Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора



Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора
Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора
Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

 


Владельцы патента RU 2491663:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)

Изобретение относится к области термоядерного синтеза. Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора смещений и болта, головкой расположенного внутри полой опоры, а стержневой частью проходящего через отверстие компенсатора смещений и соединенного резьбой с крепежным отверстием модуля. Компенсатор смещений содержит втулку со сферической наружной поверхностью, которая закреплена посредством резьбы на фланце опоры, обращенном к модулю, втулку с ответной сферической внутренней поверхностью и шайбу, выполненную с внутренней резьбой. Крепежное отверстие модуля выполнено с коническим пазом, который сопряжен со сферическим выступом шайбы. Между головкой болта и фланцем опоры, обращенным к модулю, установлена сферическая шайба, а внутренняя поверхность головки болта, контактирующая с шайбой, имеет сферическую форму. Техническим результатом является упрощение сборки за счет исключения дополнительных механических операций и самокомпенсация заявленным устройством угловых и сдвиговых смещений, возникающих при монтаже модуля вследствие погрешностей изготовления вакуумной камеры. 3 ил.

 

Изобретение относится к области термоядерного синтеза и может быть использовано в устройствах для крепления модуля бланкета на вакуумном корпусе термоядерного реактора.

Наиболее близким по совокупности существенных признаков к изобретению является устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащее упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора смещений, который содержит втулку, закрепленную посредством резьбы на упомянутом фланце, и болта, головкой расположенного внутри полой опоры, а стержневой частью проходящего через отверстие компенсатора смещений и соединенного резьбой с крепежным отверстием модуля (патент РФ №2268506, МПК G21B 1/00, опубл. 20.01.06 г.).

В известном устройстве компенсатор смещений содержит втулку, которая выполнена с фланцем, снабженным гранями под ключ и расположенным с обеспечением контакта с поверхностями модуля и фланцем опоры, обращенным к модулю. Монтаж модуля на вакуумном корпусе осуществляют следующим образом. На внутренней поверхности вакуумного корпуса под каждый модуль выполняют четыре посадочных гнезда, в которые ввинчивают упругие опоры. Затем на свободный фланец опоры устанавливают с образованием резьбового соединения компенсатор смещений, т.е. втулку с фланцем, которая на данном этапе монтажа является заготовкой: не имеет отверстия под болт, а ее фланец выполнен с большей высотой, чем в готовом виде (при затягивании болта с модулем). После посадки модуля на четыре опоры с установленными на них компенсаторами смещений определяют величину габаритных погрешностей для каждого из четырех посадочных гнезд, при этом координаты модуля, необходимые для его рабочей посадки на вакуумном корпусе, известны. Затем компенсаторы смещений вывинчивают из опор, механической обработкой доводят их до нужного размера, устанавливают в свои опоры. Далее устанавливают модуль, просверливают отверстие в модуле и в заготовке втулки с фланцем, которое необходимо для установки болта, при этом ось отверстия в модуле должна совпадать с осью посадочного гнезда на вакуумном корпусе. После этого модуль снимают, втулку с фланцем удаляют из опоры, в опору вставляют болт и устанавливают втулку с фланцем на опору. Затем на четыре опоры устанавливают модуль и с помощью специального инструмента ввинчивают болт в модуль. В известном устройстве втулка с фланцем выполняет функцию компенсатора угловых, осевых и сдвиговых смещений, вызванных различными отклонениями в размерах при изготовлении вакуумной камеры термоядерного реактора. Эта функция обеспечивается механической обработкой фланца втулки с предварительными измерениями упомянутых смещений, что также вносит новые погрешности, отрицательно влияющие на сборку известного устройства для крепления.

Недостатком известного устройства является значительная трудоемкость его сборки, что объясняется необходимостью выполнения сложной механической доработки втулки, являющейся в данном случае компенсатором смещений, вызванных различными отклонениями в размерах при изготовлении вакуумной камеры термоядерного реактора.

Задачей настоящего изобретения является создание устройства для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, которое упростит сборку за счет исключения дополнительных механических операций.

Техническим результатом настоящего изобретения является самокомпенсация заявленным устройством угловых и сдвиговых смещений, которые возникают при монтаже модуля вследствие погрешностей изготовления вакуумной камеры.

