Способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией

Изобретение относится к металлургии. Способ включает отливку монокристаллической заготовки произвольной кристаллографической ориентации, ее травление на макроструктуру, определение ориентации заготовки как угла между ее геометрической осью и плоскостью выбранной кристаллографической ориентации, резку заготовки на затравки под найденным углом с расположением плоскости реза параллельно плоскости выбранной кристаллографической ориентации. Торец затравки травят на макроструктуру и наносят на него риски, соответствующие кристаллографическим ориентациям, лежащим в плоскости реза. Затравку устанавливают в затравочный карман литейной формы таким образом, чтобы торец затравки был расположен вдоль геометрической оси изделия. Кристаллографическую ориентацию изделия задают совмещением риски заданной кристаллографической ориентации с геометрической осью изделия. Достигается повышение стабильности процесса получения монокристаллических изделий, годных по структуре. 1 ил., 1 пр.

 

Изобретение относится к металлургии и может быть использовано при получении монокристаллических изделий из никелевых жаропрочных сплавов с применением затравок заданной кристаллографической ориентации, например, при литье монокристаллических рабочих и сопловых лопаток авиационных газотурбинных двигателей (ГТД) и газотурбинных стационарных установок (ГТУ).

Известен способ получения монокристаллических изделий из никелевых жаропрочных сплавов, в котором методом направленной кристаллизации получают монокристаллический пруток кристаллографической ориентации [001] длиной 20 см и диаметром 1,2 см. Пруток разрезают на части (затравки), травят для выявления дендритной структуры и определения кристаллографической ориентации методом Лауэ. Полученная затравка помещается в полость у основания формы для получения монокристаллической отливки с кристаллографической ориентацией [001], в верхней части которой имеется полость для кристаллизации второй затравки, используемой в следующей плавке. Расплавление затравки в процессе направленной кристаллизации строго контролируется. Первичная затравка получается методом отбора, в качестве кристаллоотборника применяется геликоид. Отклонение от кристаллографической ориентации получаемого монокристального изделия составляет 20°. Более точная ориентация достигается более точной ориентацией первичной затравки. (Патент США №4475582).

Известен способ получения монокристаллических изделий, в котором одновременно с отливкой монокристаллического изделия кристаллографической ориентации [001] получают затравку той же ориентации в одной литейной форме. В основание литейной формы устанавливается стартовая затравка, в форму производится заливка металла, который направленно кристаллизуют таким образом, что получаемые затравки имеют ту же кристаллографическую ориентацию, что и изделие. Получаемые затравки отрезаются от изделия и используются в качестве стартовых. (Патент США №7779889).

Недостатком известных способов является то, что их осуществляют в несколько этапов: сначала получают первичную (стартовую, маточную) затравку, затем методом направленной кристаллизации получают затравки с тем же отклонением от кристаллографической ориентации, то есть отливают монокристаллические затравки произвольной ориентации методом отбора одного кристалла из множества, затем наиболее близкую к заданной ориентации затравку используют в качестве маточной для получения методом направленной кристаллизации затравок заданной ориентации, которые используют для получения монокристаллических изделий заданной ориентации.

Точность кристаллографической ориентации получаемых затравок 10°, что не достаточно при современных требованиях к точности заданной кристаллографической ориентации монокристаллических изделий. К тому же кристаллографическая ориентация монокристаллической отливке передается от монокристаллической затравки путем частичного расплавления затравки заливаемым в форму расплавленным металлом, тем же, что и металл затравки, перемешиванием расплавленных металлов отливки и затравки, и ростом оставшегося в твердом состоянии монокристалла части затравки при последующей направленной кристаллизации. При этом, чем меньше длина затравки, тем труднее не расплавить ее полностью при осуществлении процесса направленной кристаллизации.

Известен также способ получения монокристаллических изделий с заданной кристаллографической ориентацией с использованием затравки из тугоплавкого сплава (сплава с температурой плавления выше температуры плавления сплава отливки). Применение тугоплавкой затравки из сплава системы никель-вольфрам, имеющего такую же кристаллическую гранецентрированную кубическую (ГЦК) решетку, что и сплав отливки, и температуру плавления много выше температуры плавления жаропрочного никелевого сплава позволяет стабилизировать процесс литья монокристаллических изделий из никелевых жаропрочных сплавов. (А.с. 839153).

