Способ изготовления пиломатериалов

Изобретение относится к лесопильной промышленности и может быть использовано в способах изготовления пиломатериалов путем раскроя бревен и брусьев на пиломатериалы. Способ выполняют с учетом возможных потерь качества выпиленных пиломатериалов при их дальнейшей сушке в зависимости от упругой деформативности наружной пласти доски. Перед назначением схемы раскроя определяют упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, и величину допускаемого критерия упругой деформативности доски, на основании чего затем прогнозируют качество выпиленной доски после сушки. Прогнозирование качества сушки пиломатериалов может быть выполнено с помощью диаграммы, полученной с использованием первой математической модели либо с помощью компьютерной программы, основой для разработки которой является вторая математическая модель. Сокращаются потери сухих пиломатериалов из-за дефектов сушки. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к лесопильной промышленности и может быть использовано в способах изготовления пиломатериалов путем раскроя бревен и брусьев на пиломатериалы.

Известен ряд способов изготовления пиломатериалов путем раскроя сырья на пиломатериалы, предусматривающие повышение качества продукции лесопиления и максимальное использование древесного сырья за счет рационального подбора номинальных размеров выпиливаемых материалов и их расположения в поставе (схеме раскроя) в зависимости от диаметра распиливаемого бревна и назначения пилопродукции (Ю.Р. Бокшанин. Обработка и применение древесины лиственницы, М.: Лесная промышленность, 1973, с.82-102; В.Ф. Ветшева. Раскрой крупномерных бревен на пиломатериалы, М.: Лесная промышленность, 1976).

Известные способы направлены на обеспечение валовых, объемных показателей и приводят к получению разнотолщинных досок из-за отсутствия корректировки припуска на усушку для отдельных выпиливаемых досок.

Известен способ изготовления пиломатериалов путем раскроя бревна на пиломатериалы, обеспечивающий повышение качества пиломатериалов путем снижения их разнотолщинности за счет назначения при распиловке припуска на усушку по толщине в зависимости от положения доски относительно оси бревна (RU №2038945, опубл. 1995 г. - прототип).

Недостатком известного технического решения является низкая эффективность способа изготовления пиломатериалов из-за того, что не учитываются возможные потери выпиливаемых пиломатериалов (досок) при их последующей сушке, результатом чего является низкий выход изготовленных пиломатериалов требуемого качества.

Техническая задача изобретения - повышение эффективности способа изготовления пиломатериалов за счет выполнения на стадии раскроя бревна, а также бруса на пиломатериалы операции прогнозирования возможных потерь качества выпиленных пиломатериалов при их последующей сушке с учетом упругой деформативности наружной пласти выпиливаемой доски в зависимости от расположения доски в бревне.

Поставленная задача достигается тем, что способ изготовления пиломатериалов, включающий назначение схемы раскроя бревна и бруса, распиловку бревна на брус и пиломатериалы, а также распиловку бруса на пиломатериалы и операцию сушки выпиленных пиломатериалов, выполняют с учетом возможных потерь качества выпиленных пиломатериалов при их дальнейшей сушке в зависимости от упругой деформативности наружной пласти доски, при этом перед назначением схемы раскроя определяют упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, и величину допускаемого критерия упругой деформативности доски, на основании чего затем прогнозируют качество выпиленной доски после сушки.

Определение упругой деформативности доски и прогнозирование качества доски после сушки может быть выполнено по диаграмме, содержащей показатель упругой деформативности в зависимости от расстояния от оси бревна, а также бруса до наружной пласти доски и ее кромок для различных ширин доски и полученной с использованием следующей математической модели (первая математическая модель):

δ = 1 E x = α 2 x 4 + ( 3 α 2 ) x 2 b 2 2 + b 2 4 E t ( x 2 + b 2 2 ) 2 , где

δ - показатель упругой деформативности древесины поперек волокон в направлении наружной пласти доски,

Ex - модуль упругости древесины поперек волокон в направлении наружной пласти доски, МПа;

x - расстояние от середины пласти доски до исследуемой точки, мм;

α 2 = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);

Et, Er - модуль упругости древесины поперек волокон в тангенциальном и радиальном направлениях, МПа;

b2 - расстояние от оси бревна до наружной пласти доски, мм.

