Способ волочения провода контактного из меди и ее сплавов



Способ волочения провода контактного из меди и ее сплавов
Способ волочения провода контактного из меди и ее сплавов
Способ волочения провода контактного из меди и ее сплавов

 


Владельцы патента RU 2492010:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Магнитогорский государственный университет" (RU)

Изобретение предназначено для повышения качества провода контактного с площадью поперечного сечения от 65 до 150 мм2 при одновременном снижении энергозатрат на его изготовление. Способ включает формирование заготовки предчистовых размеров и готового профиля чистовых размеров. Создание условий возникновениия трения качения между поверхностями материала и инструмента и повышение равномерности распределения деформаций между ступенями деформации обеспечивается за счет того, что формирование профиля производят двухступенчатой деформацией в сдвоенном комплекте роликовых волок за один проход с суммарным относительным обжатием δΣ=21…37%. Первую ступень деформации заготовки 12 осуществляют в волоке 2 с трехроликовым калибром путем формирования на круглой заготовке 12 двух вогнутых и одной выпуклой поверхностей, а вторую степень деформации осуществляют с противонатяжением в волоке 6 с четырехроликовым калибром путем формирования чистовых размеров готового профиля. Причем в процессе волочения выбирают соотношение относительных деформаций первой и второй ступени из условия δ12=0,8…1,1. 3 ил., 1 табл.

 

Изобретение относится к обработке металлов давлением, в частности к волочению провода контактного из меди и ее сплавов с площадью поперечного сечения 65, 85, 100, 120, и 150 мм, и может быть использовано в метизной промышленности для изготовления фасонных профилей с вогнутыми и выпуклыми поверхностями.

Известен способ волочения фасонных профилей, включающий двухступенчатую деформацию круглой заготовки за один проход с получением чистовых размеров цилиндрической поверхности профиля в монолитной волоке первой ступени деформации и последующее получение диаметрально расположенных продольных пазов в роликовой волоке второй ступени деформации (а.с. СССР 1447463, В21С 1/00).

Недостатком данного способа является низкое качество изготавливаемого изделия, которое обусловлено использованием монолитной волоки при высокой степени деформации, определяемой рекомендуемым выбором распределения обжатий между двумя ступенями, на первой ступени формоизменения заготовки. При этом высокая степень деформации вызывает существенные нормальные и касательные напряжения, а неподвижные поверхности монолитных волок обусловливают значительные перемещения деформируемого металла относительно инструмента на поверхности контакта. Это приводит к появлению дефектов на поверхности готового изделия в виде задиров, затяжек и микротрещин, а также к снижению его физико-механических свойств. Кроме того, наличие сил трения скольжения на поверхности контакта деформируемого метала с поверхностью калибра монолитной волоки обусловливает значительные энергетические затраты.

Наиболее близким аналогом к заявляемому способу является способ волочения провода контактного из меди и ее сплавов из круглой заготовки путем формирования на ней предчистовых и чистовых размеров. При этом формоизменение круглой заготовки осуществляют постепенным формированием вогнутых и выпуклых поверхностей с предчистовыми и чистовыми размерами готового изделия за пять проходов с суммарной вытяжкой µ=2,74 и усредненном распределением вытяжки по проходам μ c p = 2.74 5 = 1,23 с обеспечением ориентации расположения профиля на промежуточных проходах (см. книгу Ерманок М.З., Ватрушин Л.С. Волочение цветных металлов и сплавов / Металлургия. 1988, с.136, рис.74).

Недостатком известного способа является низкое качество изделия из-за наличия на его поверхности дефектов в виде задиров, затяжек и микротрещин. Это происходит в результате того, что в очаге деформации на поверхности контакта деформируемого металла с инструментом возникают значительные усилия трения скольжения при высоких относительных перемещениях. Наибольших значений эти усилия достигают в области вогнутых поверхностей со значительными показателями локальных деформаций. При этом в области вогнутых поверхностей технологически сложно обеспечить стабильное наличие смазочных материалов на границе контакта деформируемого металла с инструментом. Кроме того, наличие значительных сил трения скольжения в каждом из пяти проходов волочения приводит к высоким энергетическим затратам.