Наиболее близким по технической сущности к заявляемому и принятому за прототип, является способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией, включающий отливку монокристаллической заготовки направленной кристаллизацией, травление заготовки на макроструктуру, резку, травление затравок на макроструктуру и определение ориентации, в котором монокристаллическую заготовку отливают с произвольной кристаллографической ориентацией, определяют положение плоскости с заданной кристаллографической ориентацией, составляющей максимальный угол с осью заготовки, отмечают след этой плоскости на торце заготовки, после чего проводят резку заготовки под найденным углом с расположением плоскости резания параллельно указанному положению плоскости с заданной кристаллографической ориентацией, полученную затравку помещают в затравочный карман литейной формы для получения монокристаллического изделия. (Патент РФ №1822375).

В способе-прототипе затравки из тугоплавкого сплава (Ni - 30% W) вырезают из затравочной заготовки произвольной ориентации под углом, определенным на дифрактометре ДРОН-3, как угол наклона плоскости заданной кристаллографической ориентации к оси затравочной заготовки, при этом точность кристаллографической ориентации составляет 1,5° - 2,0°. Кристаллографическая ориентация монокристаллическому изделию передается от затравки заданной кристаллографической ориентации за счет смачивания и растворения торца затравки расплавом отливки.

Недостатком способа-прототипа является то, что затравку определенной кристаллографической ориентации можно использовать для получения монокристаллического изделия только этой ориентации. При смене кристаллографической ориентации изделия на иную требуется другая затравка, т.е. все технологические операции следует повторить от самого начала до получения затравки с заданной кристаллографической ориентацией, что требует времени, трудозатрат и дополнительных материалов для отливки новых затравок. Кроме того, поскольку передающей кристаллографическую ориентацию является плоскость торца затравки, очень важно, чтобы место контакта затравка-расплав отливки, до заливки металла оставалось чистым и свободным от окислов, выделяемых из керамики форм в процессе осуществления плавки, которые ухудшают смачивание и растворение затравки и препятствуют прорастанию монокристалла.

Технической задачей изобретения является создание способа получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией, снижающего трудоемкость, металлоемкость и повышающего стабильность технологического процесса.

Для достижения поставленной технической задачи предложен способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией, включающий отливку монокристаллической заготовки затравки произвольной кристаллографической ориентации, травление заготовки на макроструктуру, определение ориентации заготовки как угла между геометрической осью заготовки и плоскостью выбранной кристаллографической ориентации, резку заготовки на затравки под найденным углом с расположением плоскости реза параллельно плоскости выбранной кристаллографической ориентации, травление торцов затравок для выявления макроструктуры, установку затравки в затравочный карман литейной формы для получения монокристаллических изделий, отличающийся тем, что на торец затравки наносят риски, соответствующие кристаллографическим ориентациям лежащим в плоскости реза, и устанавливают ее в затравочный карман литейной формы таким образом, чтобы торец затравки был расположен вдоль геометрической оси изделия, а кристаллографическую ориентацию изделия задают совмещением риски заданной кристаллографической ориентации с геометрической осью изделия.

Способ поясняется фиг.1. На фиг.1 показано монокристаллическое изделие 1 полученное с помощью затравки 2, на которую предварительно были нанесены риски 3 соответствующие кристаллографическим ориентациям, лежащим в плоскости торца 4 затравки с выбранной кристаллографической ориентацией.

Пример осуществления

Предлагаемый способ осуществляли при изготовлении монокристаллических отливок цилиндрической формы заданной кристаллографической ориентации из никелевых жаропрочных сплавов. Использовали затравки кристаллографической ориентации [011] из сплава Ni - 30% W с нанесенными на торец рисками соответствующими кристаллографическим ориентациям [001], [111], [112], [ОН]. Способ включал следующую последовательность операций:

1. Монокристаллические заготовки затравок произвольной ориентации отливали методом направленной кристаллизации на установке УВНК-9. Заготовки диаметром 6 мм и длиной 100 мм собирали в блоки по 18 штук по два блока в каждой плавке. Каждую заготовку травили в смеси плавиковой и азотной кислоты для выявления макроструктуры.

