Способ получения кремнефторида натрия

Изобретение относится к получению соединений фтора и может быть использовано в производстве кремнефторида натрия. Кремнефторид натрия получают путем нейтрализации кремнефтористоводородной кислоты (КФВК) содой в присутствии соли натрия при рН 0,2-3 в течение 0,25-1 ч, отстаивания полученных кристаллов, их отделения и сушки, при этом в качестве солей натрия используют осадок фторида натрия, выделенный из реакционной смеси, полученной путем разложения расчетного количества кремнефтористоводородной кислоты раствором гидроксида натрия при рН 11,5-12,5 и температуре 85-95°C, а расчетное количество кремнефтористоводородной кислоты, направляемой на разложение для получения осадка фторида натрия, определяется исходя из концентрации кислоты CH2SiF6 и содержания диоксида кремния CsiO2 в исходной КФВК по формуле: N=CSiO2×MH2SiF6/CH2SiF6×MSiO2=2,4×CSiO2/CH2SiF6, где MH2SiF6 - молекулярная масса КФВК, равная 144,09 г/моль, MSiO2 - молекулярная масса диоксида кремния, равная 60,085 г/моль. Изобретение позволяет получать легкофильтрующийся целевой продукт - кремнефторид натрия с высоким содержанием основного вещества. 1 пр.

 

Изобретение относится к получению соединений фтора и может быть использовано в производстве кремнефторида натрия (КФН) из кремнефтористоводородной кислоты (КФВК).

Известен способ получения кремнефторида натрия из кремнефтористоводородной кислоты, содержащей избыток тетрафторида кремния SiF4 или коллоидно-растворенную кремниевую кислоту, путем нейтрализации карбонатом натрия с введением незначительного избытка плавиковой кислоты [И.Г. Рысс. Химия фтора и его неорганических соединений. Государственное научно-техническое издательство химической литературы. Москва. 1956, с.401]. Способ позволяет получить легкофильтрующиеся кристаллы кремнефторида, целевой продукт с малым содержанием примеси диоксида кремния.

Недостатком способа является использование плавиковой кислоты - дефицитного и относительно дорогого реагента.

Известен способ получения кремнефтористого натрия [Авторское свидетельство СССР №859293, кл. С01В 33/10, B01D 53/14, опубл. 30.08.1981] путем нейтрализации КФВК содой или едким натром, отстаивания полученных кристаллов, их отделения и сушки, причем нейтрализацию ведут при рН 0,2-3 в течение 0,25-1 ч. Способ позволяет повысить скорость отстаивания кристаллов КФН с 3 до 5-7 м/ч. Кроме того, способ позволяет использовать исходную кремнефтористоводородную кислоту, загрязненную диоксидом кремния.

Недостатком известного способа является необходимость предварительной фильтрации КФВК, а также низкая фильтруемость целевого продукта из-за значительного содержания диоксида кремния.

Известен способ получения кремнефтористых солей [Патент РФ №2024429, кл. С01В 33/10, опубл. 15.12.1994], включающий смешивание кремнефтористоводородной кислоты со щелочными соединениями аммония, или натрия, или калия до заданного рН раствора, а смешивание реагентов проводят до рН 1,5-3,0 не более чем за 3 с. Способ позволяет снизить содержание диоксида кремния в солях.

Недостатком известного способа является использование скоростной мешалки пропеллерного типа, значительные энергозатраты. Целевой продукт характеризуется низкой фильтруемостью.

Известен способ кремнефторида натрия [Патент РФ №2226502, кл. С01В 33/10, опубл. 10.04.2004] путем взаимодействия кремнефтористоводородной кислоты с гидроксидом натрия, отделение от маточного раствора осадка и его сушку, причем взаимодействие осуществляют при мольном отношении фтора и кремния 6:1 и изменении рН до одного из значений в интервале 5,0-6,5. При избытке фторид-иона в раствор предварительно вводят метасиликат натрия или аморфный диоксид кремния, а при его недостатке - фтористый водород или фторид натрия. Способ обеспечивает получение высококачественного легкофильтруемого кремнефторида натрия.

