше температуры насыщения воды при локальном давлении в ступенях компрессора. Достигается уменьшение потребляемой компрессором мощности за счет определения оптимальных места и параметров впрыскиваемой воды в проточную часть многоступенчатого компрессора. 1 з.п. ф-лы, 4 ил.

Система генерирования мощности с комбинированным циклом содержит паротурбинную систему, газотурбинную систему, включающую в себя компрессор, камеру сгорания и газовую турбину; парогенератор с регенерацией тепла, проточную линию. Парогенератор с регенерацией тепла подсоединен между газотурбинной системой и паротурбинной системой для генерирования пара с тепловой энергией, принимаемой из газотурбинной системы. Парогенератор с регенерацией тепла включает в себя первую ступень, выполненную с возможностью выдачи пара высокого давления, вторую ступень, выполненную с возможностью выдачи пара промежуточного давления, и третью ступень, выполненную с возможностью выдачи пара низкого давления. Проточная линия выполнена с возможностью пропускания насыщенного пара, образованного в парогенераторе с регенерацией тепла, в камеру сгорания газотурбинной системы, Проточная линия содержит конденсатор и перегреватель. Конденсатор подсоединен между парогенератором с регенерацией тепла и перегревателем, а перегреватель подсоединен между конденсатором и камерой сгорания. Конденсатор расположен в системе генерирования мощности с комбинированным циклом с негоризонтальной ориентацией для того, чтобы осуществить перемещение вверх насыщенного пара из парогенератора с регенерацией тепла в камеру сгорания и гравитационное перемещение вниз образовавшегося в конденсаторе конденсата в парогенератор с регенерацией тепла с уменьшением количества пара, переносимого в камеру сгорания, при переносе диоксида углерода из проточной линии в камеру сгорания. Изобретение направлено на уменьшение вредных воздействий компонентов, появляющихся в процессах генерирования мощности. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики. При работе газотурбинной установки охлаждение сжатого воздуха в смесительных камерах турбокомпрессора осуществляют путем подачи в смесительные камеры незамерзающего при минусовых температурах окружающей среды антифриза в виде капель размером 20-500 мкм и полного вывода антифриза из смесительных камер с помощью сепарационно-вихревых устройств после безыспарительного нагрева антифриза. Безыспарительность контактным капельным охлаждением сжатого воздуха обеспечивается расходом хладагента, при котором влагосодержание воздуха на входе в смесительную камеру практически равно на выходе из нее. Кроме того поддерживается изотермичность процесса сжатия в пределах 1-10°C. Выведенный из смесительных камер нагретый антифриз направляют в повторный оборот, предварительно охлаждая его воздухом окружающей среды в автономном теплообменном устройстве до температуры выше, чем температура окружающей среды на 1-8°C. Изобретение позволяет повысить эффективность газотурбинной установки за счет снижения температуры изобарного охлаждения сжатого воздуха в смесительных камерах турбокомпрессора. 2 з.п. ф-лы, 1 ил.

Газотурбинная установка повышенной эффективности содержит газификатор угля, систему очистки продуктов газификации, регенеративные теплообменники, камеру сгорания, газовую турбину, воздушный многоступенчатый турбокомпрессор со смесительными камерами. Смесительные камеры установлены между ступенями и выполнены в виде кольцевых цилиндрических полостей, размещенных в газовом тракте многоступенчатого компрессора симметрично относительно его оси. Размеры смесительных камер выполнены увеличенными в радиальном направлении размерами по сравнению с размером корпуса примыкающей ступени компрессора. Каждая смесительная камера снабжена средствами впрыска жидкости, сепарации и вывода ее неиспарившейся части. Камера сгорания выполнена с возможностью работы на жидком или газообразном топливе, для чего выход многоступенчатого компрессора соединен через рекуперативный теплообменник на выходе газовой турбины через запорный вентиль с входом камеры сгорания. В качестве охлаждающей жидкости использован антифриз. Турбокомпрессор снабжен средствами, обеспечивающими впрыск антифриза в смесительные камеры в виде крупных капель размером 20-500 мкм и полный вывод их после без испарительного контактного нагрева. Средства впрыска и вывода антифриза объединены в замкнутый гидравлический контур, включающий в себя смесительные камеры с вентилями ввода и вывода антифриза, циркуляционный насос, теплообменное устройство контактного типа для охлаждения нагретого антифриза воздухом окружающей среды с помощью вентиляторов до температуры выше температуры окружающего воздуха на 1-8°C, систему контроля уровня и концентрации раствора антифриза в теплообменном устройстве и смесительных камерах, трубопроводные линии подпитки водой и антифризом теплообменного устройства, линию слива из теплообменного устройства в резервную емкость, линию подачи антифриза из резервной емкости в гидравлический контур и запорные вентили. Изобретение направлено на повышение КПД и эффективности газотурбинных установок, работающих на угольном, жидком или газообразном топливе. 2 з. п. ф-лы, 1 ил.