2. Монокристаллические заготовки размечали под вырезку на рентгеновском дифрактометре ДРОН-3 путем определения ориентации заготовки как угла между геометрической осью заготовки и плоскостью выбранной кристаллографической ориентации, для этого вывели в отражающее положение плоскость заданной кристаллографической ориентации [011], (угол 0-37°) и определили угол отклонения нормали к этой плоскости от оси заготовки. На торце заготовки отметили направление следа этой плоскости.

3. Резку заготовок на затравки проводили на отрезном станке с поворотным лимбом с помощью абразивного диска (толщиной 0,8-1,0 мм). Толщина затравок составляла 4-6 мм. Затем затравки травили на макроструктуру для выявления дендритов на их торце. Как показал выборочный рентгеновский контроль, ориентация затравок отклонялась от [011] в пределах 1,5-2°.

4. Затем затравки отправляли на повторный рентгеновский контроль на дифрактометр ДРОН-3. При этом путем вывода в отражающее положение плоскостей {001}, {012}, {011}, {113} определялись следы этих плоскостей на поверхности торца, соответствующие кристаллографическим ориентациям <001>, <111>, <112>, <011>, которые и отмечались на торце маркерами разных цветов. Аналогичную разметку можно проводить металлографическим методом по следам травления, выявляющим дендритную структуру на торце затравки.

5. Размеченные таким образом затравки использовали для получения монокристаллических отливок из двух никелевых жаропрочных сплавов ВЖМ5У и ВЖМ4. Для этого по стандартной технологии были изготовлены четыре литейные керамические формы для получения отливок цилиндрической формы диаметром 16 мм и длиной 180 мм, по 9 отливок в одной форме, с затравочным карманом, позволяющим устанавливать затравку вертикально, т.е. таким образом, чтобы торец затравки располагался вдоль геометрической оси отливки.

В первой форме девять затравок были установлены таким образом, что красная линия на торце затравки, соответствующая при разметке кристаллографической ориентации [001], совмещалась с геометрической осью отливки.

Во второй форме девять затравок были установлены таким образом, что синяя линия на торце затравки, соответствующая при разметке кристаллографической ориентации [112], совмещалась с геометрической осью отливки.

В третьей форме девять затравок были установлены таким образом, что черная линия на торце затравки, соответствующая при разметке кристаллографической ориентации [111], совмещалась с геометрической осью отливки.

В четвертой форме девять затравок были установлены таким образом, что зеленая линия на торце затравки, соответствующая при разметке кристаллографической ориентации [011], совмещалась с геометрической осью отливки.

6. Литейные формы заливали на установке УВНК-9 по две на одну заливку выбранного сплава: первая и вторая формы заливались сплавом ВЖМ5У, третья и четвертая формы сплавом ВЖМ4. Полученные отливки подвергали травлению с целью выявления структуры. Из залитых тридцати шести отливок тридцать четыре имели монокристаллическую структуру заданной кристаллографической ориентации.

Выход годных по структуре монокристаллических изделий заданной кристаллографической ориентации составил 95%.

Кроме того, поскольку плоскость затравки, передающая кристаллографическую ориентацию, располагается вдоль геометрической оси изделия, то при осуществлении процесса плавки место контакта затравка - отливка свободно от оседания окислов, выделяемых из керамики форм и препятствующих прорастанию монокристалла, что также повысит выход годных по структуре монокристаллических изделий и упростит технологический процесс.

Одновременно, в тех же условиях, для получения монокристаллических изделий кристаллографических ориентации [001], [111], [112], [011], был осуществлен способ-прототип. Для этого действия по п.п. 2, 3 и 5 повторяли четыре раза для получения затравок с кристаллографической ориентацией [001], [111], [112], [011] соответственно; действия по п.1 повторяли дважды из-за отсутствия в первой плавке таких монокристаллов произвольной ориентации, из которых возможно вырезать нужную ориентацию. Было собрано четыре литейных керамических формы с затравочным карманом для горизонтального расположения торца затравки и экранирующим место контакта расплав-затравка от налета. После заливки форм по п.6, полученные отливки подвергали травлению с целью выявления структуры. Из залитых тридцати шести отливок тридцать две имели монокристаллическую структуру заданной кристаллографической ориентации.