Указанный технический результат достигается тем, что в известном устройстве для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащем упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора смещений, который содержит втулку, закрепленную посредством резьбы на упомянутом фланце, и болта, головкой расположенного внутри полой опоры, а стержневой частью проходящего через отверстие компенсатора смещений и соединенного резьбой с крепежным отверстием модуля, согласно заявленному изобретению втулка выполнена со сферической наружной поверхностью, а компенсатор смещений снабжен шайбой и второй втулкой, выполненной с ответной сферической внутренней поверхностью, при этом втулки установлены с сопряжением сферических поверхностей между собой, а шайба расположена с обеспечением контакта с поверхностями модуля и второй втулки, причем шайба выполнена с внутренней резьбой, соответствующей резьбе болта и снабжена сферическим выступом, а крепежное отверстие модуля выполнено с коническим пазом, который сопряжен с упомянутым выступом шайбы, при этом между головкой болта и фланцем опоры, обращенным к модулю, установлена сферическая шайба, а внутренняя поверхность головки болта, контактирующая с шайбой, выполнена с ответной сферической формой.

Отличительные признаки, касающиеся выполнения компенсатора смещений, позволяют обеспечить самокомпенсацию угловых и сдвиговых смещений, которые возникают при монтаже модуля, за счет совмещения контактных поверхностей и осей крепежного отверстия модуля и болта, а признаки, относящиеся к сферической шайбе, позволяют обеспечить необходимое для проведения монтажа движение болта в виде угловых наклонов и поперечных перемещений, а также требуемый контакт головки болта и фланца опоры.

Сущность изобретения поясняется чертежами, где на фиг.1 представлено устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора (продольный разрез), на фиг.2 показан монтаж модуля на вакуумном корпусе с помощью устройства для крепления, на фиг.3 изображено закрепление модуля на вакуумном корпусе с помощью устройства для крепления.

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора содержит упругую полую опору 1, болт 2 и компенсатор смещений, содержащий шайбу 3, втулку 4 со сферической внутренней поверхностью и втулку 5 с ответной сферической наружной поверхностью. Опора 1 представляет собой совокупность стержней, расположенных по кольцу и соединенных по концам фланцами, одним из которых опора 1 посредством резьбы соединена с корпусом 6 вакуумной камеры, а другим фланцем опора 1 соединена с модулем 7 посредством компенсатора смещений и болта 2. Втулка 5 компенсатора смещений с помощью резьбового соединения закреплена на фланце опоры 1, обращенном к модулю 7. На втулке 5 установлена втулка 4, при этом их сферические поверхности сопряжены между собой. Шайба 3 установлена на втулке 4 с обеспечением контакта с поверхностями втулки 4 и модуля 7. Болт 2 головкой расположен в полости упругой опоры 1. Стержневой частью болт 2 проходит через сквозное отверстие, образованное отверстиями составляющих элементов компенсатора смещений: шайбы 3, втулки 4 и втулки 5. Резьбовой частью стержня болт 2 закреплен в крепежном отверстии 8 модуля 7. Крышка 9 установлена на втулку 4 с образованием бокового зазора между крышкой 9 и шайбой 3. Боковой зазор предназначен для обеспечения перемещения шайбы 3 в поперечном направлении перпендикулярно оси болта 2 для компенсации возможных смещений при монтаже модуля. Стопорное кольцо 10 установлено с фиксацией крышки 9, а стопорное кольцо 11 установлено с фиксацией втулки 4. На поверхности шайбы 3, обращенной к модулю 7, выполнен сферический выступ, а на противоположном конце шайба 3 выполнена с внутренней резьбой, соответствующей резьбе болта 2, которая предназначена для фиксации болта 2 перед монтажом. Крепежное отверстие 8 модуля выполнено с коническим пазом, который сопряжен со сферическим выступом шайбы 3. Между головкой болта 2 и фланцем опоры 1, обращенным к модулю 7, установлена сферическая шайба 12, при этом внутренняя поверхность головки болта 2, контактирующая с шайбой 12, выполнена сферической формы и сопряжена со ответной сферической поверхностью шайбы 12. Сферическая шайба 12 служит для компенсации наклонов болта 2 во время монтажных работ.

Монтаж модуля бланкета на вакуумном корпусе термоядерного реактора осуществляют следующим образом.

