Способ и устройство для определения замыкания фазы на землю



Способ и устройство для определения замыкания фазы на землю
Способ и устройство для определения замыкания фазы на землю
Способ и устройство для определения замыкания фазы на землю
Способ и устройство для определения замыкания фазы на землю
Способ и устройство для определения замыкания фазы на землю
Способ и устройство для определения замыкания фазы на землю

 


Владельцы патента RU 2491563:

АББ ТЕКНОЛОДЖИ АГ (CH)

Изобретение относится к определению замыкания фазы на землю в трехфазной электрической сети. Сущность: устройство содержит средство для определения разности между нулевой последовательностью тока до замыкания на землю и нулевой последовательностью тока во время замыкания на землю, средство для определения разности между нулевой последовательностью напряжения до замыкания на землю и нулевой последовательностью напряжения во время замыкания на землю, средство для определения полной проводимости нейтрали или величины, ей соответствующей, на основе отношения между разностью нулевых последовательностей токов и разностью нулевых последовательностей напряжений; и средство для сравнения определенной полной проводимости нейтрали или величины, ей соответствующей, с заранее заданной рабочей характеристикой с целью определения точки замыкания фазы на землю. Причем, заданная рабочая характеристика, будучи представленной на плоскости полной проводимости, определяет закрытую область, таким образом, что центр закрытой области отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости. Технический результат: независимость рабочих характеристик от вида нейтрали сети. 2 н. и 11 з.п. ф-лы, 6 илл.

 

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

[0001] Настоящее изобретение относится к определению места замыкания на землю в трехфазной электрической сети.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

[0002] В некоторых странах, таких как Польша, защита, основанная на нейтральной полной проводимости стала обычной функцией защиты от замыкания на землю. Поступила информация, что для лучшей эффективности определения места замыкания на землю по сравнению с традиционными способами существует способ защиты от замыкания на основе разности фоновых токов в незаземленных и компенсированных распределительных цепях.

[0003] В публикации "Критерий проводимости для определения места короткого замыкания на землю в автоматизированных системах подстанций в польских силовых распределительных сетях", Дж. Лоренц и др., CIRED 97, Бирмингем, Июнь 1997 описаны примеры использования систем защиты короткого замыкания на землю, основанной на нейтральной полной проводимости, и упоминается, что с середины 1996 г. до 2000 г. в Польше были установлены систем защиты, основанные на нейтральной полной проводимости.

[0004] Проще говоря, система защиты на нейтральной полной проводимости основана на оценке частн Y _ 0 = 3 I _ 0 / U _ 0 , т.е. нейтральной проводимости сети и сравнении результата с границами плоскости полной проводимости. Разностный ток 3I0 обычно измеряют при помощи кабельного стержневого трансформатора, а разностное напряжение U _ 0 измеряют на открытых третьих соединенных треугольником изолированных полюсах трансформаторов напряжения.

[0005] В настоящее время в существующих системах защиты на нейтральной полной проводимости клеммы реле обычно требуют от пользователя выбирать рабочий критерий из нескольких возможных, таких как, 1) чрезмерная полная проводимость, 2) чрезмерная активная проводимость (не направленной или прямой/обратной направленной) без/с наклоном, 3) чрезмерная реактивная проводимость (не направленной или прямой/обратной направленной) без/с наклоном или сочетанием критериев с 1 по 3 (симметричными вокруг начала координат). На Фиг.1 показаны примеры рабочих характеристик существующих функций защиты на полной проводимости, представленных на плоскости полной проводимости (B - ось реактивной проводимости, G - ось активной проводимости). Затененная область в каждой рабочей характеристике определяет нормальную и нерабочую области, т.е. когда нейтральная полная проводимость лежит в этой области, то защита работает. Например, характеристика чрезмерной полной проводимости может быть определена заданием абсолютной величины Yset для полной проводимости Y _ , которая, как показано, определяет окружность на плоскости полной проводимости. Характеристика чрезмерной активной проводимости может быть определена заданием нижней (-Gset) и верхней (+Gset) границей активной проводимости, а наклон может затем быть задан с углом α, как показано на фигуре. Аналогичным образом, характеристика чрезмерной реактивной проводимости может быть определена заданием абсолютной величины нижней (-Bset) и верхней (+Bset) границей реактивной проводимости, а наклон может затем быть задан с углом α. Необходимо отметить, что характеристики чрезмерной активной проводимости и реактивной проводимости, показанные линиями на Фиг.1, в виде затененной области, показаны только частично для большей ясности.

Дополнительно могут быть сформированы различные комбинации рабочих характеристик путем комбинации установок примененных одновременно, например, установок чрезмерной активной проводимости и чрезмерной реактивной проводимости.

[0006] В известном уровне техники используемые рабочие характеристики зависят от обслуживания нейтральной точки сети. Например, в изолированных сетях должен быть применен критерий реактивной проводимости. В компенсированных сетях, напротив, рекомендуется использовать критерий чрезмерной активной проводимости. Это означает, что клемма реле с защитой на основе активной проводимости требует много установок, которые нужно выставить в соответствии со свойствами сети.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0007] Целью настоящего изобретения является создание способа и устройства для воплощения способа для устранения вышеуказанных недостатков или, по крайней мере, снижения их последствия. Цели настоящего изобретения достигаются использованием способа, компьютерной программы и устройства, отличающихся тем, что содержится в независимых пунктах формулы изобретения. Предпочтительные варианты воплощения данного изобретения раскрыты в зависимых пунктах формулы изобретения.

[0008] Данное изобретение основано на идее использования нулевой последовательности токов и напряжений до замыкания на землю и во время замыкания на землю для определения нейтральной полной проводимости, и сравнения определенной нейтральной полной проводимости или величины ее определяющей с заранее заданной для выявления замыкания на землю в трехфазной электрической линии, в которой заранее заданная рабочая характеристика, представленная на плоскости полной проводимости, определяет закрытую область таким образом, чтобы центр закрытой области отстоял от начала координат плоскости полной проводимости по направлению к отрицательной активной проводимости и/или по направлению к отрицательной реактивной проводимости.