Выход годных по структуре монокристаллических изделий заданной кристаллографической ориентации составил 90%.

Таким образом, предлагаемый способ позволяет использовать затравки, полученные из одной затравочной заготовки произвольной ориентации, для получения монокристаллических изделий разных кристаллографических ориентации с точностью 1,5-2°, т.е. за счет использования универсальной затравки возможно получение монокристаллических изделий разных кристаллографических ориентации с высокой степенью точности.

Применение предлагаемого способа получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией, позволит снизить трудоемкость и металлоемкость процесса монокристаллического литья в 2-2,5 раза и приведет к повышению стабильности процесса.

Способ получения монокристаллических изделий из никелевых жаропрочных сплавов с заданной кристаллографической ориентацией, включающий отливку монокристаллической заготовки затравки произвольной кристаллографической ориентации, травление заготовки для выявления макроструктуры, определение ориентации заготовки как угла между геометрической осью заготовки и плоскостью выбранной кристаллографической ориентации, резку заготовки на затравки под найденным углом с расположением плоскости реза параллельно плоскости выбранной кристаллографической ориентации, травление торцов затравок для выявления макроструктуры, установку затравки в затравочный карман литейной формы для получения монокристаллических изделий, отличающийся тем, что на торец затравки наносят риски, соответствующие кристаллографическим ориентациям, лежащим в плоскости реза, и устанавливают ее в затравочный карман литейной формы таким образом, чтобы торец затравки был расположен вдоль геометрической оси изделия, а кристаллографическую ориентацию изделия задают совмещением риски заданной кристаллографической ориентации с геометрической осью изделия.



 

Похожие патенты:

Изобретение относится к области литья фасонных (разностенных, сложнопрофильных) отливок с использованием литейных форм. .

Изобретение относится к литейному производству и может быть использовано при изготовлении крупногабаритных длинномерных отливок для газотурбинных установок и двигателей из монокристаллических жаропрочных никелевых сплавов, работающих при температуре 1500°С.

Изобретение относится к области изготовления деталей, имеющих направленную кристаллографическую ориентацию. .

Изобретение относится к области металлургии, а именно к получению заготовок для последующей деформации из жаропрочных труднодеформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности сложнопрофильных дисков турбины, раскатных колец и др.

Изобретение относится к охлаждающей составной части литейной формы для заливки литейного материала из легких металлов. .

Изобретение относится к литейному производству и может быть использовано при производстве лопаток газотурбинных двигателей (ГТД) из жаропрочных сплавов. .

Изобретение относится к терморегулированию пресс-формы литьевой машины. .

Изобретение относится к литейному производству и может быть использовано при получении, например, турбинных лопаток, проставок, створок, деталей сопловых аппаратов и т.д., современных ГТД и ГТУ из никелевых жаропрочных сплавов.

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки.

Изобретение относится к литейному производству и может быть использовано для получения лопаток стационарных ГТД и ГТУ, створок и проставок реактивного сопла, дисковых заготовок

Изобретение относится к области литейного производства и может быть использовано для получения отливок ответственного назначения. Способ включает нанесение на поверхность литейной формы перед заливкой расплавленного металла защитно-разделительных покрытий различных составов. На нижнюю часть стенок литейной формы наносят покрытие, состоящее из ультрадисперсного порошка оксида магния 20-25 мас.% и индустриального масла 75-80 мас.% толщиной 0,1-0,2 мм. На среднюю часть стенок наносят покрытие, состоящее из ультрадисперсного порошка оксида циркония 20-25 мас.% и индустриального масла 75-80 мас.% толщиной 0,2-0,3 мм. На верхнюю часть стенки наносят покрытие, состоящее из ультрадисперсного порошка оксида циркония 20-25 мас.% и индустриального масла 75-80 мас.% толщиной 0,3-0,4 мм. Создаются условия для направленной кристаллизации металла, обеспечивается повышение прочностных свойств отливок. 1 ил., 1 пр.