Задача, решаемая изобретением, заключается в повышении качества изготавливаемого провода контактного из меди и ее сплавов при одновременном снижении энергетических затрат.

Технический результат, получаемый при решении поставленной задачи, выражается улучшении физико-механических свойств и предотвращении возникновения дефектов на поверхности готового изделия за счет замены условий трения скольжения на трение качение между поверхностями деформируемого металла изделия с инструментом, а также обеспечения равномерного распределения суммарной степени деформации между двумя ступенями одного прохода.

Поставленная задача решается тем, что в известном способе волочения провода контактного из меди и ее сплавов из круглой заготовки путем формирования на ней предчистовых и чистовых размеров согласно изобретению формирование предчистовых и чистовых размеров осуществляют двухступенчатой деформацией в сдвоенном комплекте роликовых волок за один проход с суммарным относительным обжатием δ=21…37%, причем первую ступень деформации осуществляют в волоке с трехроликовым калибром путем формирования на круглой заготовке предчистовых размеров двух вогнутых и одной выпуклой поверхностей, а вторую ступень деформации осуществляют с противонатяжением в волоке с четырехроликовым калибром путем формирования чистовых размеров готового профиля, причем соотношение относительных деформаций первой и второй ступени выбирают из условия δ12=0,8…1,1.

Сущность изобретения поясняется чертежами, где:

на фиг.1 приведена общая схема осуществления способа в линии волочения;

на фиг.2 - сечение А-А на фиг.1;

на фиг.3 - сечение Б-Б на фиг.1.

Заявляемый способ волочения провода контактного из меди и ее сплавов осуществляют в линии волочения, которая состоит из последовательно установленных: разматывающего устройства 1 (фиг.1), волоки 2 с трехроликовым калибром, образованным роликами 3, 4 и 5 (фиг.2), волоки 6 (фиг.1) с четырехроликовым калибром, образованным роликами 7, 8, 9 и 10 (фиг.3) и тянущего устройства 11 (фиг.1). На фиг.1 позицией 12 обозначена круглая заготовка, позицией 13 - промежуточный профиль грушевидной формы, позицией 14 - готовый профиль изделия.

Заявляемый способ осуществляется следующим образом. Круглую заготовку 12 (фиг.1) с разматывающего устройства 1 тянущим устройством 11 за счет прикладываемого усилия F протягивают через сдвоенный комплект роликовых волок 2 и 6 за один проход с суммарным относительным обжатием δ=21…37% и получают готовый профиль.

При этом на первой ступени из заготовки 12 (фиг.1) формируют промежуточный профиль 13 (фиг.1, 2) грушевидной формы путем протяжки заготовки 12 через трехроликовый калибр волоки 2 (фиг.1). Причем трехроликовый калибр сформирован двумя ломаными линиями деформирующих поверхностей верхних роликов 3 и 4 (фиг.2), расположенных симметрично относительно оси симметрии изготавливаемого профиля, и одной криволинейной линией нижнего ролика 5. Кроме того, на фиг.2 в плоскости трехроликового калибра волоки 2 (фиг.1) показана окружность диаметром d, соответствующим размеру круглой заготовки 12, так чтобы проекции площадей смещенных объемов всех роликов 3, 4, и 5 (фиг.2) волоки 2 были одинаковы. В результате протяжки заготовки 12 через такой калибр, с выбранным из условий заявляемых технологических параметров режимом обжатия δ1, формируют промежуточный профиль 13 (фиг.1, 2) грушевидной формы с предчистовыми размерами готового изделия.

Затем осуществляют вторую ступень деформации промежуточного профиля 13 (фиг.1, 2) в волоке 6 (фиг.1) с четырехроликовым калибром с противонатяжением, которое обеспечивается усилием волочения заготовки 13 на первой ступени деформации в роликовой волоке 2. При этом чистовые размеры вогнутых угловых поверхностей готового профиля 14 (фиг.1, 3) в волоке 6 (фиг.1) формируют боковые ролики 7 и 8 (фиг.3) с вертикальной осью вращения, а чистовые размеры верхней и нижней выпуклых радиальных поверхностей формируют ролики 9 и 10 соответственно с горизонтальной осью вращения.