[0009] Преимуществом данного изобретения является то, что оно обеспечивает упрощенную эксплуатацию и лучшие характеристики, что одновременно приемлемо для незаземленных сетей, заземленных сетей высокого активного сопротивления и/или компенсированных сетей. Поэтому, не требуется никаких изменений задаваемых значений, если, например, изменяется способ заземления, посредством отсоединения компенсационной катушки. Кроме того, настоящее изобретение обеспечивает иммунитет к активному сопротивлению замыкания на землю и разбалансировке системы при использовании дельта-величин при вычислении нейтральной полной проводимости. Поэтому, можно достичь высокой чувствительности в отношении того, как может быть обнаружено замыкание на землю в случае сетей высокого активного сопротивления.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Ниже настоящее изобретение будет описано более подробно на примерах предпочтительных вариантов воплощения со ссылкой на приложенные чертежи, где:

Фиг.1 - показаны примеры рабочих характеристик функций полной проводимости;

Фиг.2 - упрощенная эквивалентная электрическая схема для трехфазной электрической сети;

Фиг.3 - упрощенная эквивалентная электрическая схема для трехфазной электрической сети;

Фиг.4 - пример рабочих характеристик варианта воплощения устройства;

Фиг.5 - пример рабочих характеристик варианта воплощения устройства; и

Фиг.6 - график, иллюстрирующий вариант воплощения устройства, осуществляющий несколько стадий защиты.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0011] Настоящее изобретение не ограничено какой-либо конкретной системой и может быть использовано в различных трехфазных электрических системах для определения короткого замыкания на землю в трехфазной электрической линии электрической сети. Электрическая линия может быть, например, фидером, а также воздушной линией, кабелем или их комбинацией. Система электрической мощности, в которой данное изобретение может быть осуществлено, может представлять собой, например, сеть электропередачи или распределения или их части и может содержать несколько фидеров или секций. Более того, использование данного изобретения не ограничивается системами, использующими 50 Гц или 60 Гц в качестве основной частоты или какого-либо конкретного уровня напряжения.

[0012] Фиг.2 и Фиг.3 представляют собой упрощенные эквивалентные электрические схемы для трехфазной электрической сети, в которой может быть использовано настоящее изобретение. На Фиг.2 показана ситуация, при которой происходит замыкание в фоновой сети, а на Фиг.3 показана ситуация, при которой происходит замыкание в контролируемой сети. На указанных схемах показаны только те компоненты, которые необходимы для понимания сути изобретения. В качестве типичной сети может быть рассмотрена средневольтная (например, 20 кВ) распределительная сеть, запитываемая через подстанцию, содержащую трансформатор 10 и общую шину 20. Приведенная сеть также содержит линейные выходы, т.е. фидеры, один из которых отдельно обозначен позицией 30. Другие возможные фидеры, также как и другие части сети, кроме линии 30, относятся к 'фоновой сети' и представлены единственным линейным выходом 40, хотя следует отметить, что в фоновой сети могут существовать любое число фидеров или других сетевых элементов. Также возможно наличие нескольких питающих подстанций. Кроме того, данное изобретение можно использовать, например, в коммутирующей станции без трансформатора 10. Сеть является трехфазной сетью и три фазы трехфазной электрической системы обозначены как L1, L2, и L3. В типичной системе рабочий элемент настоящего изобретения может находиться в блоке реле (не показан), который размещен в начале линии 30, например, в точке соединения линии 30 и общей шины 20. Также возможно проводить только некоторые измерения в месте размещения такого блока, а результаты измерений затем передать на другой блок или блоки, расположенные в другом месте, для их дальнейшей обработки. Таким образом, функциональность данного изобретения может быть распределена между двумя или более физическими блоками, вместо нахождения в одном блоке, а также блок или блоки, в которых применено данное изобретение, могут быть размещены в защищаемой электрической линии 30 или вдали от нее. Это, однако, не имеет значения для основной идеи данного изобретения. Обозначения, используемые на Фиг.2 и Фиг.3, следующие:

U _ 0 = Нулевая последовательность напряжения сети

E _ L1 = Фаза L1 источника напряжения

E _ L2 = Фаза L2 источника напряжения

E _ L3 = Фаза L3 источника напряжения

I _ CC = Ток через устройство заземления (компенсационная катушка плюс параллельный резистор)

Y _ CC = Полная проводимость устройства заземления (компенсационная катушка плюс параллельный резистор)

I _ L1 = Фазовый ток в фазе L1, измеренный на входе

I _ L2 = Фазовый ток в фазе L2, измеренный на входе

I _ L3 = Фазовый ток в фазе L3, измеренный на входе

I _ L1Fd = Фазовый ток в фазе L1 электрической линии

I _ L2Fd = Фазовый ток в фазе L2 электрической линии

I _ L3Fd = Фазовый ток в фазе L3 электрической линии

I _ L1Bg = Фазовый ток в фазе L1 фоновой сети

I _ L2Bg = Фазовый ток в фазе L2 фоновой сети

I _ L3Bg = Фазовый ток в фазе L3 фоновой сети

U _ L1 = Фазовое напряжение фазы L1 на подстанции

U _ L2 = Фазовое напряжение фазы L2 на подстанции

U _ L3 = Фазовое напряжение фазы L3 на подстанции

Y _ F = Полная проводимость замыкания (при допущении, что это чистая активная проводимость)

Y _ L1Fd = Полная проводимость фазы L1 электрической линии

Y _ L2Fd = Полная проводимость фазы L2 электрической линии

Y _ L3Fd = Полная проводимость фазы L3 электрической линии

Y _ L1Bg = Полная проводимость фазы L1 фоновой сети

Y _ L2Bg = Полная проводимость фазы L2 фоновой сети

Y _ L3Bg = Полная проводимость фазы L3 фоновой сети

Z _ Ld = Импеданс фазы нагрузки, соединенной треугольником

[0013] Измеренные величины тока и напряжения, предпочтительно полученные посредством подходящего измерительного устройства включая, например, датчики тока и напряжения (не показаны на фигурах), подсоединенные к фазам электрической системы. В большинстве существующих систем защиты эти величины легко доступны, и поэтому применение настоящего изобретения не обязательно требует использования каких-либо отдельных или специальных измерительных устройств. Каким образом эти величины получены не имеет значения для основной идеи данного изобретения, а зависит от конкретной измеряемой электрической системы.