Изобретение относится к литейному производству. Способ включает помещение сплава в литейную форму и окисление элемента сплава с формированием защитного слоя на поверхности отливки. Литейная форма имеет внутреннее покрытие, содержащее оксид хрома, оксид ниобия, оксид титана, оксид тантала, оксид кремния, циркон, оксид иттрия или их сочетания. Защитный слой формируют восстановлением одного или более составляющих внутреннего покрытия одним или более элементами сплава. Обеспечивается уменьшение образования поверхностных раковин в отливках. 9 з.п. ф-лы, 5 ил., 8 пр.

Изобретение относится к области литейного производства, в частности к производству сопловых и рабочих турбинных лопаток из никелевых жаропрочных сплавов. Устройство содержит керамическую форму, в которой выполнены последовательно расположенные по направлению кристаллизации затравочная полость с размещенной в ней монокристаллической затравкой, коническая стартовая полость, соединенная с полостью формы, образующей отливку, выполненной под углом к направлению кристаллизации отливки, литниковые ходы и прибыльная часть. В керамической форме также выполнены расположенная по направлению кристаллизации общая стартовая полость, соединенная с затравочной полостью, дополнительные конические стартовые полости и дополнительные полости формы, образующей отливку. Полости форм расположены параллельно друг над другом с наклоном ее вертикальной оси к направлению кристаллизации под углом 25-65°. Каждая коническая стартовая полость соединена с общей стартовой полостью, а каждая полость формы соединена по меньшей мере одним литниковым ходом с прибыльной частью керамической формы. Общая стартовая полость расположена вдоль направления кристаллизации. Обеспечивается повышение производительности технологического процесса и экономия металла при сохранении выхода годных монокристаллических отливок. 1 з.п. ф-лы, 2 ил.
Изобретение относится к литейному производству, в частности к получению отливок из жаропрочных сплавов для изготовления рабочих и сопловых лопаток газовых турбин. Керамическую форму с кристаллизующимся расплавом размещают на охлаждаемом поддоне в вакуумной установке и перемещают вертикально из зоны нагрева в зону охлаждения со скоростью 5-10 мм/мин. На расстоянии 52-70 мм от верхнего среза зоны охлаждения форму охлаждают потоками инертного газа при давлении газа в критическом сечении сопла 3-10 бар и остаточном давлении инертного газа в зоне охлаждения 100-300 мбар. При переходе формы из области кристаллизации расплава пера лопатки в область кристаллизации расплава хвостовика лопатки перемещение формы ведут со скоростью 5 мм/мин при давлении инертного газа в критическом сечении сопла до 7,5 бар. Обеспечивается отсутствие дефектов в отливке, в том числе области перехода от одной толщины отливки к другой.

Изобретение относится к литейному производству и может быть использовано для получения отливок направленной кристаллизацией из сталей и сплавов. Устройство содержит камеру нагрева 1, камеру охлаждения 2 и камеру 3 привода штока 38, образующие единую герметичную вакуумную камеру. В камере 3 привода штока размещены механизмы вертикального перемещения формы 23 и поворота поддона 43 вокруг вертикальной оси штока 38. Механизм поворота поддона 43 содержит поворотную трубу 42 с квадратным отверстием, расположенную с зазором в отверстии штока 38, квадратный вал 45, размещенный внутри трубы с зазором, и механизм поворота квадратного вала вокруг вертикальной оси, расположенный в нижней части вакуумной камеры 3 привода штока. В камере охлаждения 2 расположен узел охлаждения формы 23 с блоком подвижных отражательных экранов 32 и 34. Механизм фиксации формы в печи нагрева 1 выполнен в виде шлицевого диска 24, расположенного на охлаждаемом поддоне соосно с ним, и кольцевой шлицевой опоры 21, закрепленной в нижней части печи нагрева 1 и имеющей пазы с размерами, обеспечивающими взаимодействие с выступами шлицевого диска 24 при подъеме штока с формой в печь нагрева формы. Достигается расширение технологических возможностей устройства. 1 з.п. ф-лы, 6 ил.