Волока 2 с трехроликовым калибром и волока 6 с четырехроликовым калибром образуют сдвоенный комплект двухступенчатой схемы деформации профиля провода контактного 14 (фиг.1, 3) из круглой заготовки 12 за один проход волочения. При этом заявляемое суммарное относительное обжатие составляет δ=21…37%, а соотношение относительных деформаций первой и второй ступени составляет δ12=0,8…1,1.

Равномерное распределение суммарной деформации δ=21…37% между двумя ступенями с соотношением относительных обжатий δ12=0,8…1,1 и создаваемое противонатяжеие, обусловленное протягиванием круглой заготовки через трехроликовый калибр первой ступени, а также замена трения скольжения при волочении в известных монолитных волоках на трение качения, которое обеспечивается при волочении в сдвоенном комплекте роликовых волоках, позволяет повысить качество провода контактного из меди и ее сплавов.

Преимущество заявляемого способа обусловлено формированием калибров обеих ступеней деформации одного прохода волочения подвижными поверхностями роликов, что позволяет полностью заменить трение скольжение на трение качение между поверхностями контакта деформируемого металла с инструментом, а также уменьшить относительное перемещение и ее скорость между этими поверхностями. Особенно это важно для областей профиля провода контактного из меди и ее сплавов, имеющего вогнутые угловые поверхности с высокими показателями локальных деформаций, в которые затруднена подача технологической смазки при его волочении в монолитных волоках. Все это обеспечивает более благоприятные условия напряженно-деформированного состояния металла при формоизменении заготовки, а также устранение поверхностных дефектов в виде микротрещин и наплывов, что позволяет повысить физико-механические свойства готового изделия, такие как временное сопротивление при растяжении, относительное удлинение и число перегибов в плоскости симметрии профиля, а, кроме того, снизить энергетические затраты. При этом суммарное относительное обжатие δ=21…37% гарантирует получение профиля без нарушения его геометрии, которое может быть вызвано не заполнением калибра или его переполнением, а также повышение временного сопротивления растяжению за счет упрочнения металла.

Повышение качества готового изделия также обеспечивается двухступенчатой деформацией круглой заготовки в одном проходе сдвоенного комплекта роликовых волок за счет равномерного распределения суммарной деформации между ступенями деформации, определяемого соотношением δ12=0,8…1,1, и создания противонатяжения в четырехроликовом калибре второй ступени деформации, обусловленного усилием протягивания заготовки через калибр первой ступени. При этом противонатяжение обеспечивает более благоприятные условия формоизменения заготовки, особенно это относится к областям вогнутых угловых поверхностей со значительной локальной деформацией.

Таким образом заявляемый способ позволит повысить качество изготавливаемого провода контактного из меди и ее сплавов и одновременно снизить энергетические затраты на его изготовление.

Выбирать суммарную деформацию металла ниже 21% нецелесообразно, так как это приводит к нарушению требований стандарта по геометрическим параметрам готового изделия по максимальной ширине профиля. Принимать суммарную деформацию металла выше 37% также нецелесообразно ввиду переполнения калибра второй ступени сдвоенного прохода деформации металла, что приводит к появлению дефектов на поверхности готового изделия в виде «усов» и, как следствие, снижению физико-механических свойств.

Выбирать соотношение относительных деформаций металла первой и второй ступени меньше 0,8 нецелесообразно, так как за счет снижения усилия противонатяжения, создаваемого протягиванием круглой заготовки через калибр первой ступени, происходит переполнение калибра второй ступени, в результате чего появляются дефекты на поверхности готового изделия в виде «усов» и снижаются физико-механических свойства изделия. Принимать соотношение относительных деформаций металла первой и второй ступени больше 0,11 также нецелесообразно, так как в этом случае происходит увеличение усилия противонатяжения, что приводит к «утяжке» профиля готового изделия и соответственно к нарушению требований стандарта к геометрическим параметрам.

Для обоснования преимуществ заявляемого способа по сравнению с прототипом в лабораторных условиях было проведено 6 экспериментов с различными диаметрами круглой заготовки из технической меди с временным сопротивлением σB=300 МПа (эксперименты №1-5 по заявляемому способу; эксперимент №6 - по прототипу) при волочении провода контактного типа МФ с номинальной площадью поперечного сечения 100 мм2. Причем варьировалось различное соотношение относительных обжатий δ12 первой и второй ступени деформации. Результаты экспериментов приведены в таблице.