[0014] В настоящем изобретении используется вычисление нейтральной полной проводимости Y _ 0 , т.е. остаточного тока 3 I _ 0 ( I _ 0 является током нулевой последовательности), измеренной в начале электрической линии 30 (3 I _ 0 = I _ L1Fd + I _ L2Fd + I _ L3Fd ) и остаточного напряжения U _ 0 (с отрицательным знаком). В соответствии с вариантом воплощения данного изобретения вычисление нейтральной полной проводимости выполняется с "дельта"-величинами, где t1 и t2 обозначают две отдельные временные точки, перед t1 и во время t2 замыкания:

Y _ = 3 ( I _ 0_t2 I _ 0_t1 ) ( U _ 0_t2 U _ 0_t1 ) (1)

[0015] Начало вычисления нейтральной полной проводимости (например, согласно уравнению (1) предпочтительно проводится сразу при обнаружении замыкания на землю. Замыкание на землю в электрической сети может быть обнаружено на основе нулевой последовательности напряжения. Это можно осуществить двумя альтернативными способами: или при достижении амплитудой остаточного напряжения заранее заданного значения U _ 0set :

| U _ 0 | > U _ 0set (2)

или при превышении величиной изменения остаточного напряжения заранее заданного значения:

| U _ 0_t2 | | U _ 0_t1 | > U _ 0Δset (3)

[0016] Преимуществом использования уравнения (3) в качестве первичного критерия является то, что благодаря асимметрии сети во время исправного состояния сети может существовать большая амплитуда остаточного напряжения. Это может приводить к очень большим величинам U0set, что в свою очередь приводит к нечувствительности при обнаружении замыкания. При применении уравнения (3) первичный критерий основывается на изменении, а не на абсолютной величине и, поэтому чувствительность обнаружения замыкания увеличивается.

[0017] На Фиг.2 показано, что при возникновении однофазного замыкания на землю вне электрической линии 30, измеренная нейтральная полная проводимость равна суммарной проводимости линии (сумме всех фазовых полных проводимостей) с отрицательным знаком:

Y _ = Y _ Fdtot = ( G Fdtot + j B Fdtot ) (4)

где

Y _ Fdtot = Суммарная полная проводимость линии

Gdtot = Суммарная активная проводимость линии

BFdtot = Суммарная реактивная проводимость линии

Y _ Fdtot = Y _ L1Fd + Y _ L2Fd + Y _ L3Fd

Y _ L1Fd = GL1Fd+j•BL1Fd

Y _ L2Fd = GL2Fd+j•BL2Fd

Y _ L3Fd = GL3Fd+j•BL3Fd

GL1Fd = Активная проводимость фаза-на-землю фазы L1 электрической линии

GL2Fd = Активная проводимость фаза-на-землю фазы L2 электрической линии

GL3Fd = Активная проводимость фаза-на-землю фазы L3 электрической линии

BL1Fd = Реактивная проводимость фаза-на-землю фазы L1 электрической линии

BL2Fd = Реактивная проводимость фаза-на-землю фазы L2 электрической линии

BL3Fd = Реактивная проводимость фаза-на-землю фазы L3 электрической линии

[0018] На практике составляющая активной проводимости д е й с т в ( Y _ Fdtot ) = G Fdtot = ( G L1Fd + G L2Fd + G L3Fd ) весьма мала из-за потерь за счет сопротивления утечки в проводниках. По крайней мере, в воздушных сетях потери могут быть настолько малыми, что активное сопротивление не может быть точно измерено. В этом случае только составляющая реактивной проводимости м н и м ( Y _ Fdtot ) = B Fdtot = ( B L1Fd + B L2Fd + B L3Fd ) = w ( C L1Fd + C L2Fd +C L3Fd ) верна. Характеристика защиты за счет полной проводимости должна задаваться такой, чтобы измеренная нейтральная полная проводимость во время внешнего замыкания оставалась внутри рабочих характеристик (=защита не работает). Внешнее замыкание означает, что точка замыкания расположена снаружи защищенной электрической линии 30. Это может быть достигнуто за счет задания характеристики полной проводимости такой, что указанная характеристика всегда покрывает суммарную линейную полную проводимость электрической линии. Величина суммарной линейной полной проводимости (сумма полных проводимостей всех фаз) можно определить на основе величины тока замыкания на землю электрической линии:

Y _ Fdtot j 3 I 0Fd /U phase (5)

где

3•I0Fd = амплитуда тока замыкания на землю, обеспечиваемого линией в случае внешнего замыкания (RF=0 Ом)

Uphase=номинальное напряжение замыкания на землю сети

[0019] Другим вариантом определения суммарной полной проводимости линии является вычисление нейтральной полной проводимости на основе изменений фоновых тока и напряжения в течение исправного состояния. Эти изменения могут происходить из-за, например, изменения настройки компенсационной катушки или переключения параллельного резистора компенсационной катушки (включено или выключено):

Y _ Fdtot = 3 ( I _ 0_h2 I _ 0_h1 ) ( U _ 0_h2 U _ 0_h1 ) (6)

где

3 I _ 0_h1 = фоновый ток до изменения в течение исправного состояния

3 I _ 0_h2 = фоновый ток после изменения в течение исправного состояния

U _ 0_h1 = фоновое напряжение до изменения в течение исправного состояния

U _ 0_h2 = фоновое напряжение после изменения в течение исправного состояния

[0020] Этот вариант воплощения обладает тем преимуществом, что установки характеристики полной проводимости могут быть обновлены при использовании уравнения (6) так, чтобы и установки и характеристики соответствовали текущему состоянию переключения электрической линии, т.е. суммарная линейная полная проводимость линии покрывалась этой характеристикой полной проводимости. Обновление может осуществляться в реальном времени, т.е. всегда, когда состояние переключения трехфазной электрической линии изменяется. Также обновление может осуществляться, например, на заранее заданных интервалах.

[0021] На Фиг.3 показано, что при возникновении однофазного замыкания на землю в электрической линии 30, измеренная нейтральная полная проводимость равна полной проводимости фоновой сети 40 плюс компенсационной катушки включая параллельный резистор:

Y _ = Y _ Bgtot + Y _ CC (7)

где

Y _ Bgtot = Y _ L1Bg + Y _ L2Bg + Y _ L3Bg

Y _ L1Bg = G _ L1Bg + j B _ L1Bg

Y _ L2Bg = G _ L2Bg + j B _ L2Bg

Y _ L3Bg = G _ L3Bg + j B _ L3Bg

G _ L1Bg = Активная проводимость фаза-на-землю фазы L1 фоновой сети

G _ L2Bg = Активная проводимость фаза-на-землю фазы L2 фоновой сети

G _ L3Bg = Активная проводимость фаза-на-землю фазы L3 фоновой сети

B _ L1Bg = Реактивная проводимость фаза-на-землю фазы L1 фоновой сети

B _ L2Bg = Реактивная проводимость фаза-на-землю фазы L2 фоновой сети

B _ L3Bg = Реактивная проводимость фаза-на-землю фазы L3 фоновой сети

Y _ CC = G CC j B CC

GCC = Активная проводимость устройства заземления (компенсационная катушка плюс параллельный резистор)

BCC = Реактивная проводимость устройства заземления (компенсационная катушка)

[0022] GCC представляет собой активную проводимость резистора, который соединен параллельно с компенсационной катушкой в случае компенсированных сетей. В случае незаземленных сетей BCC=0, а GCC является активным сопротивлением заземляющего резистора. В случае незаземленных сетей Y _ CC = 0 . Характеристика защиты полной проводимости должна быть выставлена такой, чтобы измеренная нейтральная полная проводимость при внутреннем замыкании перемещалась в направлении вовне рабочих характеристик (= защита действует). Внутреннее замыкание означает, что точка замыкания находится внутри защищенной электрической линии 30.

