Способ управления движением судна с компенсацией медленно меняющихся возмущений



Способ управления движением судна с компенсацией медленно меняющихся возмущений

 


Владельцы патента RU 2492105:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к области судовождения - автоматическому управлению движением судна по заданному направлению. Способ управления движением судна с компенсацией медленно меняющихся возмущений использует задатчик курсового угла, приемник спутниковой навигационной системы, рулевой привод, электронную модель движения судна, регулятор-сумматор и интегратор. На входе регулятора-сумматора формируют сигналы заданного угла курса - ϕзд.=f(t) из задатчика курсового угла, оценку угла курса - φ _ с выхода электронной модели движения судна, К 2 d / d t φ _ , производной от оценки угла курса, которая формируется в блоке регулятора-сумматора. На входе электронной модели движения судна формируют сигнал угла перекладки руля δ от датчика рулевого привода, сигнал невязки - К ( ϕ ϕ _ ) , где сигнал угла курса ϕ формируется с приемника спутниковой навигационной системы, а сигнал оценки угла курса φ _ формируется с выхода электронной модели движения судна. На входе интегратора формируется сигнал невязки - К ( φ φ _ ) . Сигнал с выхода интегратора К и ( φ ϕ _ ) d t вводится на вход регулятора-сумматора. На выходе регулятора-сумматора формируется сигнал δ з д = К 1 ( ϕ _ ϕ з д . ) + К 2 d / d t ϕ _ + К и ( φ ϕ _ ) d t , который вводится с выхода регулятора-сумматора на вход рулевого привода. Достигается повышение точности управления движением судна по заданной траектории, исключается смещение по углу курса при наличии медленно меняющихся возмущений. 1 ил.

 

Изобретение относится к области судовождения - автоматическому управлению движением судна по заданному направлению.

Известен способ автоматического управления движением судна по заданному курсовому углу, реализованный в «Системе автоматического управления движением судна» (патент России №2248914, БИ №9, март 2005 г.). Способ управления движением судна основан на использовании информации от приемника спутниковой навигационной системы, задатчика путевого угла, и регулятора-сумматора, в котором по сигналам: текущего путевого угла, заданного курсового угла, угловой скорости судна формируется результирующий сигнал для управления рулевым приводом судна.

Известен также способ автоматического управления движением корабля с использованием динамической модели углового движения корабля (см. патент RU №2223197, БИ №4, 2004 г., принятый нами в качестве прототипа). Аппаратура автоматического управления движением судна, содержащая задатчик курсового угла, датчик угла перекладки руля, приемник спутниковой навигационной системы, рулевой привод, дифференциатор и сумматор, первый вход которого соединен с выходом задатчика курсового угла, выход приемника СНС соединен с вторым входом сумматора, к третьему входу которого подключен выход датчика угла перекладки руля, выход сумматора соединен с входом рулевого привода, четвертый вход сумматора соединен с выходом динамической модели углового движения судна. На выходе динамической модели движения судна формируется оценка угла курса. Сигнал оценки угла курса алгебраически суммируется с сигналом угла курса, с выхода приемника СНС. Разность этих сигналов вводится на вход динамической модели движения судна.

Таким образом, в широко распространенном способе управления движения судна, формируются следующие сигналы для обеспечения автоматического управления движением судна.

В задатчике курсового угла формируется сигнал заданного угла курса - ϕзд.=f(t), который вводится на вход сумматора, на второй вход которого поступает сигнал оценки угла курса - φ _ . Сигнал оценки φ _ вводится с выхода электронной (динамической) модели движения судна. Для формирования сигнала оценки угла курса на вход электронной модели движения корабля вводится сигнал угла перекладки руля - δ от датчика рулевого привода, сигнал измеренного угла курса - ϕ и сигнал оценки угла курса - φ _ (с выхода электронной модели движения корабля) в виде невязки - ( φ φ ) _ .

Таким образом на выходе сумматора-регулятора формируется сигнал заданного значения угла перекладки руля - δзд.:

δ з д = К 1 ( φ _ φ з д . ) + К 2 d / d t φ _                                                                 ( 1 ) .