Как видно из результатов экспериментов, приведенных в таблице, изготовление провода контактного с площадью сечения 100 мм2 из медной заготовки круглого сечения по заявляемому способу в сравнении со способом по прототипу позволит улучшить качество готового изделия за счет повышения его физико-механических свойств, а именно повышение временного сопротивления при растяжении на 4,1-9,6%; относительного удлинения в 1,375-1,625 раза; число перегибов в плоскости оси симметрии до полного разрушения с 3 до 4-5 раз.

При этом дефектов в виде незаполнения калибра и «усов» на поверхности готового изделия в местах разъемов роликов из-за переполнения калибра обнаружено не было.

Изготавливать провод контактный из меди и ее сплавов по заявляемому способу с режимами деформации, выходящими за заявляемые значения, нецелесообразно, так как при этом наблюдается нарушение геометрии профиля, что снижает качество готового изделия.

Таблица
Результаты получения провода контактного типа МФ с площадью сечения 100 мм2
№ п/п Диаметр заготовки, мм Относительная суммарная деформация за проход, δ % Соотношение относительных деформаций, δ12 Физико-механические свойства
Временное сопротивление готового профиля, σв пр, МПа Относительное удлинение, % Число перегибов Дефекты
1 2 3 4 5 6 7 8
0,75
0,80 Нарушение
1 12,7 19,8 0,95 Не проверялись геометрии
1,1 профиля
1,12
0,75 Не проверялись Нарушение геометрии профиля
0,80 380 6,5 5 отсутствуют
2 13,0 21,0 0,95 380 6,5 5 отсутствуют
1,1 380 6,5 5 отсутствуют
1,12 Не проверялись Нарушение геометрии профиля
0,75 Не проверялись Нарушение геометрии профиля
0,80 390 6,0 5 отсутствуют
3 13,5 29,0 0,95 390 6,0 5 отсутствуют
1,1 390 6,0 5 отсутствуют
1,12 Не проверялись Нарушение геометрии профиля
0,75 Не проверялись Нарушение геометрии профиля
0,80 400 5,5 4 отсутствуют
4 14,0 37 0,95 400 5,5 4 отсутствуют
1,1 400 5,5 4 отсутствуют
1,12 Не проверялись Нарушение геометрии профиля
0,75
0,80 Нарушение
5 14,6 39,0 0,95 Не проверялись геометрии
1,1 профиля
1,12
6 14 - - 365 4,0 3 отсутствуют

Способ волочения контактного провода из меди и ее сплавов из круглой заготовки, включающий формирование заготовки предчистовых размеров и готового профиля чистовых размеров, отличающийся тем, что формирование профиля осуществляют двухступенчатой деформацией в сдвоенном комплекте роликовых волок за один проход с суммарным относительным обжатием δΣ=21…37%, при этом первую ступень деформации осуществляют в волоке с трехроликовым калибром путем формирования на круглой заготовке двух вогнутых и одной выпуклой поверхностей предчистовых размеров, а вторую ступень деформации осуществляют с противонатяжением в волоке с четырехроликовым калибром путем формирования готового профиля чистовых размеров при соотношении относительных деформаций на первой и второй ступени δ12=0,8…1,1.



 

Похожие патенты:
Изобретение относится к способам обработки металлов давлением, в частности к производству холодно-деформированных труб, и может быть использовано для производства прецизионных труб.

Изобретение относится к обработке металлов давлением и предназначено для производства биметаллических прутковых и проволочных изделий волочением. .

Изобретение относится к области металлургии, а именно к методам интенсивной проработки структуры металла пластической деформацией. .

Изобретение относится к обработке металлов давлением и может быть использовано в качестве промежуточного тягового устройства волочильной машины. .

Изобретение относится к оборудованию для производства проволоки веерным способом, т.е. .
Изобретение относится к обработке металлов давлением и предназначено для производства высокопрочной проволоки волочением для армирования железобетонных изделий.