Прогнозирование качества доски после сушки может быть выполнено на основе допускаемого критерия величины упругой деформативности доски, заложенной в компьютерных программах и полученной с помощью следующей математической модели (вторая математическая модель):

α 2 ( a 1 + a 2 ) 4 + 4 ( 3 α 2 ) ( a 1 + a 2 ) 2 b 2 2 + 16 b 2 4 [ ( a 1 + a 2 ) 2 + 4 b 2 2 ] 2 α 2 a 1 4 + ( 3 α 2 ) a 1 2 b 2 2 + b 2 4 2 ( a 1 2 + b 2 2 ) 2 α 2 a 2 4 + ( 3 α 2 ) a 2 2 b 2 2 + b 2 4 2 ( a 2 2 + b 2 2 ) 2 0

где

α = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);

a 1, a 2 - координаты кромок доски, соответствующие расстояниям от оси;

b2 - расстояние от оси бревна до наружной пласти доски, мм.

Изобретение имеет следующие отличия от прототипа:

- способ выполняют с учетом возможных потерь из-за снижения качества выпиленных пиломатериалов при их дальнейшей сушке в зависимости от упругой деформативности наружной пласти доски;

- перед назначением схемы раскроя определяют упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, и величину допускаемого критерия упругой деформативности доски, на основании чего затем прогнозируют качество выпиленной доски после сушки;

- определение упругой деформативности доски и прогнозирование качества доски после сушки может быть выполнено по диаграмме, содержащей показатель упругой деформативности в зависимости от расстояния от оси бревна, а также бруса до наружной пласти доски и ее кромок для различных ширин доски и полученной с использованием следующей математической модели (первая математическая модель):

δ = 1 E x = α 2 x 4 + ( 3 α 2 ) x 2 b 2 2 + b 2 4 E t ( x 2 + b 2 2 ) 2 , где

δ - показатель упругой деформативности древесины поперек волокон в направлении наружной пласти доски;

Ex - модуль упругости древесины поперек волокон в направлении наружной пласти доски, МПа;

x - расстояние от середины пласти доски до исследуемой точки, мм;

α 2 = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);

Et, Er - модуль упругости древесины поперек волокон в тангенциальном и радиальном направлениях, МПа;

b2 - расстояние от оси бревна до наружной пласти доски, мм;

- прогнозирование качества доски после сушки может быть выполнено на основе допускаемого критерия величины упругой деформативности доски, заложенной в компьютерных программах и полученной с помощью следующей математической модели (вторая математическая модель):

α 2 ( a 1 + a 2 ) 4 + 4 ( 3 α 2 ) ( a 1 + a 2 ) 2 b 2 2 + 16 b 2 4 [ ( a 1 + a 2 ) 2 + 4 b 2 2 ] 2 α 2 a 1 4 + ( 3 α 2 ) a 1 2 b 2 2 + b 2 4 2 ( a 1 2 + b 2 2 ) 2 α 2 a 2 4 + ( 3 α 2 ) a 2 2 b 2 2 + b 2 4 2 ( a 2 2 + b 2 2 ) 2 0

где

α = E t E r - показатель анизотропии древесины (для большинства пород α2 0,5);

a 1, a 2 - координаты кромок доски, соответствующие расстояниям от оси;

b2 - расстояние от оси бревна до наружной пласти доски, мм.

Это позволит повысить эффективность способа изготовления пиломатериалов за счет выполнения на стадии раскроя бревна, а также бруса на пиломатериалы операции прогнозирования возможных потерь качества выпиленных пиломатериалов при их последующей сушке с учетом упругой деформативности наружной пласти выпиливаемой доски в зависимости от расположения доски в бревне.

В просмотренном нами патентно-информационном фонде не обнаружено аналогичных технических решений, а также технических решений, содержащих указанные признаки.

Изобретение применимо и будет использоваться в отрасли в 2012 г.

На фиг.1 изображен один из примеров расположения доски в бревне.

На фиг.2 изображена схема, показывающая изменение упругой деформативности по ширине досок, имеющих разное расположение в бревне.

На фиг.3 изображена схема, поясняющая расчет упругой деформативности по ширине пласти доски.

На фиг.4 изображена диаграмма для определения упругой деформативности наружной пласти доски в зависимости от расположения доски в бревне, полученная с использованием первой математической модели.

На фиг.5 показан фрагмент диаграммы для проверки досок по критерию деформативности.