На внутренней поверхности вакуумного корпуса 6 под каждый модуль 7 выполняют четыре посадочных гнезда таким образом, чтобы их оси были сориентированы соответственно теоретической внешней границы плазмы. Болт 2 и сферическую шайбу 12 устанавливают в полую упругую опору 1, которую затем размещают в посадочное гнездо корпуса 6 вакуумной камеры. На фланец упругой опоры 1 устанавливают втулку 5 со сферической наружной поверхностью, при этом стержень болта 2 выходит за пределы упругой опоры 1. На втулку 5 устанавливают втулку 4 со сферической внутренней поверхностью. Затем втулку 4 фиксируют стопорным кольцом 11. На резьбовой конец болта 2 устанавливают шайбу 3 так, чтобы совпадали их торцевые поверхности. Далее на втулку 4 устанавливают шайбу 3, которую фиксируют на втулке 4 посредством крышки 9 и стопорного кольца 10. На собранное устройство устанавливают модуль 7, при этом коническая часть крепежного отверстия 8 контактирует со сферическим выступом шайбы 3.

При наличии сдвигового (поперечного) смещения (смещение d) шайба 3 перемещается на величину этого смещения, компенсируя тем самым возможное упомянутое смещение. При наличии углового смещения (смещение f) болт 2, втулка 4 и шайба 3 поворачиваются на величину этого углового смещения, компенсируя тем самым угловое смещение, причем оси болта 2 и крепежного отверстия 8 модуля 7 совмещаются. Затем болт 2 вкручивают с помощью специального инструмента в крепежное отверстие 8 модуля 7, при этом сферическая шайба 12 самостоятельно устанавливается посредством ее сопряжения со сферической поверхностью головки болта 2.

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора, содержащее упругую полую опору с фланцами, одним из которых опора соединена с вакуумным корпусом, а другим фланцем связана с модулем посредством компенсатора смещений, который содержит втулку, закрепленную посредством резьбы на упомянутом фланце, и болта, головкой расположенного внутри полой опоры, а стержневой частью проходящего через отверстие компенсатора смещений и соединенного резьбой с крепежным отверстием модуля, отличающееся тем, что втулка выполнена со сферической наружной поверхностью, а компенсатор смещений снабжен шайбой и второй втулкой, выполненной с ответной сферической внутренней поверхностью, при этом втулки установлены с сопряжением сферических поверхностей между собой, а шайба расположена с обеспечением контакта с поверхностями модуля и второй втулки, причем шайба выполнена с внутренней резьбой, соответствующей резьбе болта, и снабжена сферическим выступом, а крепежное отверстие модуля выполнено с коническим пазом, который сопряжен с упомянутым выступом шайбы, при этом между головкой болта и фланцем опоры, обращенным к модулю, установлена сферическая шайба, а внутренняя поверхность головки болта, контактирующая с шайбой, выполнена с ответной сферической формой.



 

Похожие патенты:

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора.

Изобретение относится к области управляемого ядерного синтеза и может быть применено в системах для пневматической транспортировки тритийвоспроизводящих детекторов в канале наработки трития бланкета термоядерного реактора.

Изобретение относится к области термоядерной энергетики и может быть использовано при разработке и создании станций теплоснабжения и электростанций, использующих термоядерную энергию.

Изобретение относится к области управляемого синтеза и может быть применено в защитной части модуля бланкета термоядерного реактора. .

Изобретение относится к композициям, необратимо аккумулирующим газообразный водород, и может быть использована, например, для улавливания водорода, освобождаемого при радиолизе в блоках радиоактивных отходов.

Изобретение относится к конструкциям мишеней для получения термоядерных реакций в реакторах для ядерного синтеза. .

Изобретение относится к области физики плазмы. .

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы.

Изобретение относится к проблеме управляемого термоядерного синтеза и может найти применение в качестве сильноточного индукционного ускорителя предпочтительно положительно заряженных частиц и ионов, а также для создания пучка нейтронов.