[0023] В случае компенсированной сети и при настроенной компенсационной катушке на резонанс (BCC=BBgtot+BFgtot), измеренная нейтральная полная проводимость, вычисленная с помощью дельта величин, равна:

Y _ = ( G Bgtot + G CC ) j B Fgtot (8)

[0024] Это наиболее трудный случай различения внешнего и внутреннего замыкания, т.к. мнимая часть измеренной нейтральной полной проводимости одинакова в обоих случаях. Безопасная и надежная защита может потребовать, чтобы электрический ток через сопротивление рос во время замыкания благодаря использованию параллельного резистора. Вычисление нейтральной полной проводимости затем может оценить активную проводимость параллельного резистора. Поэтому различение может быть осуществлено на основе активной проводимости.

[0025] Согласно варианту воплощения настоящего изобретения после определения нейтральной полной проводимости, например, на основе уравнения (1), ее сравнивают с заранее заданной рабочей характеристикой для обнаружения замыкания фазы на землю в трехфазной электрической линии 30. В соответствии с этим вариантом воплощения заранее заданная рабочая характеристика при ее расположении на плоскости полной проводимости, определяет закрытую область таким образом, что центр закрытой области отстоит от начала координат плоскости полной проводимости в отрицательном направлении реактивной проводимости и/или в отрицательном направлении активной проводимости. Сравнение определенной нейтральной полной проводимости или этой показательной величины с заранее заданной рабочей характеристикой для определения замыкания фазы на землю в трехфазной электрической линии предпочтительно включает определение, находится ли определяемая нейтральная полная проводимость внутри или снаружи указанной закрытой области, которая определена заранее заданной рабочей характеристикой на плоскости полной проводимости, и определение замыкания фазы на землю трехфазной электрической линии, когда определенная нейтральная полная проводимость находится снаружи указанной закрытой области, определяемая заранее заданной рабочей характеристикой на плоскости полной проводимости. Другими словами, закрытая область является нерабочей областью, в которой защита не действует, а область снаружи закрытой области является рабочей областью, в которой действует защита, т.е. замыкание фазы на землю определяется в трехфазной электрической линии 30.

[0026] Согласно варианту воплощения настоящего изобретения закрытая область определяется окружностью или эллипсом, центр которой отстоит от центра координат плоскости полной проводимости в направлении отрицательной полной проводимости (В) и/или в направлении отрицательной активной проводимости (G). На Фиг.4 показан пример рабочей характеристики, которая содержит окружность 401, которая отстоит от начала координат плоскости полной проводимости на величины GN1 и BN1. Радиус окружности определяется величиной YN1. Функционирование защиты достигается, когда определенная нейтральная полная проводимость перемещается вовне закрытой области, определенной окружностью 401. Это может быть описано следующим математическим выражением:

( действ ( Y _ ) GN1 ) 2 + ( мним ( Y _ ) BN1 ) 2 YN1 YN1 > 0 (9)

где Y _ является измеренная нейтральная полная проводимость.

[0027] Задаваемые параметры GN1, BN1 и YN1 в общем случае должны выбираться такими, чтобы полная проводимость, соответствующая длине электрической линии 30 ( Y _ Fdtot ) находилась внутри закрытой области предпочтительно с подходящим пределом защиты. Чем меньше окружность, тем защита более чувствительна. При изменении состояния соединения защищаемой электрической линии 30 соответственно нужно изменить задаваемые параметры. Это может происходить автоматически путем определения суммарной полной проводимости с помощью вычисления нейтральной полной проводимости на основе изменений фоновых тока и напряжения во время нормального состояния с использованием уравнения 6. После определения суммарной полной проводимости текущего состояния переключения с использованием уравнения 6 задаваемые параметры GN1, BN1 и YN1 могут быть обновлены в соответствии со следующими критериями:

BN1 = мним ( Y _ Fdtot )

GN1 = действ ( Y _ Fdtot )

YN1 = r мним ( Y _ Fdtot )

r = множитель, определяющий предел (чувствительность) защиты, r>0

На Фиг.4 r=1,5

r = задаваемый параметр, определяемый пользователем.

[0028] Согласно варианту воплощения настоящего изобретения закрытая область является кругом, центр которого отстоит от центра координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости таким образом, что сегмент круга исключается из закрытой области, причем указанный сегмент определяется заранее заданной величиной активного сопротивления. Другими словами, на практике смещенный круг 401 полной проводимости может быть совмещен с одной или более "классическими" граничными линиями, например, с направленной вперед границей активной проводимости 402 как показано на Фиг.4. Величина Gmax может быть получена из активной проводимости параллельного резистора: Gmax=k•GCC, где предел безопасности k=0…1. Обычно значение величины k равно 0,8. В этом случае затененный сегмент 403 круга 401 исключен из закрытой области и поэтому входит в рабочую область, окружающую закрытую нерабочую область. В случае компенсированной сети, а также | YN1 | > | G CC | , предпочтительно задавать и использовать Gmax. Однако, если компенсационная катушка и параллельный резистор рассоединены, то необходимо изменить задаваемые параметры.