Разработка заявленного технического решения проведена путем исследования упругой деформативности древесины поперек волокон по направлению ширины пласти доски. За показатель упругой деформативности принята величина обратная модулю упругости, определяющему напряженно-деформированное состояние доски при сушке.

δ = 1 E x = α 2 x 4 + ( 3 α 2 ) x 2 b 2 2 + b 2 4 E t ( x 2 + b 2 2 ) 2 , ( 1 )

δ - показатель упругой деформативности древесины поперек волокон в направлении наружной пласти доски;

Ex - модуль упругости древесины поперек волокон в направлении наружной пласти доски, МПа;

x - расстояние от середины пласти доски до исследуемой точки, мм;

α 2 = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);

Et, Er - модуль упругости древесины поперек волокон в тангенциальном и радиальном направлениях, МПа;

b2 - расстояние от оси бревна до наружной пласти доски, мм.

При проведении исследований рассматривалось расположение выпиливаемой доски относительно оси бревна в системе координат (фиг.1), где:

a 1, a 2 - координаты кромок доски, соответствующие, расстояниям от оси бревна до левой и правой кромок доски соответственно, мм;

b1 - координата внутренней пласти доски, соответствующая расстоянию от оси бревна до внутренней пласти доски, мм;

b2 - координата наружной пласти доски, соответствующая расстоянию от оси бревна до наружной пласти доски, мм;

точка 0 (начало координат) - геометрический центр сечения бревна, через который проходит продольная ось бревна, контур сечения которого показан в виде окружности с центром в точке 0.

Исследования показали, что увеличение упругой деформативности древесины посередине наружной пласти доски приведет к уменьшению растягивающих напряжений и исключит появление пластевых трещин и образование значительных остаточных напряжений при сушке. Учитывая, что древесина является анизотропным телом и упругая дефоративность изменяется по сечению бревна (1), при составлении схемы раскроя бревна можно выбрать для любой доски такое расположение на схеме, чтобы в средней зоне ее наружной пласти упругая деформативность была наибольшей (фиг.2).

В этом случае анизотропия древесины позитивно влияет на качество сушки досок, а график деформативности (фиг.3) должен быть обращен выпуклостью вверх, тогда BD≥0. Схема, представленная на фиг.3, поясняет расчет упругой деформативности по ширине пласти доски.

Отрезок BD (фиг.3) находят из следующего:

B D = B B 1 B 1 D . ( 2 )

Значение упругой деформативности посередине пласти доски при x = a 1 + a 2 2 вычисляют по формуле (1), где

x - расстояние от оси бревна до середины пласти доски, мм;

a 1, a 2 - координаты кромок доски, соответствующие расстояниям от оси бревна до левой и правой кромок доски соответственно, мм.

Отрезок B1D есть среднее значение упругой деформативности на кромках доски, которое также вычисляют по формуле (1), подставляя значения x=a 1, x=a 2.

Прогнозирование качества выпиленной доски после сушки может быть выполнено на основе величины допускаемого критерия упругой деформативности доски, полученной с помощью заложенной в компьютерных программах следующей математической модели.

Математическая модель для прогнозирования качества доски после сушки с учетом снижения потерь при сушке из-за пластевых трещин и остаточных напряжений в результате использования формул (1) и (2) и преобразований имеет вид:

α 2 ( a 1 + a 2 ) 4 + 4 ( 3 α 2 ) ( a 1 + a 2 ) 2 b 2 2 + 16 b 2 4 [ ( a 1 + a 2 ) 2 + 4 b 2 2 ] 2 α 2 a 1 4 + ( 3 α 2 ) a 1 2 b 2 2 + b 2 4 2 ( a 1 2 + b 2 2 ) 2 ( 3 ) α 2 a 2 4 + ( 3 α 2 ) a 2 2 b 2 2 + b 2 4 2 ( a 2 2 + b 2 2 ) 2 0

где

α = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);

a 1, a 2 - координаты кромок доски, соответствующие расстояниям от оси;

b2 - расстояние от оси бревна до наружной пласти доски, мм.

В формуле (3) напрямую постоянные упругости не содержатся, но присутствует их относительная величина α 2 = E t E r . Учитывая, что это отношение для большинства пород древесины примерно одинаковое и составляет величину около 0,5, можно с некоторым допущением считать, что формула (3) вполне приемлема в качестве математической модели, заложенной в компьютерных программах.