Недостатками известного способа являются необходимость предварительной корректировки состава кремнефтористоводородной кислоты, использование относительно дорогих реагентов, как фтористый водород и фторид натрия.

Известен способ получения кремнефторида натрия [Патент РФ №2356933, кл. С01В 33/10, опубл. 27.05.2009], включающий нейтрализацию кремнефтористоводородной кислоты содой в присутствии бикарбоната натрия при рН 0,2-3 в течение 0,25-1 ч при массовом соотношении сода: бикарбонат натрия, равном 1:1-4, отстаивания полученных кристаллов, их отделения и сушки. Способ позволяет повысить скорость отстаивания кристаллов за счет увеличения доли кристаллов с размером частиц 60-70 мкм.

Недостатком известного способа является относительно низкая фильтруемость целевого продукта, а также относительно невысокое содержание основного вещества в продукте (98,5-99,2% Na2SiF6).

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения кремнефторида натрия [Патент РФ №2411183, кл. С01В 33/10, опубл. 10.02.2011] путем нейтрализации кремнефтористоводородной кислоты содой в присутствии соли натрия при рН 0,2-3 в течение 0,25-1 ч, отстаивания полученных кристаллов, их отделения и сушки, при этом в качестве солей натрия используют сульфат натрия, взятого в массовом соотношении сода: сульфат натрия, равном 1:0,1-0,4. Данный способ позволяет повысить выход готового продукта, снизить остаточное содержание фтора в сточных водах.

Недостатком известного способа является низкая фильтруемость продукта.

Цель изобретения - получение легкофильтрующегося целевого продукта - кремнефторида натрия.

Поставленная цель достигается тем, что в способе получения кремнефторида натрия путем нейтрализации кремнефтористоводородной кислоты содой в присутствии соли натрия при рН 0,2-3 в течение 0,25-1 ч, отстаивания полученных кристаллов, их отделения и сушки, при этом в качестве солей натрия используют осадок фторида натрия, выделенный из реакционной смеси, полученной разложением расчетного количества кремнефтористоводородной кислоты раствором гидроксида натрия при рН 11,5-12,5 при температуре 85-95°C. Расчетное количество кремнефтористоводородной кислоты (N), направляемой на получение осадка фторида натрия, определяется исходя из концентрации кислоты C H 2 S i F 6 и содержания диоксида кремния C S i O 2 C в исходной КФВК по формуле:

N = C S i O 2 × M H 2 S i F 6 / C H 2 S i F 6 × M S i O 2 = 2 , 4 × C S i O 2 / C H 2 S i F 6 ,

где M H 2 S i F 6 - молекулярная масса КФВК, равная 144,09 г/моль; M S i O 2 - молекулярная масса диоксида кремния, равная 60,085 г/моль.

Сущность изобретения заключается в следующем.

Кремнефтористоводородная кислота, получаемая из фторсодержащих газов производства экстракционной фосфорной кислоты, как правило, содержит определенное количество растворимого диоксида кремния. Данная КФВК концентрации 16-20% H2SiF6 содержит до 1,8% SiO2. Получаемый кремнефторид натрия на основе данной кислоты содовым методом с последующим отстаиванием полученной суспензии, отделения кристаллов КФН в виде пульпы и сушки содержит диоксид кремния и характеризуется низкой фильтруемостью. Присутствие даже незначительного количества диоксида кремния резко снижает фильтруемость целевого продукта - кремнефторида натрия.