[0029]. В соответствии с вариантом воплощения данного изобретения закрытая область представляет собой многоугольник, имеющий три или более сторон, образованных соответственно тремя или более линиями. Это показано на Фиг.5, где рабочая характеристика представляет собой смещенный прямоугольник (заштрихованная область), которая достигается установками Bmin, Bmax и Gmin, Gmax, которые и определяют линии, образующие стороны прямоугольника. Эта рабочая схема требует большего числа параметров, но обеспечивает большую гибкость и особенно полезны в случае проблематичных вариантов сетей. На практике установки G относятся к компонентам сети, вызывающим резистивный ток в сети, как, например, в возможной компенсирующей катушке и ее параллельном резисторе. В случае компенсированной сети, когда замыкание случается в защищенной электрической линии, определение полной проводимости обнаруживает:

Y _ = Y _ Bgtot + Y _ CC = ( G _ Bgtot + j B _ Bgtot ) + ( G CC j B CC )

Так как обычно G C C > > G _ B g t o t , то на практике допустима следующая аппроксимация:

Y _ G CC + j ( B Bgtot B CC )

[0030] Другими словами, мнимая часть измеренной полной проводимости образована в основном за счет GCC, вызванная параллельным резистором компенсационной катушки. Поэтому установки Gmin и Gmax выбирают предпочтительно так, чтобы GCC был снаружи диапазона, определенным Gmin и Gmax. Установки Bmin и Bmax могут быть выбраны, например, соответствующими минимуму и максимуму ситуации переключения защищенной электрической линии 30. Здесь опять можно использовать подходящий предел защиты.

[0031] Одним из вариантов определения параметров критерия формы многоугольника полной проводимости является использование вычисленной нейтральной проводимости, основанной на изменении фоновых тока и напряжения в течение нормального состояния, с помощью уравнения (6). После определения суммарной полной проводимости линии текущего состояния переключения с помощью уравнения (6), можно определить установки Gmin, Gmax, Bmin и Bmax по следующим формулам:

Gmax = Значение Gmax может быть получено из активной проводимости параллельного резистора: Gmax=k•GCC, где k=0…1 - это предел безопасности. Обычно значение величины k равно 0,8.

G min = d мним ( Y _ Fdtot ) , где d - коэффициент, определяющий предел (чувствительность) защиты. d>0, на Фиг.5 d=1,5.

B min = q1 мним ( Y _ Fdtot ) , где q1 - коэффициент, определяющий предел (чувствительность) защиты. q1>0, на Фиг.5 q1=1,0.

B max = q2 мним ( Y _ Fdtot ) , где q2 - коэффициент, определяющий предел (чувствительность) защиты. q2>0, на Фиг.5 q2=1,25.

d, q1, q2 являются параметрами установки, определяемыми пользователем.

[0032] Преимуществом разнообразных предложенных рабочих характеристик является то, что они применимы в незаземленных, заземленных высокого сопротивления и компенсированных сетях. Также количество установок уменьшено. Кроме того, процедура введения установок очень проста, т.к. установки для оси В могут быть вычислены на основе тока замыкания на землю в электрической линии, используя уравнение (5), а установки для оси G могут быть основаны на расчетном значении тока IGCC: заземляющего/параллельного резистора: (Gmin=k•IGCC/Uphase). Пример: IGCC=5А, Uphase=20000/√3 В, k=0,5; Gmin=0,22 милиСименс. Как вариант установки можно определить используя изменения в течение нормального состояния сети и уравнение (6).

[0033] Согласно варианту воплощения настоящего изобретения активное сопротивление может быть одновременно (в течение замыкания внутри электрической линии) оценено с помощью уравнения:

Y _ F = 3 I _ U _ Y _ Fdtot U _ L_fault R F = 1 действ ( Y _ F ) (10)

Где U _ L _ f a u l t , это напряжение фазы на землю замыкающей фазы в течение замыкания.

[0034] Для защиты в уравнении (10) используются те же измеренные величины и установки Y _ Fdtot = G Fdtot + j B Fdtot . Другой возможностью вычислить активное сопротивление замыкания является вычисление полной проводимости замыкания с помощью дельта метода, используя изменения во время замыкания:

Y _ F = 3 ( I _ 0_ f2 I _ 0_ f1 ) ( U _ 0_f2 U _ 0_f1 ) Y _ Fdtot = R F = 1 действ ( Y _ F ) (11)

[0035] В соответствии с вариантом воплощения настоящего изобретения замыкающая фаза также может быть определена вычислением активного сопротивления замыкания которое оценивается одновременно для каждой фазы:

R F_L1 = действ( U _ L1_fault 3 I _ U _ Y _ Fdtot )

R F_L2 = действ( U _ L2_fault 3 I _ U _ Y _ Fdtot )

R F_L3 = действ( U _ L3_fault 3 I _ U _ Y _ Fdtot )

[0036] Логика выбора фазы подсказывает: в этом случае только один из трех активных сопротивлений замыкания имеет положительную величину, это замкнутая фаза с соответствующей величиной активного сопротивления. В случае, если два из трех активных сопротивлений замыкания имеют положительную величину, замкнутая фаза выбирается на основе сравнения амплитуд фазового напряжения между двумя претендентами: замкнутая фаза - это фаза с меньшей величиной фазового напряжения.

[0037] Согласно варианту воплощения настоящего изобретения может быть осуществлена концепция многоступенчатой защиты полной проводимости. Когда замыкание в электрической линии определено на основе критерия полной проводимости, то может быть применена оценка активного сопротивления замыкания для определения скорости операции. Могут быть применены множественные пороги активного сопротивления замыкания (ступени защиты). Могут быть установлены различные ступени, например, при RF>, RF>>, RF>>>, RF>>>> с соответствующим рабочими запаздываниями защиты t>, t>>, t>>>, t>>>>. Это показано на Фиг.6, которая иллюстрирует как образуется кривая 601 операции обратного типа одновременно с такими ступенями защиты.

[0038] Устройство в соответствии с любым вариантом воплощения данного изобретения или их сочетания, может быть выполнено в виде одного блока или двух или более отдельных блоков, которые выполнены с возможностью осуществления функционирования различных вариантов воплощения данного изобретения. В данном контексте термин "блок" относится в общем случае к физическому или логическому объекту, такому как физическое устройство или его часть, либо к программному алгоритму. Один или более таких блоков могут размещаться, например, в устройстве или оборудовании реле защиты. Например, устройство, согласно варианту воплощения данного изобретения, может содержать блок для контроля нулевой последовательности тока в трехфазной электрической линии и нулевой последовательности напряжения в электрической сети на основе величины нулевой последовательности напряжения, причем аналитический блок выполнен с возможностью определения разности между нулевой последовательностью тока до замыкания на землю и нулевой последовательностью тока во время замыкания на землю, определения разности между нулевой последовательностью напряжения до замыкания на землю и нулевой последовательностью напряжения во время замыкания на землю, и определения нейтральной полной проводимости, или величины ей соответствующей, на основе отношения между разностью нулевой последовательности токов и разностью нулевой последовательности напряжений, а также содержит блок сравнения, выполненный с возможностью сравнения нейтральной полной проводимости, или величины ей соответствующей, с заранее заданной рабочей характеристикой с целью определения замыкания фазы на землю в трехфазной электрической линии.