В результате исследований была также получена диаграмма для определения упругой деформативности наружной пласти доски в зависимости от расположения доски в бревне (фиг.4). Диаграмма содержит показатель упругой деформативности в зависимости от расстояния от оси бревна, а также бруса до наружной пласти доски и ее кромок для различных ширин досок.

Способ осуществляли следующим образом.

Пример 1

Перед назначением схемы раскроя бревна определяли упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, на основании чего прогнозировали качество предполагаемой выпиливаемой доски после ее сушки. Прогнозирование качества доски после сушки может быть выполнено на основе величины допускаемого критерия упругой деформативности доски, полученной с помощью второй математической модели (3), заложенной в компьютерных программах.

Например, для доски, имеющей на предполагаемой схеме раскроя бревна следующие координаты кромок и пластей:

a 1=0, a 2=150 мм, b1=130 мм, b2=170 мм.

При a 1=0 имеем из формулы (3):

a 2 4 + 20 b 2 2 a 2 2 + 32 b 2 4 ( a 2 2 + 4 b 2 2 ) 2 a 2 4 + 5 b 2 2 a 2 2 + 2 b 2 4 2 ( a 2 2 + b 2 2 ) 2 1 ( 4 )

150 4 + 20 * 170 2 * 150 2 + 32 * 170 4 ( 150 2 + 4 * 170 2 ) 2 150 4 + 5 * 150 2 * 170 2 + 2 * 170 4 2 ( 150 2 + 170 2 ) 2 = 1,0826 ( 5 )

Получено значение 1,0826>1, следовательно, снижения качества доски из-за коробления и растрескивания при сушке не произойдет.

После получения прогноза качества всех предполагаемых к выпиливанию досок после их сушки назначают соответствующую схему раскроя и осуществляют распиловку бревна на брус и пиломатериалы, а также распиловку бруса на пиломатериалы и операцию сушки выпиленных пиломатериалов.

Пример 2

Перед назначением схемы раскроя бревна определяли упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, на основании чего прогнозировали качество предполагаемой выпиливаемой доски после ее сушки. Прогнозирование качества доски после сушки может быть выполнено на основе величины допускаемого критерия упругой деформативности доски, полученной с помощью второй математической модели (3), заложенной в компьютерных программах.

Например, для доски, имеющей на предполагаемой схеме раскроя бревна следующие координаты кромок и пластей:

a 1=0, a 2=150 мм, b1=0 мм, b2=40 мм

150 4 + 20 * 40 2 * 150 2 + 32 * 40 4 ( 150 2 + 4 * 40 2 ) 2 150 4 + 5 * 150 2 * 40 2 + 2 * 40 4 2 ( 150 2 + 40 2 ) 2 = 0,971 ( 6 )

Поскольку 0,971>1, доска по критерию деформативности не проходит. При сушке возможно снижение качества из-за остаточных напряжений. Пластевой трещины не появится, поскольку прочность древесины при растяжении в радиальном направлении выше, чем в тангенциальном.

После получения прогноза качества всех предполагаемых к выпиливанию досок после их сушки назначают соответствующую схему раскроя и осуществляют распиловку бревна на брус и пиломатериалы, а также распиловку бруса на пиломатериалы и операцию сушки выпиленных пиломатериалов.

Пример 3

Перед назначением схемы раскроя бревна определяли упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также - бруса до ее наружной пласти и кромок, на основании чего прогнозировали качество предполагаемой выпиливаемой доски после ее сушки. Определение упругой деформативности доски и прогнозирование качества доски после сушки выполняли по диаграмме, содержащей показатель упругой деформативности в зависимости от расстояния от оси бревна, а также бруса до наружной пласти доски и ее кромок для различных ширин доски, и полученной с использованием первой математической модели (1).

Например, для доски, имеющей на предполагаемой схеме раскроя бревна следующие координаты кромок и пластей:

доска толщиной 30 мм, шириной 140 мм, с расстоянием от оси бревна до наружной пласти b2=80 мм, имеет координаты кромок: a 1=20 мм, a 2=160 мм.