Исключение содержания диоксида кремния в целевом продукте и улучшение его фильтрующих свойств достигается в предлагаемом способе получения кремнефторида натрия путем нейтрализации КФВК содой в присутствии фторида натрия, при этом фторид натрия получают разложением кислоты гидроксидом натрия. В предлагаемом способе исходная кислота, содержащая диоксид кремния, делится на два потока. Одна, расчетная часть кислоты, направляется на разложение раствором гидроксида натрия для получения фторида натрия, который выделяется в виде осадка. Жидкая фаза представляет собой раствор силиката натрия. Осадок фторида натрия отделяется от раствора силиката натрия и смешивается с основной частью КФВК. При этом фторид натрия реагирует КФВК с образованием кремнефторида натрия и плавиковой кислоты. В свою очередь, плавиковая кислота реагирует с диоксидом кремния, содержащимся в исходной КФВК, с образованием кремнефтористоводородной кислоты. Количество осадка фторида натрия достаточно для полного перевода примеси диоксида кремния в кремнефтористоводородную кислоту. Далее перевод КФВК в кремнефторид натрия обеспечивается за счет реакции нейтрализации кислоты содой.

Требуемое количество КФВК для получения осадка фторида натрия, достаточного для полного перевода примеси диоксида кремния, присутствующего в исходной кислоте, определяется расчетным путем, с учетом концентрации кремнефтористоводородной кислоты и содержания примеси диоксида кремния.

Протекающие процессы описываются следующими химическими уравнениями:

H2SiF6+8NaOH=6NaF↓+Na2SiO3+5H2O

6NaF+3H2SiF6=6HF+3Na2SiF6

SiO2+6HF=H2SiF6+2H2O

H2SiF6+Na2CO3=Na2SiF6↓+2H2O+CO2

Проведение процесса получения кремнефторида натрия в указанных пределах технологических показателей обеспечивает выпуск легкофильтрующегося целевого продукта с высоким содержанием основного вещества.

Расход расчетного количества КФВК, равного согласно соотношению 2 , 4 × C S i O 2 / C H 2 S i F 6 , обеспечивает получение требуемого количества фторида натрия для связывания и перевода диоксида кремния в H2SiF6 и тем самым исключает присутствие данной примеси в целевом продукте. Проведение процесса разложения КФВК раствором гидроксида натрия при рН 11,5-12,5 и температуре 85-95°C обеспечивает полноту протекания процесса разложения кислоты с образованием фторида натрия. Снижение рН реакционной смеси менее 11,5 и температуры 85°C приводит к неполному разложению КФВК, уменьшению выхода фторида натрия и ухудшению фильтрующих свойств целевого продукта. Повышение показателя рН более 12,5 приводит к перерасходу гидроксида натрия. Повышение температуры процесса более 95°C приводит к перерасходу энергоресурсов на нагрев реакционной смеси.

Способ иллюстрируется следующим примером.

Пример 1. Кремнефтористоводородная кислота концентрацией 18% H2SiF6 и содержащая 1,5% SiO2 в количестве 1000 кг подается на нейтрализацию содой. КФВК содержит 180 кг H2SiF6 и 15 кг SiO2. Определяется расчетное количество кислоты, направляемое на разложение для получения осадка фторида натрия, по формуле C S i O 2 × M H 2 S i F 6 / C H 2 S i F 6 × M S i O 2 = 1,5 × 144,09 / 18 × 60,085 = 2,4 × 1,5 / 18 = 0,20 . На разложение направляется 0,20×1000=200 кг кремнефтористоводородной кислоты. Для разложения КФВК в реактор подается 186,54 кг 45%-ного раствора гидроксида натрия. Процесс разложения кислоты проводят при температуре 90°C и показателе рН реакционной смеси 11,8 в течение 1 часа. При этом необходимая температура обеспечивается за счет теплоты реакции разложения и дополнительного нагрева реакционной смеси. Реакционная смесь представляет суспензию, далее из которой фильтрацией выделяют осадок фторида натрия в количестве 62,9 кг. Фильтрат (323,6 кг) представляет собой раствор силиката натрия и содержит 36,6 кг Na2SiO3. В реактор нейтрализации подают основную часть КФВК (1000 кг) и полученный осадок фторида натрия в количестве 62,9 кг. При этом протекает обменная реакция с образованием 140,9 кг кремнефторида натрия и 30,0 кг плавиковой кислоты. Плавиковая кислота реагирует с 15 кг диоксида кремния, содержащимся в КФВК, с образованием 36,0 кг H2SiF6. В реактор нейтрализации подают 397 кг 20%-ного раствора Na2CO3. Процесс нейтрализации кремнефтористоводородной кислоты содой проводят в течение 1 часа при показателе рН среды 2,5. Полученную суспензию кремнефторида натрия отстаивают, сгущенную пульпу с отношением Т:Ж=1:3 направляют на сушку. После сушки кристаллов в аппарате кипящего слоя получают 282 кг целевого продукта с содержанием 99,5% Na2SiF6.