Изобретение относится к области производства холоднотянутых профилей электротехнического назначения из следующих нетермоупрочняемых бронз: кадмиевой, магниевой, оловянной, серебряной и других.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении полуфабрикатов или прутков и проволоки с ультрамелкозернистой (УМЗ) структурой.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении полуфабрикатов или прутков и проволоки с ультрамелкозернистой (УМЗ) структурой.

Изобретение относится к области электротехнических материалов, а именно к производству изолированных проводов из фольги для изготовления обмоток с высоким коэффициентом заполнения по металлу.

Изобретение относится к обработке металлов давлением и предназначено для производства триметаллических прутковых и проволочных изделий волочением

Изобретение предназначено для повышения точности формы и размеров высокопрочной арматурной проволоки больших диаметров, производимой методом холодного волочения и термомеханической обработкой из высокоуглеродистой стали. Способ включает волочение круглой заготовки и нанесение на нее трехстороннего периодического профиля. Получение арматурной проволоки для предварительно напряженных железобетонных конструкций с сечением, максимально близким к кругу, обеспечивается за счет того, что волочение круглой заготовки до нанесения на ее поверхность периодического профиля осуществляют с суммарной степенью обжатия 55-61%, а нанесение периодического профиля на ее поверхность осуществляют путем придания сечению круглой заготовки формы стрельчатого треугольника гладкими роликами с вогнутой рабочей поверхностью радиусом, равным не менее 5 радиусов круглой заготовки, и последующего нанесения на выступы стрельчатого треугольника периодических вмятин профилирующими роликами с суммарной степенью обжатия в роликах с вогнутой поверхностью и профилирующих роликах, равной 5-8%, при этом расстояние между осями группы роликов с гладкой рабочей поверхностью и осями группы профилирующих роликов составляет 0,6-0,7 их диаметра. 3 ил., 1 пр.

Изобретение предназначено для уменьшения усилий при обработке давлением технически чистого алюминия. Снижение микротвердости материала заготовки обеспечивается за счет того, что перед волочением на заготовку воздействуют импульсным магнитным полем, индукция которого не превышает 0,7 Тл, создаваемым посредством установленного перед волокой индуктора, на который подают импульсы тока регламентированных параметров от источника токовых импульсов. 3 ил.

Изобретение предназначено для снижения себестоимости арматурной высокопрочной проволоки. Способ включает деформацию заготовки путем приложения тянущей силы с одновременным приложением дополнительной деформации сдвига вращением. Снижение затрат на производство проволоки с повышенными физико-механическими свойствами посредством повышения величины накопленной деформации обеспечивается за счет того, что величину деформации сдвига устанавливают регламентированным изменением величины угла подъема винтовой линии вращения, причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50°. 1 табл.

Изобретение предназначено для повышения физико-механических свойств арматурной высокопрочной проволоки преимущественно 9 группы диаметров (более 8,0 мм) при одновременном снижении затрат на ее производство. Способ включает волочение заготовки из высокоуглеродистой стали с сорбитизированной структурой и последующее ее профилирование. Исключение разрушения цементитных пластин структуры стали при сокращении количества протяжек, повышение значения временного сопротивления разрыву и условного предела текучести, относительного удлинения, релаксационной и коррозионной стойкости готовой проволоки обеспечивается за счет того, что перед профилированием заготовку подвергают двухпроходной радиальной деформации с равными вытяжками и одновременным приложением сдвиговой деформации знакопеременным пластическим кручением в противоположных направлениях в каждом проходе на регламентированную глубину распространения по сечению. 1 ил., 1 табл.