Располагали на диаграмме деформативности (на фиг.5 представлен фрагмент диаграммы 2) шаблон, соответствующий сечению доски (шаблоны изготавливали в масштабе для любых сечений досок), и проецировали кромки доски на кривую (точки 1 и 2), построенную для координаты наружной пласти b2=80 мм. Соединяем точки 1 и 2 прямой линией. Диаграмма расположена над линией 1-2, что свидетельствует о хорошем качестве сушки этой доски. При соблюдении режима сушки будут отсутствовать пластевые трещины, в пределах допустимых значений будут остаточные напряжения.

Для радиальной доски (см. фиг.5) толщиной 20 мм, шириной 120 мм, при b1=0, b2=20 мм, a 1=80 мм, a 2=200 мм прогнозируются повышенные остаточные напряжения. Пластевые трещины не появятся из-за достаточной прочности древесины на растяжение в радиальной плоскости.

После получения прогноза качества всех предполагаемых к выпиливанию досок после их сушки назначают соответствующую схему раскроя и осуществляют распиловку бревна на брус и пиломатериалы, а также распиловку бруса на пиломатериалы и операцию сушки выпиленных пиломатериалов.

Предлагаемый способ изготовления пиломатериалов путем распиловки бревен на доски, а также брусьев на доски позволяет проводить экспресс-анализ качества сушки на стадии составления схем распиловки с целью сокращения потерь сухих пиломатериалов из-за дефектов сушки. Прогнозирование качества сушки пиломатериалов может быть выполнено с помощью диаграммы (фиг.4), полученной с использованием первой математической модели (1) либо с помощью компьютерной программы, основой для разработки которой является вторая математическая модель (3).

Таким образом, использование изобретения позволит повысить эффективность способа изготовления пиломатериалов за счет выполнения на стадии раскроя бревна, а также бруса на пиломатериалы операции прогнозирования возможных потерь качества выпиленных пиломатериалов при их последующей сушке с учетом упругой деформативности наружной пласти выпиливаемой доски в зависимости от расположения доски в бревне.

1. Способ изготовления пиломатериалов, включающий назначение схемы раскроя бревна, а также бруса, распиловку бревна на брус и пиломатериалы, а также распиловку бруса на пиломатериалы и операцию сушки выпиленных пиломатериалов, отличающийся тем, что способ выполняют с учетом возможных потерь качества выпиленных пиломатериалов при их дальнейшей сушке в зависимости от упругой деформативности наружной пласти доски, при этом перед назначением схемы раскроя определяют упругую деформативность для каждой доски в зависимости от расстояния от оси бревна, а также бруса до ее наружной пласти и кромок, и величину допускаемого критерия упругой деформативности доски, на основании чего затем прогнозируют качество выпиленной доски после сушки.

2. Способ изготовления пиломатериалов по п.1, отличающийся тем, что определение упругой деформативности доски и прогнозирование качества доски после сушки может быть выполнено по диаграмме, содержащей показатель упругой деформативности в зависимости от расстояния от оси бревна, а также бруса до наружной пласти доски и ее кромок для различных ширин доски, и полученной с использованием следующей математической модели (первая математическая модель):
δ = 1 E x = α 2 x 4 + ( 3 α 2 ) x 2 b 2 2 + b 2 4 E t ( x 2 + b 2 2 ) 2 ,
где δ - показатель упругой деформативности древесины поперек волокон в направлении наружной пласти доски;
Ex - модуль упругости древесины поперек волокон в направлении наружной пласти доски, МПа;
x - расстояние от середины пласти доски до исследуемой точки, мм;
α 2 = E t E r - показатель анизотропии древесины (для большинства пород α2≅0,5);
Et, Er - модуль упругости древесины поперек волокон в тангенциальном и радиальном направлениях, МПа;
b2 - расстояние от оси бревна до наружной пласти доски, мм.

3. Способ изготовления пиломатериалов по п.1, отличающийся тем, что прогнозирование качества доски после сушки может быть выполнено на основе величины допускаемого критерия упругой деформативности доски, заложенной в компьютерных программах и полученной с помощью следующей математической модели (вторая математическая модель):
α 2 ( a 1 + a 2 ) 4 + 4 ( 3 α 2 ) ( a 1 + a 2 ) 2 b 2 2 + 16 b 2 4 [ ( a 1 + a 2 ) 2 + 4 b 2 2 ] 2 α 2 a 1 4 + ( 3 α 2 ) a 1 2 b 2 2 + b 2 4 2 ( a 1 2 + b 2 2 ) 2 α 2 a 2 4 + ( 3 α 2 ) a 2 2 b 2 2 + b 2 4 2 ( a 2 2 + b 2 2 ) 2 0
где
α = E t E r - показатель анизотпропии древесины (для большинства пород α2≅0,5);
a1, а2 - координаты кромок доски, соответствующие расстояниям от оси;
b2 - расстояние от оси бревна до наружной пласти доски, мм.