Определение фильтруемости целевого продукта проводили на стендовой установке при разрежении 0,4 атм. и на воронке Бюхнера с диаметром 14,8 см. Суспензию готовили добавлением 100 г продукта к 100 мл дистиллированной воды. За продолжительность фильтрации суспензии продукта принимали время от начала фильтрации до момента появления "зеркальной поверхности" осадка в воронке Бюхнера. Продолжительность фильтрации суспензии продукта составила 20 сек.

Способ позволяет получить легкофильтрующийся целевой продукт - кремнефторид натрия с высоким содержанием основного вещества.

Способ получения кремнефторида натрия путем нейтрализации кремнефтористоводородной кислоты (КФВК) содой в присутствии соли натрия при рН 0,2-3 в течение 0,25-1 ч, отстаивания полученных кристаллов, их отделения и сушки, отличающийся тем, что в качестве солей натрия используют осадок фторида натрия, выделенный из реакционной смеси, полученной путем разложения расчетного количества кремнефтористоводородной кислоты раствором гидроксида натрия при рН 11,5-12,5 и температуре 85-95°C, а расчетное количество кремнефтористоводородной кислоты, направляемой на разложение для получения осадка фторида натрия, определяется исходя из концентрации кислоты C H 2 S i F 6 и содержания диоксида кремния C S i O 2 в исходной КФВК по формуле
N = C S i O 2 M H 2 S i F 6 / C H 2 S i F 6 M S i O 2 = 2 , 4 C S i O 2 / C H 2 S i F 6 ,
где M H 2 S i F 6 - молекулярная масса КФВК, равная 144,09 г/моль, M S i O 2 - молекулярная масса диоксида кремния, равная 60,085 г/моль.



 

Похожие патенты:
Изобретение относится к получению кремнийсодержащих материалов, которые используются в процессах получения полупроводникового кремния. .

Изобретение относится к способу получения димерных и/или тримерных соединений кремния, в частности галогенсодержащих соединений кремния. .
Изобретение относится к технологии получения моносилана, используемого в производстве поли- и монокристаллического кремния градации SG и EG, а также полупроводниковых структур методом газовой эпитаксии.

Изобретение относится к получению синтетического флюорита, обладающего высокими сорбционными свойствами по отношению к тетрафториду кремния. .

Изобретение относится к технологии неорганических соединений. .

Изобретение относится к технологии получения тетрафторида кремния, используемого в производстве чистого поликристаллического кремния, пригодного, например, для изготовления солнечных батарей.
Изобретение относится к способу производства тетрахлорсилана. .

Изобретение относится к получению соединений фтора и может быть использовано в производстве кремнефторида натрия из кремнефтористоводородной кислоты. .