[0039] Устройство, согласно любому из вариантов воплощения настоящего изобретения, может быть осуществлено посредством компьютера или соответствующего оборудования, например, для обработки цифрового сигнала с установленным подходящим программным обеспечением. Указанный компьютер или соответствующее оборудование обработки цифрового сигнала предпочтительно содержит, по крайней мере, одно оперативное запоминающее устройство (ОЗУ), обеспечивающее область хранения для арифметических операций и центральный процессор (ЦП), такой как универсальный процессор цифрового сигнала. ЦП может иметь несколько регистров, арифметический логический блок и блок управления. Блок управления управляется последовательностью программных инструкций передаваемых к ЦП от ОЗУ. Блок управления может содержать ряд микроинструкций для выполнения основных операций. Исполнение микроинструкций может варьироваться в зависимости от выполнения ЦП. Программные инструкции могут быть закодированы на языке программирования, который может быть языком программирования высокого уровня, таким как С, Java и т.п., или языком программирования низкого уровня, таким как машинный язык или ассемблер. Компьютер может также иметь операционную систему, которая обеспечивает системное обслуживание компьютерных программ, написанных с программными инструкциями. Компьютер или другое устройство, воплощающее настоящее изобретение, предпочтительно содержит подходящее входное средство для приема, например, данных измерения и/или управления, например, для управления оборудованием защиты, такого как выключатели, разъединители и прерыватели. Также возможно использование особой интегрированной схемы или схем и/или компонентов или отдельных устройств для осуществления любого варианта воплощения настоящего изобретения.

[0040] Настоящее изобретение может быть осуществлено в существующих элементах системы, таких как реле защиты, или подобных устройствах, или путем использования отдельных специализированных элементов или устройств как в концентрированном, так и распределенном виде. Современные устройства защиты для электрических систем, таких как реле защиты, обычно содержат процессоры и память, которые могут использоваться для осуществления функций, согласно вариантам воплощения данного изобретения. Таким образом, все модификации и конфигурации, необходимые для осуществления варианта воплощения настоящего изобретения, например, в существующих устройствах защиты могут быть выполнены в виде программных алгоритмов, которые могут быть осуществлены в виде добавленных или скорректированных программных алгоритмов. Если работа настоящего изобретения осуществляется с помощью программного обеспечения, то такое программное обеспечение может быть выполнено в виде компьютерного программного продукта, содержащего компьютерный программный код, который при его запуске на компьютере приводит к тому, что компьютер или соответствующее устройство выполняет действия в соответствии с данным изобретением, описанным выше. Указанный компьютерный программный код может храниться или быть записан на машиночитаемом носителе компьютера, с подходящей памятью, например, флэш-память или диск, откуда он может загружаться в блок или блоки, исполняющие этот программный код. Кроме того, указанный программный код, осуществляющий данное изобретение, может быть загружен в блок или блоки, осуществляющие компьютерный программный код, например, через подходящую информационную сеть, и он может заменить или обновить уже возможно имеющийся программный код.

[0041] Для специалиста в данной области очевидно, что по мере развития технологии, изобретательская идея может быть воплощена различными путями. Настоящее изобретение и его варианты воплощения не ограничены примерами, описанными выше, и могут изменяться в объеме формулы изобретения.

1. Способ определения замыкания фазы на землю в трехфазной электрической линии электрической сети, включающий:
мониторинг нулевой последовательности тока в трехфазной электрической линии и нулевой последовательности напряжения в электрической сети; и
определение замыкания на землю в электрической сети на основе величины нулевой последовательности напряжения, отличающийся тем, что:
определяют разность между нулевой последовательностью тока до замыкания на землю и нулевой последовательностью тока во время замыкания на землю;
определяют разность между нулевой последовательностью напряжения до замыкания на землю и нулевой последовательностью напряжения во время замыкания на землю;
определяют полную проводимость нейтрали или величину, ей соответствующую, на основе отношения между разностями нулевых последовательностей токов и разностями нулевых последовательностей напряжений; и
сравнивают определенную полную проводимость нейтрали или величину, ей соответствующую, с заранее заданной рабочей характеристикой, с целью определения точки замыкания фазы на землю в трехфазной электрической линии, причем заданная рабочая характеристика, будучи представленной на плоскости полной проводимости, определяет закрытую область, таким образом, что центр закрытой области отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости.

2. Способ по п.1, отличающийся тем, что:
сравнение определенной полной проводимости или величины ей, соответствующей, с заранее заданной рабочей характеристикой, с целью определения точки замыкания фазы на землю в трехфазной электрической линии включает:
определение места нахождения полной проводимости нейтрали внутри или снаружи указанной закрытой области, определенной заранее заданной рабочей характеристикой на плоскости полной проводимости; и
определение точки замыкания фазы на землю в трехфазной электрической линии, когда определенная полная проводимость нейтрали находится снаружи указанной закрытой области, определенной заранее заданной рабочей характеристикой на плоскости полной проводимости.

3. Способ по п.1 или 2, отличающийся тем, что закрытая область определяется кругом или эллипсом, центр которых отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости.

4. Способ по п.1 или 2, отличающийся тем, что закрытая область определяется кругом, центр которого отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости таким образом, что сегмент круга исключен из закрытой области, причем указанный сегмент определен линией, определенной величиной заранее заданной активной проводимости.

5. Способ по п.1 или 2, отличающийся тем, что закрытая область является многоугольником, имеющим три или более сторон, образованных соответствующими тремя или более линиями.

6. Способ по п.1 или 2, отличающийся тем, что включает обновление заранее заданной рабочей характеристики, когда состояние переключения трехфазной электрической линии изменяется или на заранее заданных временных интервалах.

7. Устройство для определения замыкания фазы на землю в трехфазной электрической линии (30) электрической сети содержит:
средство для измерения нулевой последовательности тока в трехфазной электрической линии (30) и нулевой последовательности напряжения электрической сети и
средство для определения замыкания фазы на землю в электрической сети на основе величины нулевой последовательности напряжения, отличающееся тем, что также содержит:
средство для определения разности между нулевой последовательностью тока до замыкания на землю и нулевой последовательностью тока во время замыкания на землю;
средство для определения разности между нулевой последовательностью напряжения до замыкания на землю и нулевой последовательностью напряжения во время замыкания на землю;
средство для определения полной проводимости нейтрали или величины, ей соответствующей, на основе отношения между разностью нулевых последовательностей токов и разностью нулевых последовательностей напряжений; и
средство для сравнения определенной полной проводимости нейтрали или величины, ей соответствующей, с заранее заданной рабочей характеристикой, с целью определения точки замыкания фазы на землю в трехфазной электрической линии, причем заданная рабочая характеристика, будучи представленной на плоскости полной проводимости, определяет закрытую область, таким образом, что центр закрытой области отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости.