 

Похожие патенты:

Изобретение относится к деревообрабатывающей промышленности, в частности к раскрою бревен и кряжей. .

Изобретение относится к лесопильной промышленности. .

Изобретение относится к направляющей шине для ручной машины и к направляющей системе, содержащей по меньшей мере две направляющие шины. .

Изобретение относится к деревообрабатывающей промышленности, в частности к производству плоских пластинчатых материалов, таких как пиломатериалы и строганый шпон, получаемых путем продольного раскроя круглых лесоматериалов.

Изобретение относится к оборудованию для лесопильно-деревообрабатывающего производства. .

Изобретение относится к переносному ручному приводному инструменту, такому как цепная пила с приводом от двигателя. .

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при продольной распиловке лесоматериалов. .

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при продольной распиловке лесоматериалов. .

Изобретение относится к строительной и деревообрабатывающей промышленности, в частности к способу изготовления сборных опорно-ограждающих элементов из тонкомерного сырья. Осуществляют оцилиндровку бревна, его фрезерование по внешней стороне для получения двухкантного бруса с одновременным нарезанием канавок для утеплителя. Затем путем пиления двухкантный брус разделяют на два опорно-ограждающих элемента, имеющих ширину, равную 1/3 и 2/3 ширины площадки двухкантного бруса. Затем элемент, имеющий меньшую ширину площадки, путем пиления делят на две равные по высоте части. Со стороны, противоположной площадке с канавкой, ближе к заболонной стороне, путем фрезерования делают канавки для утеплителя. Затем части разделенного элемента своими продольными плоскими площадками устанавливают на площадки целого элемента, совмещая свои канавки с канавками целого элемента, в которых закреплен шнуровой герметизатор, и все скрепляют шурупами, причем все составляющие устанавливаются своими заболонными поверхностями с одной стороны. Завершающим этапом является фрезерование всей собранной из частей поверхности с целью придания ей формы поверхности бревна. Повышается экономическая эффективность работы строительных и деревообрабатывающих предприятий. 4 з.п. ф-лы, 1 ил.

Изобретение относится к строительной и деревообрабатывающей промышленности, в частности к способу изготовления сборных опорно-ограждающих элементов из тонкомерного сырья. Осуществляют оцилиндровку бревна и фрезерование его по внешней стороне с целью придания отделочным материалам заданной формы с их одновременным отделением при помощи пиления. Затем на оставшемся двухкантном брусе фрезеруют канавки для утеплителя и отделяют онорно-ограждающие элементы сборного стенового бруса путем пиления. При этом опорным площадкам ограждающих элементов придают разную ширину, равную 1/3 и 2/3 ширины площадки двухкантного бруса. Затем элемент, имеющий меньшую ширину площадки, путем пиления разделяют на две равные по высоте части и со стороны, противоположной площадке с канавкой ближе к заболонной стороне, путем фрезерования делают канавки для утеплителя. Устанавливают части разделенного элемента своими плоскими площадками на площадки целого элемента, в канавках которого закреплен шнуровой герметизатор. Затем все скрепляют шурупами, причем все составляющие устанавливаются своими заболонными поверхностями с одной стороны. Придают опорно-ограждающему элементу форму поверхности бревна путем фрезерования. До проведения оцилиндровки производят окорку бревна путем снятия коры. Повышается экономическая эффективность работы строительных и деревообрабатывающих предприятий. 5 з.п. ф-лы, 1 ил.

Изобретение относится к конструкции электроинструментов. Электроинструмент содержит корпус электроинструмента и поворотную ручку, расположенную на корпусе электроинструмента с возможностью поворота. Поворотная ручка содержит корпус ручки, поворотно прикрепленный к корпусу электроинструмента, язычок, пружину язычка и фиксирующий механизм. Язычок прикреплен к корпусу ручки и выполнен с возможностью поворота между рабочим положением, выступающим из корпуса ручки, и положением хранения, фиксируемым в корпусе ручки и корпусе электроинструмента. Пружина язычка отклоняет язычок в рабочее положение. Фиксирующий механизм удерживает язычок в положении хранения, противодействуя давлению пружины язычка в случае, когда язычок перемещается в положение хранения. В результате улучшаются эксплуатационные качества ручки. 4 з.п. ф-лы, 16 ил.