где

ϕзд. - сигнал заданного курса, с задатчика курсового угла,

φ _ - сигнал оценки угла курса, с выхода электронной модели движения судна,

δзд. - сигнал заданного значения угла перекладки руля (с выхода сумматора вводится на вход рулевого привода).

Недостатками известных способов управления движением являются:

- при появлении медленно меняющихся внешних возмущений, воздействующих на судно в процессе плавания, формируется смещение (ошибка) в управлении судном по курсу,

- сложность прохождения судном в автоматическом режиме управления узкостей и возможных преград.

Приведенный ниже способ управления лишен этих недостатков.

Техническим результатом предлагаемого способа управления движением судна является:

- восстановление (выработка в блоке интегрирования оценок) медленно меняющихся внешних возмущений по силе - Р и моменту - М, воздействующих на судно в процессе плавания,

- введение сигнала восстановленных внешних возмущений по Р и М в систему автоматического управления движением корабля, что позволило повысить точность управления движения судна по заданной траектории(исключить смещение (ошибку) по углу курса при наличии медленно меняющихся внешних возмущений).

Технический результат достигается при использовании:

- интегратора, на выходе которого формируется сигнал пропорциональный внешним возмущениям, действующим на корабль,

- сигнала курсового угла - ϕ и оценки курсового угла φ _ (для формирования невязки - ( φ φ _ ) ) , которую подключают к входу интегратора,

- сигнала, сформированного на выходе интегратора - К ( ϕ φ _ ) d t , вводимого в регулятор-сумматор.

Рассмотрим, как формируется управление с использованием предложенного способа.

Предлагаемый способ управления использует:

задатчик курсового угла - ϕзд., приемник спутниковой навигационной системы (СНС), рулевой привод, электронную модель движения судна, рулевой привод и регулятор-сумматор.

В задатчике курсового угла сформирован сигнал - ϕзд.=f(t), который поступает на вход регулятора-сумматора, на второй вход которого поступает сигнал оценки угла курса - φ _ . Сигнал оценки - φ _ формируется на выходе электронной модели движения судна. Для формирования оценки сигнала угла курса на вход электронной модели движения судна вводится сигнал угла перекладки руля δ от датчика рулевого привода, и сигнал невязки- К ( φ φ _ ) (К - вычисляется с использованием метода Калмановской фильтрации, формируемой с использованием оценки сигнала угла курса φ _ - с выхода электронной модели движения судна и сигнала угла курса ϕ - с выхода приемника СНС. Таким образом на выходе регулятора-сумматора формируется сигнал заданного значения угла перекладки руля - δзд.:

δ з д = К 1 ( φ _ φ з д . ) + К 2 d / d t φ _                                                                            ( 1 ) .

где

ϕзд. - заданный курс, с задатчика курсового угла,

φ _ - сигнал оценки угла курса, с выхода электронной модели движения судна,

δзд. - сигнал с выхода регулятора-сумматора,

( φ φ _ ) - сигнал невязки, (эта невязка вводится также на вход электронной модели движения судна для формирования на выходе оценка угла курса φ _ ),

d / d t φ _ - сигнал дифференцирования формируется в регуляторе-сумматоре.

Для повышения точности автоматического управления движением судна используют интегратор, на вход которого вводится сигнал невязки - ( φ φ _ ) .

Сигнал, сформированный на выходе интегратора - К и ( ϕ φ _ ) d t вводят на вход регулятора-сумматора. (Ки - формируется по методу Калмана.)

При этом закон управления рулевым приводом (1) изменится и примет вид (1а):

δ з д = К 1 ( φ _ φ з д . ) + К 2 d / d t φ _ + К и ( ϕ φ _ ) d t                                                  ( 1 а ) .

Сигнал δзд. с выхода регулятора-сумматора (в соответствии с зависимостью (1а) вводят на вход рулевого привода.

Сформированное автоматическое управление движением - (1а) позволит исключить смещение (ошибку) при движении по заданному углу курса - ϕзд. (в случае наличия медленно меняющихся внешних возмущений).

Рассмотрим вариант системы автоматического управления движением судна (в котором реализован предлагаемый способ управления).

На чертеже приведена блок-схема системы управления движением судна, в которой устраняются ошибки в автоматическом управлении движением по заданному курсу ϕзд. при появлении медленно меняющихся внешних возмущений вида (описываемых, см. литературу в приложении, к материалам изобретения [1]):

dР/dt=ξр, d М / d t = ξ м .                                                                               ( 2 ) .