8. Устройство по п.7, отличающееся тем, что
средство для сравнения определенной полной проводимости нейтрали или величины, ей соответствующей, с заранее заданной рабочей характеристикой, с целью определения точки замыкания фазы на землю в трехфазной электрической линии, также содержит:
средство определения места нахождения полной проводимости нейтрали внутри или снаружи указанной закрытой области, определенной заранее заданной рабочей характеристикой на плоскости полной проводимости; и
средство для определения точки замыкания фазы на землю в трехфазной электрической линии, когда определенная полная проводимость нейтрали находится снаружи указанной закрытой области, определенной заранее заданной рабочей характеристикой на плоскости полной проводимости.

9. Устройство по п.7 или 8, отличающееся тем, что закрытая область определяется кругом или эллипсом, центр которых отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости.

10. Устройство по п.7 или 8, отличающееся тем, что закрытая область определяется кругом, центр которого отстоит от начала координат плоскости полной проводимости в направлении отрицательной реактивной проводимости и/или в направлении отрицательной активной проводимости таким образом, что сегмент круга исключен из закрытой области, причем указанный сегмент определяется линией, определенной величиной заранее заданной активной проводимости.

11. Устройство по п.7 или 8, отличающееся тем, что закрытая область является многоугольником, имеющим три или более сторон, образованных соответствующими тремя или более линиями.

12. Устройство по п.7 или 8, отличающееся тем, что устройство также содержит средство для обновления заранее заданной рабочей характеристики, когда изменяется состояние переключения трехфазной электрической линии или на заранее заданных временных интервалах.

13. Устройство по п.7 или 8, отличающееся тем, что устройство также содержит реле защиты.



 

Похожие патенты:

Изобретение относится к дефектоскопии изоляции кабельных изделий электроискровым методом неразрушающего контроля. .

Изобретение относится к электротехнике, к области кабельной передачи информации, может применяться для обнаружения обрыва кабеля, в частности, при использовании пакетной технологии передачи данных Ethernet без отключения устройств потребителей.

Изобретение относится к электроэнергетике и может быть использовано для определения места повреждения (короткого замыкания) на линиях электропередачи по измерениям с двух ее концов без использования эквивалентных параметров питающих систем.

Изобретение относится к электроэнергетике и может быть использовано для диагностики и локации дефектов в изоляции линий электропередачи, дефектов монтажа фазных проводов и арматуры, набросов на провода и т.д.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения, Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является повышение чувствительности и точности определения места повреждения на ЛЭП за счет более точного выделения фронта аварийного переходного процесса из совокупности помех, подчиняющихся нормальному закону распределения.

Изобретение относится к области защиты подземных металлических сооружений от коррозии блуждающими токами и может быть использовано в нефтяной и газовой отраслях промышленности для определения наличия и местоположения источника блуждающих токов.

Изобретение относится к определению места неисправности (17) заземления на участке (10) электрической линии энергоснабжения по принципу дистанционной защиты. .

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи высокого и сверхвысокого напряжения.

Изобретение относится к релейной защите и автоматике линий электропередачи и предназначено для случая, когда наблюдение сети производится с обеих сторон без синхронизации наблюдений

Изобретение относится к электроэнергетике и может быть использовано для определения места повреждения (ОМП) в линиях нейтралей, соединяющих средние точки преобразовательных подстанций электропередач постоянного тока (ППТ) высокого напряжения. Технический результат: повышение достоверности дистанционного определения места повреждения в линиях нейтральных проводов ППТ при коротких замыканиях на землю. Сущность: фиксируют по концам каждой линии нейтрали (11, 12) текущие мгновенные значения аварийных токов, выделяют в них постоянные составляющие и вычисляют расстояние до места повреждения по соотношению активных сопротивлений участков нейтрального провода согласно формуле: l x = r 1 ⋅ i 11 − r 2 ⋅ i 21 r 0 ⋅ ( i 22 − i 21 ) где r1 - активное сопротивление неповрежденного нейтрального провода, r2 - активное сопротивление поврежденного нейтрального провода, r0 - погонное активное сопротивление нейтральных проводов, r11 - постоянная составляющая тока в начале неповрежденного нейтрального провода, r21 - постоянная составляющая тока в начале поврежденного нейтрального провода, r22 - постоянная составляющая тока в конце поврежденного нейтрального провода. 4 ил.

Использование: в электроэнергетике для определения места короткого замыкания на линии электропередачи переменного тока. Технический результат: повышение достоверности определения расстояния до места повреждения в линии электропередачи. Сущность: способ заключается в регистрации формы кривых напряжения и тока в течение процесса отключения поврежденной фазы линии выключателями, выделении из зарегистрированной формы тока фазы линии момента прерывания аварийного тока, выделении из зарегистрированной формы фазного напряжения свободной составляющей разряда короткозамкнутого участка линии, анализе спектральной характеристики указанной свободной составляющей, определении затухания огибающей свободной составляющей напряжения, выделении в спектральной составляющей частоты f0 с наибольшей амплитудой напряжения, определении предварительного значения длины короткозамкнутого участка с учетом погонных параметров линии для частоты f0, определении значения переходного сопротивления в месте короткого замыкания и определении расстояния до места повреждения на линии как вещественной части величины, рассчитанной по формуле: где A, B, C - комплексные коэффициенты, зависящие от погонных параметров линии и оператора вида p=-αизм+j·2·π·f0. 3 ил.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Сущность: в сетях среднего напряжения при возникновении ОЗЗ возникает переходный процесс разряда емкости поврежденной фазы на землю. Расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания напряжения нулевой последовательности после возникновения однофазного замыкания на землю. Технический результат: повышение точности. 2 ил.

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Сущность: измеряют максимальную амплитуду тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю. Определяют расстояние до однофазного замыкания на землю по значению мгновенного напряжения Uc на поврежденной фазе в момент возникновения однофазного замыкания на землю, по суммарной емкости С0 нулевой последовательности всех линий, подключенных к шинам, по максимальной амплитуде тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю и по погонному индуктивному сопротивлению Lпогонное нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, в соответствии с выражением Д=Uc2*C0/(I0, max2*Lпогонное). 2 ил.