Изобретение относится к вспомогательным устройствам для цепных пил и может быть использовано для поперечной распиловки лесоматериалов. Распилочный станок для ручной электрической цепной пилы содержит раму (1) с поперечинами (13, 14), столешницу (2) с прорезью (3), пильный механизм (8), кривошипный механизм, электрическую цепь питания (15) пильного механизма с выключателем (16). Кривошипный механизм состоит из держателя (4) кривошипа, оси (5) кривошипа, шипа (6) и крепежа (7). В качестве пильного механизма используется ручная цепная электрическая пила. Пила закреплена на кривошипном механизме с размещением цепи пильного механизма в прорези столешницы. На пускатель (10) пильного механизма установлен стопор (9). Первый амортизатор (11) соединен с одной стороны с первой поперечной рамой и рукояткой ручной цепной электрической пилы с другой. Второй амортизатор (12) соединен с одной стороны со второй поперечной рамой и рукояткой ручной цепной электрической пилы с другой. Один из амортизаторов, обладающий большей натяжной силой, устанавливается со стороны поперечины с возможностью создания острого угла между цепью электрической пилы и распиливаемым объектом (17). Повышается удобство в работе с ручной цепной электрической пилой. 3 ил.

Изобретение относится к лесопильной промышленности. Регулируют скорость подачи и скорость резания. Обеспечивают постоянство подачи на зуб. Задают среднюю скорость резания ленточнопильного станка и при этой скорости резания рассчитывают скорость подачи с ограничением по точности пиления в зависимости от высоты пропила с учетом параметров станка и пилы. Приравнивают скорость подачи с ограничением по шероховатости поверхности пиломатериалов к рассчитанной скорости подачи с ограничением по точности пиления. Рассчитывают уточненное значение скорости резания и уточняют скорость подачи при уточненной скорости резания. Повышается производительность ленточнопильного станка и качество получаемых пиломатериалов.

Изобретение относится к моторизованному инструменту, в частности, к цепной пиле, у которой пильная цепь приводится в движение с помощью компактного двигателя. Цепная пила содержит двигатель, имеющий картер, прикрепленный к картеру цилиндр и поршень, установленный с возможностью возвратно-поступательного движения в цилиндре. Корпус цепной пилы, в котором размещен двигатель, выполнен в виде цельной детали, имеющей боковую, верхнюю и нижнюю поверхности. Двигатель вставлен в корпус со стороны, противоположной боковой поверхности. Также цепная пила содержит направляющую шину, прикрепленную к корпусу со стороны его боковой поверхности и охватываемую пильной цепью с возможностью привода пильной цепи в движение от двигателя. Двигатель расположен в корпусе таким образом, что коленчатый вал двигателя проходит через боковую поверхность корпуса. Двигатель имеет две поверхности, по существу параллельные осевому направлению коленчатого вала, закрытые верхней и нижней поверхностями корпуса и прикрепленные к ним. Двигатель прикреплен к боковой поверхности корпуса посредством фиксирующего элемента со стороны крепления к корпусу направляющей шины, причем место крепления двигателя находится, в продольном направлении направляющей шины, между местом крепления направляющей шины к корпусу и коленчатым валом. Уменьшаются массогабаритные показатели и улучшаются вибрационные характеристики цепной пилы. 7 з. п. ф-лы, 25 ил.

Направляемый вручную рабочий инструмент имеет, по меньшей мере, один рабочий орган, который приводится в действие двигателем внутреннего сгорания. Двигатель внутреннего сгорания имеет картер, образованный, по меньшей мере, частично поддоном картера. Рабочий инструмент имеет деталь корпуса из пластмассы. Поддон картера состоит из металла и встроен в деталь корпуса рабочего инструмента. Двигатель внутреннего сгорания имеет устройство зажигания, которое включает в себя модуль зажигания. Модуль зажигания установлен непосредственно на металлическом поддоне картера и имеет электрический контакт с ним. При изготовлении рабочего инструмента на поддоне картера устанавливают, по меньшей мере, один элемент крепления для крепления суппорта рабочего органа до того, как поддон картера заливают материалом детали корпуса. Упрощается конструкция рабочего инструмента. 2 н. и 18 з. п. ф-лы, 14 ил.