где ξ, ξм - случайный сигнал, характеризующий изменение в медленно меняющемся входном возмущении.

Ошибка в управлении движением судна от воздействия медленно меняющихся возмущающих сил - Р и моментов - М вида (2) устраняется благодаря введению в закон управления (1) дополнительного сигнала вида- К и ( ϕ φ _ ) d t с выхода интегратора - 3 (т.е. переходу от закона (1) к закону управления (1а)).

Система содержит 1 - задатчик курсового угла - ϕзд., 2 - приемник спутниковой навигационной системы (СНС), 3 - интегратор, 4 - регулятор-сумматор, 5 - рулевой привод, 6 - электронную модель движения судна, 7 - объект управления - судно.

Реализовать рассматриваемую систему можно как с использованием цифровой элементной базы, так и аналоговой. При использовании аналоговой элементной базы можно применить усилители типа УД-6 и УД-8 (Блоки 1, 4, 7). Интегратор - 3 выбирается с чувствительностью не ниже 0.03° курса. Блоки 2,5 - это штатные (корабельные) устройства.

Рассмотрим работу системы автоматического управления движением судна.

В задатчике курсового угла - 1 сформирован сигнал- ϕзд.=f (t), который вводится на вход регулятора-сумматора - 4, на второй вход которого поступает сигнал оценки текущего угла курса - φ _ . Сигнал оценки - φ _ вводится с выхода электронной модели движения судна - 6. Для формирования оценки угла курса на вход электронной модели движения корабля - 6 вводится сигнал угла перекладки руля - δ - от датчика рулевого привода - 5, и сигнал невязки - ( φ φ _ ) (крутизна сигнала вычисляется с использованием метода Калмановской фильтрации, формируемой сигналом - φ _ с выхода электронной модели движения судна - 6 и сигналом - ϕ с выхода приемника СНС-2.

При этом на выходе регулятора-сумматора - 4 формируется сигнал заданного значения угла перекладки руля - δзд.:

δ з д = К 1 ( φ _ φ з д . ) + К 2 d / d t φ _                                                                          ( 1 ) .

где

φ _ - оценка угла курса (с выхода электронной модели движения судна - 6),

ϕзд. - заданный угол курса (с выхода задатчика курса - 1).

Закон (1) получил широкое распространение, однако при появлении внешних возмущений (волнение, ветер) движение судна осуществляется с ошибкой по курсу. Для компенсации воздействия на судно медленно меняющихся внешних возмущений, в соответствии с предложенным способом, закон (1) дополняется сигналом с выхода интеграла - 3, на вход которого вводится сигнал невязки ( φ φ _ ) :

δ з д = К 1 ( φ _ φ з д . ) + К 2 d / d t φ _ + К и ( ϕ φ _ ) d t                                                      ( 1 а )

где ϕ - сигнал угла курса (поступающий с выхода приемника СНС-2), сигнал ϕ алгебраически суммируется с сигналом оценки угла курса - φ _ (вырабатываемой на выходе электронной модели движения судна - 6) для формирования сигнала невязки - ( φ φ _ ) ) ,

К2d/dtϕ - сигнал, формируемый в блоке суммирования - 4.

(вводится в случае управления среднетоннажными судами), К и ( ϕ ϕ _ ) d t - сигнал, пропорциональный оценке возмущающего воздействия на судно по силе - Р и моменту - М.

Сигнал К и ( ϕ ϕ _ ) d t - формируется в интеграторе - 3, на вход которого вводится сигнал невязки ( φ φ _ ) (ϕ - из приемника СНС-2 и сигнал φ _ - из электронной модели движения судна - 6, Ки (вычисляется по методу Калмановской фильтрации)). Сигнал δзд. с выхода регулятора-сумматора - 4 вводят на вход рулевого привода - 5. При этом судно будет двигаться по курсу, равному заданному значению: ϕ=ϕзд. без смещения по курсу при наличии медленно меняющихся внешних возмущений, что особенно важно при прохождении узкостей.

Методы построения системы автоматического управления движением корабля с использованием предложенного способа и результаты моделирования ее приведены в приложении к материалам заявки.