Изобретение относится к области катализа. Описан катализатор дисмутирования содержащих водород и галоген соединений кремния, содержащий в качестве носителя диоксид кремния и/или цеолит и по меньшей мере один линейный, циклический, разветвленный и/или сшитый аминоалкилфункциональный силоксан и/или силанол, который в идеализированной форме соответствует общей формуле (II) (R 2 )[ − O − (R 4 )Si(A)] a R 3 ⋅ (HW) w     (II) в которой A означает аминоалкильный остаток -(CH2)3-N(R1)2 с одинаковыми или разными R1, означающими изобутил, н-бутил, трет-бутил и/или циклогексил, R2 независимо друг от друга означают водород, метил, этил, н-пропил, изопропил и/или Y, R3 и R4 независимо друг от друга означают гидрокси, метокси, этокси, н-пропокси, изопропокси, метил, этил, н-пропил, изопропил и/или -OY, причем Y означает материал носителя, HW означает кислоту, причем W означает галогенид, остаток кремниевой кислоты, сульфат и/или карбоксилат, с a≥1 в случае силанола, a≥2 в случае силоксана и w≥0. Описаны способ получения указанного выше катализатора, его использование в процессе дисмутирования и установка дисмутирования с его использованием. Технический результат - снижение экономических затрат процесса дисмутирования. 4 н. и 13 з.п. ф-лы, 1 ил., 2 табл., 7 пр.

Изобретение относится к области химии. Устройство 1 для производства трихлорсилана включает в себя печь 2 разложения, нагревательный элемент 8, нагревающий внутреннюю часть печи 2 разложения, трубу 3 подачи полихлорсилана и хлористого водорода во внутреннюю нижнюю часть печи 2 разложения, трубу 4 для отведения реакционного газа из верхней части реакционной камеры 13, расположенной между наружной периферийной поверхностью трубы 3 подачи сырья и внутренней периферийной поверхностью печи 2 разложения, ребро 14, которое направляет текучую смесь полихлорсилана и хлористого водорода к нижнему концу отверстия трубы 3 подачи сырья для перемешивания и подачи сырья вверх реакционной камеры. Изобретение позволяет получать трихлорсилан из полихлорсилана, полученного в процессе производства поликристаллического кремния, при производстве трихлорсилана или при процессе превращения. 2 н. и 5 з.п. ф-лы, 10 ил.

Изобретение относится к способу крекинга высококипящих полимеров для увеличения выхода и минимизации отходов в процессе получения трихлорсилана. Предложен способ крекинга полихлорсилана и/или полихлорсилоксана, включающий стадии а) получения смеси, содержащей полихлорсилан и/или полихлорсилоксан; б) удаления твердых частиц из этой смеси с получением чистой смеси; и в) рециркуляции полученной чистой смеси в дистилляционный аппарат, и крекинг полихлорсилана и/или полихлорсилоксана в дистилляционном аппарате с получением трихлорсилана, тетрахлорсилана или их комбинации. Технический результат - уменьшение отходов и увеличение выхода хлорсилановых мономеров в процессе получения трихлорсилана. 12 з.п. ф-лы, 1 ил.

Способ получения галогенированного полисилана как чистого соединения или смеси соединений с, по меньшей мере, одной прямой связью Si-Si, заместители которого состоят из галогена или из галогена и водорода, с атомным соотношением заместитель:кремний, по меньшей мере, 1:1, и почти не содержащего разветвленных цепей и циклов, включает реакцию галогенсилана с водородом в условиях образования плазменного разряда с плотностью энергии менее 10 Вт/см3. Изобретение позволяет получать галогенированные полисиланы с хорошей растворимостью и плавкостью. 5 н. и 12 з.п. ф-лы, 11 ил., 6 пр.

Изобретение может быть использовано для уменьшения содержания бора и алюминия в галогенсиланах технической чистоты. Способ непрерывного получения высокочистых галогенсиланов включает получение галогенсиланов технической чистоты, содержащих бор и алюминий, из металлургического кремния, смешивание полученных галогенсиланов с трифенилметилхлоридом в устройстве (2) для образования труднорастворимых комплексов и получение высокочистых галогенсиланов дистилляционным выделением комплексов в колонне (3). Изобретение позволяет получить высокочистые галогенсиланы, с остаточным количеством бора <5 мкг/кг. 3 н. и 7 з.п. ф-лы, 1 ил., 4 пр.