Изобретение относится к катализаторам сжигания водорода. Описан катализатор сжигания водорода, включающий каталитически активный металл, нанесенный на носитель катализатора, образованный неорганическим оксидом, при этом носитель включает органический силан по меньшей мере с одной алкильной группой из трех или менее атомов углерода, путем замещения присоединенной к концу каждой из определенной части или ко всем гидроксильным группам на поверхности носителя; и каталитически активный металл нанесен на носитель катализатора, включающий присоединенный к нему органический силан. Описан способ получения указанного выше катализатора и его использование в сжигании водорода, в частности, в реакторе каталитического окисления, размещенном в установке извлечения трития. Технический результат - увеличение активности катализатора. 4 н. и 3 з.п. ф-лы, 2 ил., 5 табл., 5 пр.

Заявленное изобретение относится к средствам для осуществления термоядерного синтеза. Заявленное устройство включает замкнутую кольцевую (тороидальную) полость, где обеспечивается непрерывное взаимодействие встречных потоков ускоренных частиц и ионов. При этом предусмотрено наличие двух полых индукционных ускорителей в виде концентрических труб-стенок, выполненных из непроводящего материала, например жаропрочного стекла или керамики, композита, и образующих две полости, из которых одна, межстеночная, заполняется проводником второго рода (и распорками для обеспечения их геометрии), а вторая, полость внутренней трубы, используется в качестве плазменного реактора. Указанные стенки изогнуты в виде полуколец с удлиненными цилиндрическими концами, соединяемыми бандажами, сечения которых аналогичны сечениям стенок труб. Верхние части бандажей выполняют из металла и используют для соединения с конденсатором через разрядник и проводником второго рода, образуя последовательную цепь, а внутренние части, так же, как и стенки, выполнены из непроводящего материала. Техническим результатом является возможность оптимизации размеров устройства и процесса преобразования ядерной энергии. 1 з.п. ф-лы, 3 ил.

Изобретение относится к физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе, в радиационном материаловедении, для исследований в физике космической плазмы. В заявленном изобретении используется механизм неиндукционной генерации тороидального затравочного тока за счет нагрева ионов малой добавки, движущихся по потато орбитам, при помощи широкополосного генератора излучения на ионно-циклотронной частоте в конечной области близи магнитной оси установки. Техническим результатом является создание затравочного тока, необходимо для создания стационарного токамака-реактора. 1 з.п. ф-лы.

Изобретение относится к способам аварийного энергообеспечения собственных нужд АЭС. При полном обесточивании, пар, генерируемый в паропроизводящей установке за счет остаточного тепловыделения активной зоны реактора, направляется в дополнительную паротурбинную установку, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции в течение времени, необходимого для восстановления связи с энергосистемой или штатной работы станции. Дополнительная паротурбинная установка подключена к котлу-утилизатору и к устройству парораспределения перед цилиндром высокого давления основной турбины посредством трубопровода, пароводородный перегреватель соединен с системой для получения водорода и кислорода, оборудование, входящее в состав парогазовой установки, выведено за территорию площадки АЭС. Техническим результатом является обеспечение электроснабжения собственных нужд АЭС при полном обесточивании, с возможностью расхолаживания водоохлаждаемых реакторов, в штатном режиме за счет использования энергии остаточного тепловыделения активной зоны реактора и парогазовой установки, эффективно используемой для повышения маневренности энергоблока АЭС в эксплуатационных режимах. 1 ил.

Заявленная группа изобретений относится к средствам для исследований протекания реакций ядерного синтеза с участием ядер изотопов водорода. В заявленном изобретении предусмотрено образование металлического кристаллического тела (МКТ) его конденсацией из паров металла, внедрение в МКТ атомов изотопов водорода так, чтобы хотя бы часть атомов с ядрами водорода оказывалась на наименьшем возможном расстоянии друг от друга. При этом внедрение атомов изотопов водорода осуществляется одновременно с образованием самого МКТ конденсацией паров металла в среде газообразных изотопов водорода, а также слиянием металлических микрокристаллов, полученных конденсацией паров металла в среде газообразных изотопов водорода и их отжигом в среде газообразных изотопов водорода. Заявленное устройство содержит следующие узлы, соединенные газопроводящим трубопроводом с вентилями: источник газообразных изотопов водорода; реактор с возможностью испарения металла и конденсации паров металла в МКТ в среде газообразных изотопов водорода, средство регулирования давления газовой среды в источнике газообразных изотопов водорода и в реакторе; средства контроля давления данной газовой среды, а также средства регистрации продуктов ядерных реакций. Техническим результатом является создание условий для повышения интенсивности протекания ядерных реакций. 2 н. и 13 з.п. ф-лы, 10 ил.