Изобретение относится к литейному производству. Устройство содержит камеру плавления 1 с плавильно-заливочным блоком, размещенным на стойке 8, и заливочной воронкой 25, камеру 2 нагрева литейной формы 19 с индуктором 21, размещенным снаружи камеры, и камеру 10 загрузки литейной формы Камеры плавления и нагрева выполнены из цилиндрических кварцевых труб, между торцами которых расположена водоохлаждаемая металлическая проставка 3, имеющая отверстие для соединения с вакуумной системой. Плавильно-заливочный блок и опора заливочной воронки 25 размещены на проставке 3. Между камерой нагрева и камерой загрузки литейной формы расположен вакуумный затвор 9. Литейная форма установлена на штоке 14, оснащенном механизмом вертикального перемещения формы. Для подвода охлаждающего инертного газа к основанию литейной формы в штоке выполнено центральное отверстие. Обеспечивается повышение надежности работы устройства и качества отливок. 2 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к металлургии. Литая рабочая лопатка с монокристаллической структурой содержит перо, полку замка и замковую часть и состоит из двух фрагментов, соединенных зоной сплавления. Зона сплавления двух фрагментов высотой 5-30 мм размещена между полкой замка и замковой частью лопатки. Один фрагмент - замковая часть - выполнен из сплава с повышенной кратковременной прочностью, а другой фрагмент - перо лопатки и полка замка - из сплава с повышенной жаропрочностью. Разница температур полного растворения упрочняющей γ′- фазы двух жаропрочных сплавов TSOLγ′ составляет не более 20°C, а разница плотностей сплавов ~8%. Жаропрочный сплав на основе никеля для изготовления замковой части рабочей лопатки по изобретению содержит, мас. %: углерод 0,001-0,12; хром 6,5-9,8; кобальт 4,0-7,2; молибден 1,6-3,7; вольфрам 2,0-4,2; титан 3,0-4,5; алюминий 4,8-6,2; ниобий 0,08-0,22; марганец 0,002-0,12; кремний 0,005-0,2; никель остальное. Способ термообработки литой лопатки включает гомогенизирующий отжиг при температуре 1250±10°C в течение 2-3 часов с последующим охлаждением со скоростью 25-40°C/мин до температуры 690-710°C, последующий нагрев лопатки до температуры старения, выдержку в течение 16-24 часов и охлаждение со скоростью 20-40°C/мин до температуры 500°C, выдержку в течение 5-30 мин и охлаждение на воздухе. Обеспечивается повышение прочностных характеристик лопатки и надежности работы турбины. 3 н. и 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к системе терморегуляции форм для литья под давлением, форм для кокильного литья и других подобных устройств. Система содержит резервуар (11), в котором находится жидкая охлаждающая среда, в частности вода, первичный гидравлический контур (12) для циркуляции жидкой охлаждающей среды от резервуара (11) к форме и от формы в резервуар через теплообменник (SC). Для циркуляции газообразной среды в форме предусмотрен вторичный пневматический контур (13), соединенный с первичным гидравлическим контуром (12). Контур (13) предназначен для охлаждения формы попеременно жидкой и газообразной средой, или газообразной средой, смешанной с жидкой средой. Система содержит гидравлический контур (112) предварительного нагрева, интегрированный с первичным гидравлическим контуром (12) и предназначенный для производства и циркуляции горячей жидкой текучей среды для предварительного нагрева формы. Обеспечивается устранение парообразования в процессе предварительного нагрева форм. 7 з.п. ф-лы, 1 ил.
Заявленное изобретение относится к литейному производству. Керамическую форму обжигают при температуре от 800 до 1000°С в течение от 2 до 4 часов, охлаждают до температуры от 20 до 950°С и выдерживают при такой температуре в течение от 10 до 40 минут. Осуществляют заливку в указанную форму жидкого сплава, перегретого на от 50 до 200°С относительно исходной температуры плавления, и по прошествии от 10 до 100 секунд указанную форму погружают с постоянной или переменной скоростью в жидкую охлаждающую среду, представляющую собой 1-99% об. водный раствор жидкого полимера при температуре от 15 до 85°С. Обеспечивается получение отливок с качественной внешней поверхностью и высокой однородностью макро- и микроструктуры в поперечных сечениях стенок. 2 н. и 2 з.п. ф-лы, 5 пр.

Изобретение относится к металлургии

Наверх