Способ работы газовой турбины с последовательным сгоранием, при этом газовая турбина содержит компрессор, первую камеру сгорания собственно с первой камерой сгорания и первыми горелками, которая принимает сжатый воздух из компрессора, вторую камеру сгорания собственно со второй камерой сгорания и вторыми горелками, которая принимает горячий газ из первой камеры сгорания с заданной температурой на впуске второй камеры сгорания, и турбину, которая принимает горячий газ из второй камеры сгорания. Температуру на впуске второй камеры сгорания понижают для работы газовой турбины при увеличении нагрузки на газовую турбину с частичной нагрузки до базовой нагрузки. Температуру на впуске второй камеры сгорания повышают при уменьшении нагрузки на газовую турбину с базовой нагрузки до частичной нагрузки. Изобретение направлено на снижение выбросов СО и падения давления при работе с частичной нагрузкой без повышения риска обратной вспышки. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода нагнетателя газоперекачивающих агрегатов, контролю технического состояния и его восстановлению. Перед началом прокрутки двигателя предварительно производят очистку входного направляющего аппарата и рабочих лопаток первой ступени компрессора, а перед подачей моющего раствора дополнительно в систему наддува предмасляных полостей опор двигателя и в коллектор подачи топлива к топливным форсункам подают сжатый воздух и через 10…15 с после завершения подачи моющего раствора подачу сжатого воздуха перекрывают, при этом моющий раствор, через по крайней мере одну форсунку по тракту осевого компрессора подают в направлении, обратном направлению потока. Технический результат изобретения - исключение попадания моющего раствора в топливный коллектор и форсунки подачи топлива, а также исключение возможности попадания моющего раствора в масляную систему двигателя. 1 ил.

Способ эксплуатации газотурбинной комбинированной теплоэлектростанции, содержащей компрессорную установку и турбинную установку, заключается в том, что полезную работу отбирает по меньшей мере одно устройство, имеющееся в станции, при котором производят топочные газы камерой сгорания, установленной перед турбинной установкой. Воду и/или пар впрыскивают путем теплообмена с потоком горячего газа после турбинной установки и/или в канале компрессора. Воду и/или пар направляют в газовый поток перед камерой сгорания и/или в камеру сгорания в таких количествах, чтобы по меньшей мере 80% кислорода, содержащегося в воздухе в данном потоке, потреблялось при сгорании в камере сгорания. Теплоноситель, используемый в нагревательном устройстве, нагревают теплотой, отобранной конденсатором топочного газа, расположенным в потоке топочного газа после турбинной установки. Поток топливного газа после турбинной установки дополняют топочными газами из дополнительной камеры сгорания. Кислород для сгорания для этой дополнительной камеры сгорания подают из увлажнителя входного воздуха. Воду и теплоту отбирают из потока топочного газа после конденсатора топочного газа с помощью дополнительного конденсатора, в результате чего поток топочного газа дополнительно осушают, а воду и теплоту, отобранную из этого потока, направляют в воздух, поступающий в компрессорную установку, посредством увлажнителя входного воздуха. Изобретение направлено на повышение эффективности эксплуатации газотурбинной комбинированной теплоэлектростанции. 2 н. и 16 з.п. ф-лы, 5 ил.
Наверх