Изобретение предназначено для увеличения срока службы калиброванных валков, уменьшения количества перевалок, увеличения производительности устройства для производства холоднодеформируемых труб прокаткой и волочением. Способ изготовления труб включает холодную прокатку трубной заготовки в возвратно-поступательно перемещающейся рабочей клети с валками и калибрование трубы волочением. Изготовление труб различной длины из труднодеформируемых материалов при любых углах поворота трубы при холодной пильгерной прокатке с увеличенной подачей заготовки обеспечивается за счет того, что калибрование трубы волочением осуществляют синхронно с холодной прокаткой трубной заготовки возвратно-поступательным перемещением обоймы с вращающимся волокодержателем и волокой. Устройство содержит возвратно-поступательно перемещающуюся от привода рабочую клеть с валками, механизм подачи и поворота трубной заготовки и механизм калибрования трубы волочением. Механизм калибрования трубы волочением установлен непосредственно за рабочей клетью и выполнен в виде корпуса с направляющими и возвратно-поступательно перемещающейся от привода по направляющим обоймы с установленным внутри нее волокодержателем с волокой, имеющим возможность вращения. Привод перемещения обоймы механизма калибрования волочением выполнен в виде соединенного с обоймой соленоида и расположенной в корпусе катушки. 2 н. и 1 з.п ф-лы, 1 ил.

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки. Снижение напряжения волочения и энергоемкости процесса волочения обеспечивается за счет того, что используют волоку, угол наклона образующей рабочего канала к оси волочения которой регламентируют математической зависимостью, учитывающей влияние таких факторов как сопротивление деформации материала наружного слоя, напряжение противонатяжения, соотношение площадей сечения слоев и др., что позволяет повысить единичные обжатия и качество протягиваемых изделий.

Изобретение относится к волочильному и калибровочному производству. Многократный прямоточный волочильный стан для калибровки заготовок, включает раму, закрепленные на ней опорные патрубки, установленные на патрубках в подшипниках по меньшей мере два тяговых барабана с приводом от двигателя с понижающим редуктором и коробкой скоростей и установленные перед ними волочильные инструменты. Улучшение технологических параметров волочения в сочетании с возможностью изготовления и эксплуатации стана в условиях малого предприятия при низких затратах обеспечивается за счет того, что в качестве рамы использована рама автомобиля, а в качестве привода барабанов - связанные между собой детали, узлы и механизмы автомобильной трансмиссии, при этом в качестве понижающего редуктора использована главная передача трансмиссии автомобиля, 1-я и 2-я полуоси которой являются выходными валами понижающего редуктора, а коробка скоростей выполнена в виде коробки перемены передач автомобиля, при этом 1-й тяговый барабан соединен с 1-й полуосью, а 2-й тяговый барабан - со 2-й полуосью посредством шарниров, с возможностью передачи полуосями крутящего момента и с обеспечением равенства крутящих моментов на валах тяговых барабанов посредством дифференциального механизма трансмиссии автомобиля, причем между тяговыми барабанами установлен с возможностью свободного вращения обводной ролик, задающий траекторию проволоки от 1-го тягового барабана к волочильному инструменту, расположенному перед 2-м тяговым барабаном, элементы трансмиссии закреплены на раме сварными соединениями, а на опорных патрубках установлены опорные трубы для передачи технологических нагрузок от барабанов на раму. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области производства труб волочением на монолитной самоустанавливающейся оправке и может быть использована при изготовлении труб из различных материалов, предназначенных для машиностроения. Способ включает формирование головки на трубной заготовке, нанесение технологической смазки, установку и перемещение оправки в полости заготовки до основания головки и последующее волочение. Сокращение затрат на технологический инструмент, уменьшение трудоемкости и снижение количества брака обеспечивается за счет того, что перемещение оправки, при условии формирования головки холодной деформацией, осуществляют подачей сжатого воздуха давлением определенной величины или, при формировании головки как холодной, так и горячей деформацией - воздействием на оправку генератора импульсной нагрузки с обеспечением определенной начальной скорости движения оправки. 2 н. и 1 з.п. ф-лы.

Изобретение относится к области волочения винтовых профилей. Способ включает протягивание заготовок через ролики, установленные в теле волоки. Упрощение получения винтовых профилей и снижение энергозатрат за счет исключения принудительного вращения волоки обеспечивается тем, что формирование винтовых профилей осуществляют роликами, установленными в самовращающейся в подшипниках волоке под углом к продольной оси заготовки, регламентированным математической зависимостью, учитывающей площади поперечного сечения заготовки до волочения, поперечного сечения изделия с продольными бороздками и поперечного сечения винтового профиля, радиус и коэффициент трения в подшипнике и другие параметры. Способ позволяет получить винтовые профили без дополнительного приложения крутящего момента. 2 ил., 1 табл., 1 приложение.
Наверх