Изобретение может быть использовано в химической промышленности для получения высокочистого кремния. Способ включает этапы: получения трихлорсилана, получения моносилана посредством диспропорционирования трихлорсилана и термического разложения моносилана. Для получения трихлорсилана кремний реагирует с хлористым водородом в процессе гидрохлорирования. Параллельно получают реакционную смесь, содержащую трихлорсилан, в процессе конверсии тетрахлорида кремния, образующегося в качестве побочного продукта и взаимодействующего с кремнием и водородом. Система включает производственную установку для получения трихлорсилана, включающую по меньшей мере реактор для гидрохлорирования, реактор для конверсии, сборный резервуар для реакционной смеси, содержащей трихлорсилан, и сепаратор; установку для получения моносилана, включающую по меньшей мере реактор для диспропорционирования и сепаратор; и установку для термического разложения полученного моносилана, включающую по меньшей мере реактор для разложения моносилана. Установка для получения моносилана соединена с установкой для получения трихлорсилана с помощью обратного трубопровода. Изобретение позволяет оптимизировать процесс получения высокочистого кремния с повторным использованием и дальнейшей переработкой побочных продуктов. 2 н. и 34 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для уменьшения содержания бора и алюминия в галогенсиланах технической чистоты. Способ уменьшения содержания бора и/или алюминия в галогенсиланах технической чистоты включает стадии примешивания галогенсиланов к трифенилметилхлориду в аппарате (2) для образования труднорастворимых комплексов, перевода комплексов в узел разделения (3), включающий узел декантирования, узел центрифугирования, узел фильтрования и узел дистилляции, в котором происходит отделение комплексов посредством механического воздействия и выделение очищенных галогенсиланов. Изобретение позволяет получить высокочистые галогенсиланы с остаточным количеством бора 16-18 мкг/кг. 3 н. и 16 з.п. ф-лы, 1 ил., 1 табл., 4 пр.

Изобретение относится к способу получения трихлорсилана. Производят взаимодействия кремния с газообразным HCl при температуре между 250°С и 1100°С и абсолютном давлении 0,5-30 атм. Процесс может быть осуществлён в реакторе с псевдоожиженным слоем, в реакторе с перемешиваемым слоем или в реакторе со сплошным слоем. Кремний, подаваемый на взаимодействие, содержит 40-10000 ч./млн бария по массе и возможно 40-10000 ч./млн меди по массе. Изобретение обеспечивает увеличение селективности процесса получения трихлорсилана. 2 н. и 12 з.п. ф-лы, 4 ил., 2 табл., 4 пр.

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом соотношении обрабатывают твердым реагентом, выбранным из карбонатов щелочных и щелочноземельных металлов и их природных смесей нестехиометрического состава в массовом соотношении не менее чем 1,0:1,2 в расчете на сумму всех отходов в размольном оборудовании до получения твердого нейтрализованного продукта. Температура процесса твердофазной нейтрализации 100÷165°C обеспечивается за счет протекания экзотермических реакций нейтрализации отходов и поддерживается постоянной за счет испарения жидкой части отхода. Жидкая часть смеси отходов выделяется в неизменном виде. Технический результат - способ прост и безопасен, позволяет сократить энергетические затраты и исключить образование сточных вод. 3 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана. Производят получение тетрафторида кремния и диоксида урана из тетрафторида урана. Берут диоксид кремния и подвергают его механоактивации. Затем осуществляют его гомогенизацию с тетрафторидом урана в стехиометрическом соотношении. Гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и подвергают термообработке в среде сухого инертного газа. Изобретение позволяет проводить конверсию тетрафторида урана с высоким выходом высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, при температуре не выше 600°C. 1 ил., 1 табл., 7 пр.
Наверх