Способ управления движением судна с компенсацией медленно меняющихся внешних возмущений, характеризующийся тем, что использует: задатчик курсового угла, приемник спутниковой навигационной системы, рулевой привод, электронная модель движения судна и регулятор-сумматор, на входе которого формируют сигналы:
- заданного угла курса - ϕзд.=f(t) из задатчика курсового угла,
- оценку угла курса - φ _ с выхода электронной модели движения судна,
- К 2 d / d t φ _ , производной от оценки угла курса, которая формируется в блоке - регулятора-сумматора; на входе электронной модели движения судна формируют:
- сигнал угла перекладки руля δ от датчика рулевого привода,
- сигнал невязки - К ( φ φ _ ) , где: сигнал угла курса - ϕ - формируется с приемника спутниковой навигационной системы, а сигнал оценки угла курса - φ _ формируется с выхода электронной модели движения судна, отличающийся тем, что используется интегратор, на входе которого формируется сигнал невязки - К ( φ φ _ ) , где: сигнал ϕ - с приемника спутниковой навигационной системы, а сигнал - φ _ с выхода электронной модели движения судна, сигнал с выхода интегратора - К и ( φ ϕ _ ) d t - вводится на вход регулятора-сумматора, при этом на выходе регулятора-сумматора формируется сигнал δ з д = К 1 ( ϕ _ ϕ з д . ) + К 2 d / d t ϕ _ + К и ( φ ϕ _ ) d t , который вводится с выхода регулятора-сумматора на вход рулевого привода.



 

Похожие патенты:

Изобретение относится к области судовождения. .

Изобретение относится к водному транспорту и может быть использовано для управления траекторией движения буксируемого судна при выполнении буксирной операции. .

Изобретение относится к области судовождения. .

Изобретение относится к техническим средствам судовождения. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к средствам автоматического управления движением судов и динамического позиционирования судов. .

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. .

Изобретение относится к области судостроения. .

Изобретение относится к технике ручного управления движением корабля по курсу. .

Изобретение относится к технике управления движением судов и может быть использовано, в частности, для обеспечения режимов плавания судов класса «река-море» в специфических условиях внутренних водных путей и прибрежных районов морей при управлении курсом и скоростью хода при прохождении узкостей и фарватеров с использованием вертикальных рулей (ВР) и пропульсивного комплекса (ПК), ограниченного навигационного комплекса в составе лага, указателей скорости поворота судна и приемоиндикаторов для определения местоположения судна.

Изобретение относится к технике управления подвижными объектами, например судами, работающими в неблагоприятных внешних условиях. Система содержит группу датчиков, блок сбора информации, связанный с аппаратурой спутниковой навигации и снабженный источником импульсного питания, подсистему инерциальной навигации и подсистему оптической коррекции. Входы-выходы блока сбора информации подключены к трем управляющим вычислителям, выходы которых через переключатель каналов вычислителей подключены к исполнительным органам объекта управления. Кроме того, выходы вычислителей и выходы встроенных в их состав средств оперативного контроля подключены к блоку контроля и управления. Выход этого блока подключен к управляющему входу упомянутого переключателя, дополнительный выход которого подключен к управляющему входу формирователя сигналов, связанного с датчиком внешнего воздействия. Система также содержит формирователь синхроимпульсов, входом подключенный к выходу переключателя, а выходами к вычислителям, блоку сбора информации и блоку контроля и управления. Изобретение позволяет повысить надежность и точность системы управления, а также расширить область ее практического использования. 10 з.п. ф-лы, 11 ил.

Изобретение относится к области судовождения по заданному маршруту. Предложенный способ базируется на автоматическом управлении движением судна с двумя законами управления - оптимальным (в смысле точности стабилизации судна на курсе при спокойном море) и «облегченным» (для сохранности работоспособности рулевого привода при сильном волнении на море). Переключение законов управления осуществляется автоматически благодаря использованию блока перестройки коэффициентов регулирования, в котором формируют два условия переключения законов управления. В первом условии сигнал от среднего значения модуля угла руля больше допустимого значения и сигнал от среднего значения модуля угла бортовой качки больше допустимого значения. Во втором условии сигнал от среднего значения модуля угла руля меньше допустимого значения или сигнал от среднего значения модуля угла бортовой качки меньше допустимого значения. При выполнении первого условия формируют «облегченный» закон управления рулевым приводом. При выполнении второго условия формируют оптимальный закон управления курсом судна. Изобретение позволяет осуществлять управление рулевым приводом с разными законами управления в зависимости от состояния моря (бортовой качки) и загрузки рулевого привода, что обеспечивает оптимальность управления не только при спокойном море, но и при появлении на нем волнения. 1 ил.