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени. Передают сигналы с конца линии в ее начало по каналу связи. Сохраняют пары цифровых отсчетов как текущие. Осуществляют сдвиг сигналов фазы B на угол 120 градусов и фазы C на угол 240 градусов. Далее одновременно определяют массивы мгновенных значений симметричных составляющих напряжений и токов в начале и конце линии и их векторные значения UA1,1, IA1,1, UA1,2, IA1,2. Затем определяют расстояние до места короткого замыкания l1 из выражения: , где γ0=a0+jβ0 - коэффициент распространения электромагнитной волны, a0 - коэффициент затухания электромагнитной волны, β0 - коэффициент изменения фазы электромагнитной волны, ZB - волновое сопротивление линии, l - длина линии. Технический результат: повышение точности определения места повреждения. 7 табл., 2 ил.

Изобретение относится к релейной защите и автоматике электрических систем. Сущность: контролируемая сеть наблюдается на обеих сторонах. Наблюдения синхронизированы, происходит обмен информацией между концевыми подстанциями. Используется модель контролируемой сети с тремя участками. Модель задает операции преобразования наблюдаемых токов и напряжений. Первые два участка преобразуют наблюдаемые сигналы в напряжения двух разных предполагаемых повреждений, а также в токи, подводимые к этим местам от концевых подстанций. Третий участок преобразует указанные напряжения в два других тока, протекающих за местами повреждений. Пары токов преобразуются в дифференциальные токи первого и второго мест повреждения. По напряжениям и токам каждого предполагаемого повреждения определяют их реактивные и активные мощности. Фиксируют координаты обоих мест повреждения, если обе реактивные мощности переходят через нулевые значения, а обе активные мощности неотрицательны. Технический результат: расширение функциональных возможностей. 3 ил.

Изобретение относится к электроэнергетике, конкретнее - к релейной защите и автоматике электрических систем. Сущность: определение места повреждения выполняется в два этапа. На первом этапе полагают, что повреждены все провода. Определяют место повреждения по токам и напряжениям всех проводов до и после мест предполагаемых повреждений. Определяют для каждого провода сигнал абсолютного значения разности модулей токов до и после обнаруженного на первом этапе места повреждения, сигнал абсолютного значения разности модулей напряжений до и после этого места, сдвиг фаз между напряжением и током каждого провода до этого места и сдвиг фаз между напряжением и током после этого места, сигнал абсолютного значения разности первого и второго сдвигов фаз. Сравнивают три упомянутых разностных сигнала каждого провода с соответствующими порогами. Подразделяют провода сети на неповрежденные и поврежденные, для чего относят к первым те провода, все три разностных сигнала которых не превысили своих порогов. На втором этапе определяют место повреждения по токам и напряжениям только вторых проводов до и после мест предполагаемых повреждений. Технический результат: повышение точности и расширение функциональных возможностей. 1 з.п. ф-лы, 7 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи по несинхронизированным замерам с двух ее концов. Технический результат: повышение точности определении места повреждения. Сущность: измеряют с двух концов линии несинхронизированные по углам комплексные фазные токи и напряжения основной частоты в момент короткого замыкания. Определяют значения сопротивлений от первого конца линии до места повреждения и сопротивления от второго конца линии до места повреждения. Преобразуют фазные токи и напряжения в симметричные составляющие - комплексные токи и напряжения прямой, обратной и нулевой последовательностей. Определяют значение угла между напряжениями нулевой, обратной или прямой последовательности по концам линии или значение угла между фазными напряжениями по концам линии. Выполняют синхронизацию путем поворачивания векторов комплексных величин токов и напряжений на полученный угол. Определяют относительные расстояния от концов линии до места повреждения по соответствующим выражениям. 3 н.п. ф-лы, 2 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в кабельной промышленности для контроля и ремонта эмалевой изоляции проводов. Цель изобретения - увеличение точности контроля и протяженности дефектных участков в изоляции провода, а также создание возможности ремонта дефектных участков эмалевой изоляции проводов путем несения эмали на место обнаруженного дефекта при непрерывно перемещающемся проводе. Заявляемый способ заключается в подаче высокого напряжения на коронирующий датчик-электрод, протягивании контролируемого провода через коронирующий датчик-электрод и в формировании импульсов дефектов с коронирующего датчика-электрода, при этом дополнительно устанавливают на строго фиксированном расстоянии D от коронирующего датчика-электрода узел нанесения эмали. Затем при наличии дефекта формируют импульс протяженности дефекта, длительность которого Ti равняется времени прохождения дефекта в зоне действия коронирующего датчика-электрода. Передний фронт упомянутого импульса формируется по первому импульсу коронного разряда с дефекта, а задний фронт импульса формируется с задержкой после последнего импульса коронного разряда с дефекта на время где tз - время задержки; lк - среднеквадратическое значение длины контролируемого участка провода с момента погасания до момента зажигания коронного разряда в зонах его нестабильности горения при подходе к датчику-электроду и выходу из него дефектного участка изоляции; σ - среднеквадратичное отклонение lк от среднего значения; V - скорость движения контролируемого провода. После формирования переднего импульса дефекта через время t2=(D-VТд)/V, где Тд - время от открытия электромагнитного клапана узла нанесения эмали до попадания струи эмали из узла нанесения эмали на поверхность дефекта, расширяют импульс дефекта до величины Тр=Ti+Тд. По переднему фронту этого импульса открывают в момент времени t2 в узле нанесения эмали электромагнитный затвор и формируют электростатически заряженную струю эмали путем пропускания ее вдоль поверхности высоковольтного электрода, на который в момент времени t2 открытия электромагнитного затвора одновременно подают постоянный высоковольтный потенциал относительно заземленной жилы провода, величина которого лежит в диапазоне 2-5 кВ. Сформированную струю электростатически заряженной жидкой эмали подают на дефектный участок в течение времени Ti, затем по заднему фронту расширенного импульса отключают высоковольтный потенциал с высоковольтного электрода и закрывают электромагнитный затвор в узле нанесения эмали. После этого снимают излишки эмали, нанесенной на дефектный участок эмальизоляции, путем пропускания упомянутого участка с нанесенной на него жидкой эмалью через калибр, внутренний диаметр которого соответствует диаметру изолированного провода. После снятия с дефектного участка излишков эмали дефектный участок с нанесенной на него жидкой эмалью подвергают запечке и сушке. Заявляемый способ контроля и ремонта изоляции проводов позволяет по сравнению со способом-прототипом значительно повысить точность контроля и способен производить не только контроль, но и процесс ремонта дефектных участков эмалевой изоляции провода. 3 ил.
Наверх