Изобретение относится к защитному устройству для портативного инструмента, в частности, для цепных пил с тепловым двигателем. Защитное устройство содержит по меньшей мере один электронный акселерометр, позволяющий измерять ускорение по меньшей мере в одной плоскости или по одной оси. Выходы акселерометра соединены с электрическим и/или электронным средством контроля, которое является электрической и/или электронной схемой управления. Схема и акселерометр запитываются электрическим напряжением от известного генератора электрического тока, приводимого в действие тепловым двигателем. Электрическая или электронная схема управления выполнена с возможностью обработки аналоговых или цифровых электрических данных от акселерометра и с возможностью приведения в действие средства, обеспечивающего практически мгновенное прекращение работы упомянутого теплового двигателя. Средство, позволяющее воздействовать на электронный блок зажигания, является системой, позволяющей воздействовать на программируемое опережение зажигания теплового двигателя для его остановки. В результате возникает момент, обратный нормальному рабочему моменту, действующий как высокомощный тормоз, вызывающий мгновенную остановку двигателя посредством электронной схемы, действующей на электронный блок зажигания или включенной непосредственно в упомянутый электронный блок зажигания. Снижается вес устройства. 2 н. и 3 з. п. ф-лы, 6 ил.

Изобретение относится к деревообрабатывающей промышленности, в частности к изготовлению опорно-ограждающих элементов стенового бруса из тонкомерного древесного сырья. Осуществляют оцилиндровку бревна и фрезерование его по внешней стороне с целью придания отделочным материалам заданной формы с их одновременным отделением при помощи пиления. Затем на оставшемся двухкантном брусе фрезеруют канавки для утеплителя и отделяют опорно-ограждающие элементы сборного стенового бруса путем пиления. Опорные площадки ограждающих элементов имеют разную ширину, равную 1/3 и 2/3 ширины площадки двухкантного бруса. Элемент с шириной площадки, равной 1/3 ширины площадки двухкантного бруса, путем пиления разделяют на две равные по высоте части. На полученных частях разделенного элемента со стороны, противоположной площадке с канавкой, ближе к заболонной стороне делают путем фрезерования канавки для утеплителя в виде шнурового герметизатора. Элемент с шириной площадки, равной 2/3 ширины площадки двухкантного бруса, путем пиления разделяют на две части, равные 1/3 ширины площадки двухкантного бруса, одна из которых аналогична ограждающему элементу шириной 1/3 ширины площадки бруса, а вторая является обрезным пиломатериалом. На место отделенного обрезного пиломатериала устанавливают пиломатериал аналогичного поперечного сечения, но другой породы, и скрепляют с ограждающим элементом шурупами. Повышается выход деловой древесины. 8 з.п. ф-лы, 1 ил.

Изобретение относится к деревообрабатывающей промышленности, в частности к изготовлению опорно-ограждающих элементов стенового бруса из тонкомерного древесного сырья. Осуществляют оцилиндровку бревна, фрезерование его по внешней стороне с целью придания отделочным материалам заданной формы с их одновременным отделением при помощи пиления. Затем на оставшемся двухкантном брусе фрезеруют канавки для утеплителя и отделяют опорно-ограждающие элементы сборного стенового бруса путем пиления. Опорные площадки ограждающих элементов имеют ширину, равную 1/3 ширины площадки двухкантного бруса. Одновременно с получением опорно-ограждающих элементов путем пиления получают из срединной части двухкантного бруса обрезной пиломатериал радиального напила толщиной, равной 1/3 ширины площадки двухкантного бруса. Один из двух элементов с шириной площадки, равной 1/3 ширины площадки двухкантного бруса, путем пиления разделяют на две равные по высоте части. На полученных частях разделенного элемента со стороны, противоположной площадке с канавкой, ближе к заболонной стороне делают путем фрезерования канавки для утеплителя в виде шнурового герметизатора. Каждый второй целый элемент скрепляют своей широкой стороной с пиломатериалом аналогичного поперечного сечения отделенному при пилении двухкантного бруса, но другой породы, посредством шурупов. Повышается выход деловой древесины. 8 з.п. ф-лы, 1 ил.
Наверх