Изобретение относится к системам управления высокоманевренными объектами. Система содержит датчики входной информации и аппаратуру спутниковой навигации, подключенные к управляющему вычислительному устройству (УВУ), выходы которого подключены к устройству управления исполнительными механизмами (УУИМ). К УВУ подключено запоминающее устройство (ЗУ). К блокирующему входу ЗУ и УУИМ подключен выход формирователя сигнала блокировки (ФСБ), ко входам которого подключены выходы датчика внешнего воздействия и дополнительный выход УВУ, к входу обнуления/пуска которого подключен выход обнуления ФСБ. Датчик времени содержит три генератора импульсов, подключенных выходами к формирователям, выходы которых подключены к мажоритарному элементу. Формирователь содержит элемент И, первый вход которого является входом, подключенным к генератору. Выход элемента подключен к счетчику, выходы которого подключены к первому и второму дешифраторам. Выход первого дешифратора подключен к запускающему входу триггера останова, выход которого подключен к второму входу элемента И и первому входу мажоритарного элемента. Выход мажоритарного элемента подключен к входу триггера пуска, выход которого подключен к сбрасывающему входу триггера останова. Формирователь сигнала блокировки содержит последовательно соединенные регистр, вход которого является входом блока подключенным к УВУ, дешифратор и триггер, выход которого подключен к первому входу элемента И, второй вход которого является входом формирователя, подключенным к датчику внешнего воздействия, а выход элемента является выходом блока. Повышается надежность работы. 6 з.п. ф-лы, 7 ил.

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости перекладки руля вводят на вход рулевого привода. Затем используют дополнительно установленные два резервных датчика глубины, два измерителя угла дифферента, четыре фильтра, блок диагностики и коммутации, на вход которого вводят сигналы. В блоке диагностики и коммутации формируют сигналы модуля разности: | h 1 − h _ 1 _ | , | h 1 − h _ 1 _ | , | h 2 − h _ 2 _ | , | ψ 3 − ψ _ 3 _ | , | ψ 2 − ψ _ 2 _ | , | ψ 3 − ψ _ 3 _ | , которые сравнивают с заданной постоянной C1 и C2, если модули разности удовлетворяют условию: | h i − h _ i _ | < C 1 и | ψ i − ψ _ i _ | < C 2 , то сигналы ∑ h _ i _ вводят в блок формирования среднего значения оценки глубины hср. Сигналы ∑ ψ _ i _ вводят в блок формирования среднего значения оценки угла дифферента ψ _ с р _ . Сигнал среднего значения оценки глубины h _ с р _ из блока среднего значения оценки глубины вводят на вход сумматора. Сигнал среднего значения оценки угла дифферента ψ _ с р _ из блока среднего значения оценки угла дифферента вводят на вход сумматора. Повышается точность и надёжность управления движением корабля. 1 ил.

Способ управления движением судна по широте и долготе позволяет управлять движением судна по заданной траектории с корректировкой скорости движения по времени. Корректировка по времени обеспечивает нахождение судна в заданной точке в заданное время. Использование в качестве навигационной информации широт и долгот повышает точность управления движением как в пространстве, так и во времени. Точное управление с использованием текущих и заданных во времени широт и долгот судна реализуется с учетом текущего нахождения путевого угла в одном из четырех секторов в диапазоне от 0° до 360°. При больших угловых изменениях заданной траектории движения обеспечивается автоматический переход на штатное управления движением по заданному путевому углу и заданной скорости хода судна. Достигается минимизация отклонения судна от заданной траектории, повышение экономичности и безопасности управления движением, прохождение судна в узкостях и управление перехода на типовое (штатное) движение судна. 1 ил.