Изобретение относится к области энергетики. В заявленном способе предусмотрено осуществление ядерной или термоядерной реакции путем подрыва заряда внутри массивного металлического тела, размещенного в прочном корпусе, при этом энергия взрыва превышает энергию теплоты для расплавления металлического тела, а теплота, образующаяся в теле от взрыва, утилизируется через прочный корпус. При этом по мере остывания тела взрывы в нем периодически повторяются, и каждый следующий взрыв осуществляется в этом теле после перехода его в твердое состояние. Энергия взрыва заряда может быть достаточна для превращения расплава тела в пар. Техническим результатом является возможность оптимизации габаритов используемого устройства. 1 з.п. ф-лы, 8 ил.

Изобретение относится к области ядерной энергетики и касается получения энергии за счет управляемой реакции синтеза легких ядер в высокотемпературной плазме с помощью установки типа «токамак». Реактор содержит тороидальную камеру с ядерным топливом, питающий генератор СВЧ, магнитные катушки, бланкет, защиту, систему подачи топлива и другие элементы. Для повышения стабильности плазменного шнура и времени его удержания при холодной настройке вдоль оси тороида устанавливают замкнутый проводник, который может быть выполненным из лития-6. Благодаря проводнику тороидальная камера для поля СВЧ становится коаксиальным резонатором с ТЕМ00n-типом колебаний. При повышении мощности СВЧ-генератора проводник испаряется, на его месте образуется плазменный шнур, не меняющий типа колебаний. Техническим результатом является возможность избежать срыва начавшейся термоядерной реакции. 1 ил.

Изобретение относится к области управляемого ядерного синтеза и может быть применено в устройствах для контроля нарабатываемого трития в бланкете термоядерного реактора. Устройство для контроля нарабатываемого трития содержит цилиндрический контейнер с торцевыми пробками, выполненный из малоактивируемого материала, в котором расположены с чередованием между собой капсулы с нейтронно-физическими детекторами и капсулы с тритийвоспроизводящим материалом. Капсулы выполнены из малоактивируемого материала и закрыты крышками из малоактивируемого материала. Капсулы с нейтронно-физическими детекторами размещены внутри капсул с тритийвоспроизводящим материалом. Крышкой для каждой капсулы, кроме последней капсулы с нейтронно-физическим детектором, является дно последующей капсулы. Крышкой для упомянутой последней капсулы служит торцевая пробка контейнера. Техническим результатом является уменьшение возмущения нейтронного потока при нахождении устройства для контроля в зоне воспроизводства трития за счет уменьшения объема устройства и количества конструкционного материала, используемого в нем. 1 ил.

Заявленное изобретение относится к области энергетических установок типа токомак и может быть использовано при создании и проектировании магнитных термоядерных установок с активной зоной в виде тора. В заявленном термоядерном реакторе активная зона выполнена в виде вихревого тора, при этом система охлаждения выполнена в виде проточно-испарительного теплообменника, имеющего также форму вихревого тора, эквидистантно расположенного относительно активной зоны. Часть магнитных ловушек размещена между витками вихревого тора. Техническим результатом является увеличение объема активной зоны, увеличение площади теплообмена, возможность создания условий для более эффективной стабилизации плазмы и предотвращения касания плазмы стенок активной зоны. 1 з.п. ф-лы, 10 ил.

Изобретение относится к области энергетики, в частности термоядерным взрывным устройствам. Термоядерное взрывное устройство (2), выполненное из металла, включает размещенную внутри него капсулу (1) из дейтерия или смеси дейтерия и трития и любого иного термоядерного топлива. При этом в общей конструкции термоядерного взрывного устройства имеется прямолинейный канал (3), проходящий через капсулу, в который по каналам (4) и (5) направляются предварительно ускоренные ядра дейтерия и трития, взаимодействие которых далее предусмотрено в капсуле. Прямолинейный канал может быть не сквозным через капсулу, имея в центре ее перегородку из материала самой капсулы. Техническим результатом является возможность оптимизации габаритов взрывного устройства. 1 з.п. ф-лы, 2 ил.
Наверх