Изобретение относится к области судовождения. Система содержит приемник (1) спутниковой навигационной системы, задатчик (2) маршрута с выходами заданного сигнала путевого угла (ПУ) и заданного угла φзд угла курса, регулятор (3) угла δзд перекладки руля, рулевой привод (4), регулятор (5) оборотов nзд гребного вала, привод (6) гребного вала, регулятор (7) оборотов nподр, подруливающего устройства, подруливающее устройство (8), блок (9) сравнения, блок (10) разностей, блок (11) коррекции законов управления угла δ перекладки руля, оборотов nзд гребного вала, оборотов nподр подруливающего устройства, блок (12) четырех секторов граничных значений углов положения вектора путевого угла (ПУ), формирователь (13) коэффициентов управления и судно (14), соединенные между собой. В системе осуществляют штатное и точное управление движением судна в зависимости от результатов сравнения модуля разности путевого угла (ПУ) из приемника (1) спутниковой навигационной системы и сигнала заданного курса φзд из задатчика (1) маршрута с постоянной С и расположения вектора путевого угла (ПУ) в соответствующей зоне четырех граничных значений сигнала путевого угла (ПУ), определяя коэффициенты регулирования по каждому из трех каналов управления судном. Повышается точность и безопасность управления движением судна по расписанию. 2 н.п. ф-лы, 1 ил.

Изобретение относится к системам автоматического управления, работающих длительное время при воздействии неблагоприятных внешних факторов. Система управления, содержащая три управляющих вычислителя с подключенными к ним через блок сбора информации датчиками, аппаратурой спутниковой навигации, подсистемой инерциальной навигации, подсистемой оптической коррекции, содержит формирователь синхроимпульсов, переключатель каналов вычислителей, подключенный входами к вычислителям, а выходом - к исполнительным органам с датчиками обратной связи и формирователю синхроимпульсов, блок контроля и управления. Блок контроля и управления подключен входами к выходам вычислителей и их контрольных устройств, а выходами - к управляющему входу переключателя, причем выходы датчиков и датчиков обратной связи подключены к входам блока сбора информации, токовая шина которого последовательно проходит через датчики и датчики обратной связи исполнительных органов и возвращается в блок сбора информации, входы-выходы которого подключены к вычислителям. Достигается повышение надежности и точности работы системы управления. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области судостроения, а именно к автоматическому управлению угловым движением судна. Для отказоустойчивого умерения крена судна на подводных крыльях используют: блок датчиков угла поворота закрылков, датчик угла крена, блок дифференцирования, блок приводов закрылков, блок регуляторов, на входы которого вводят сигналы: отклонения углов закрылков и производную оценку угла крена. Также используют датчик скорости хода судна, датчик угла крена, два блока диагностики оценки угла крена и два фильтра оценки угла крена, на первые входы которых вводят сигналы: отклонения углов закрылков и скорость хода судна. Достигается точность стабилизации, исправность системы умерения качки, датчика крена и системы автоматического управления судном. 1 ил.

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла курса, сумматор, рулевой привод. Датчик руля подключен к первому входу сумматора, ко второму входу которого подключен задатчик угла курса. Выход сумматора подключен к входу рулевого привода. Также система дополнительно имеет датчик угла курса, два фильтра оценки угла курса и два фильтра оценок угловой скорости, блок среднего значения оценки угловой скорости и блок среднего значения угла курса, два датчика поперечной скорости судна и два фильтра оценки поперечной скорости судна, блок среднего значения оценки поперечной скорости судна, датчик оборотов подруливающего устройства, регулятор, привод подруливающего устройства и датчик угловой скорости. Достигается формирование отказоустойчивого автоматического управления движением судна. 1 ил.

Изобретение относится к области судостроения, а именно к области автоматического управления движением судов. Система идентификации гидродинамических коэффициентов математической модели движения судна содержит рулевой привод, датчики: угловой скорости, курса судна, угла перекладки руля, боковой скорости, скорости хода судна, углового ускорения и бокового ускорения, блок задания маневра идентификации, два блока суммирования, блок памяти, блок сравнения, десять сумматоров и десять множителей. Достигается высокая точность математической модели движения судна, высокое качество автоматического управления движением, повышенная безопасность проводки судна в узкостях. 2 ил.
Наверх