Буровой раствор



Буровой раствор
Буровой раствор

 


Владельцы патента RU 2492207:

Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (RU)

Изобретение относится к буровым растворам на водной основе и может найти применение при строительстве нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и солевых отложений в условиях действия высоких забойных температур до 220°C. Технический результат - повышение ингибирующей способности к глинам, снижение показателя фильтрации, повышение соле- и термоустойчивости. Буровой раствор содержит, масс.%: глинопорошок 3,3-5,3; ВПК-402 1,4-2,4; жидкий парафин C10-C16 5,3-8,8; пеногаситель MAC-200 - 0,06-0,2; воду - остальное. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к буровым растворам на водной основе и может найти применение при строительстве нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и солевых отложений в условиях высоких забойных температур до 220°C.

Из уровня техники известен раствор на водной основе, содержащий 35% глины, 0,2% хромпика с добавлением лигносульфонатов и акрилатов, обладающий высокой термостойкостью (Кистер Э.Г., Химическая обработка буровых растворов, М., Недра, 1972, с.283-285, табл.22). Однако раствор обладает низкими ингибирующими свойствами, а введение даже небольших количеств электролитов приводит к ухудшению его показателей. Известный раствор также имеет высокое значение показателя фильтрации при забойных температурах более 90-100°C.

Наиболее близким техническим решением к предлагаемому буровому раствору является буровой раствор, включающий воду, глинопорошок и стабилизатор глин ВПК-402 (описан в RU 2148702 C1, E21B 33/13, С09К 7/02, 10.05.2000).

Недостатком известного состава является низкая ингибирующая способность по отношению к глинам, высокое значение показателя фильтрации, низкая соле- и термоустойчивость.

Техническим результатом, на достижение которого направлено данное изобретение, является устранение указанных недостатков, а именно, повышение ингибирующей способности к глинам, снижение показателя фильтрации, повышение соле- и термоустойчивости.

Для получения дополнительного технического результата, повышения плотности, буровой раствор утяжеляется баритовым концентратом.

Технический результат предлагаемого изобретения достигается за счет того, что в буровом растворе, включающем воду, глинопорошок и полиэлектролит ВПК-402, дополнительно содержится жидкий парафин C10-C16 и пеногаситель MAC-200 при следующем соотношении компонентов, масс.%:

Глинопорошок 3,3-5,3;
ВПК-402 1,4-2,4;
жидкий парафин C10-C16 5,3-8,8;
Пеногаситель MAC-200 0,06-0,2;
Вода остальное.

Кроме жидкого парафина C10-C16 можно использовать или многоатомный спирт, или талловое масло, или смесь таллового масла с многоатомным спиртом.

В предлагаемом изобретении заявляемый качественный и количественный состав компонентов позволяет получить буровой раствор с плотностью от 1000 до 2200 кг/м3. В качестве утяжелителя может применяться, в частности, барит. Причем экспериментальные данные (см. табл.3) позволяют судить о том, что показатели фильтрации в условиях воздействия температуры до и после термостатирования не меняются в зависимости от наличия или отсутствия утяжелителя.

Оптимальная концентрация глинопорошка зависит от его марки. В предлагаемом буровом растворе может использоваться бентонитовый глинопорошок любой из марок ПБМА, ПБМБ, ПБМВ, ПБМГ, который выпускается в соответствии с ТУ 2164-004-0013836-2006 «Глинопорошок», за исключением модифицированного анионными полимерами. Для глинопорошка марки ПБМВ концентрация составляет от 3,3% до 5,3%. С ухудшением марки глинопорошка концентрация увеличивается, а с повышением качества концентрация уменьшается. Марка, т.е. сорт глинопорошка, в предлагаемом составе, не оказывает существенного влияния на технологические показатели раствора, а характеризует его расход.

Полиэлектролит ВПК - 402 высокомолекулярный катионный полимер линейно-циклической структуры, получаемый путем радикальной полимеризации мономера диметилдиаллиламмоний-хлорида, который, в свою очередь, изготавливается из аллилхлорида и диметиламина нагреванием в щелочной среде. Структурная формула ВПК-402 представлена из повторяющихся мономерных звеньев.

Полиэлектролит ВПК-402 представляет собой однородную по консистенции жидкость без посторонних включений от бесцветного до желтого цвета. Молекулярная масса полимера составляет примерно 3·105. В товарном продукте молекулярная масса ВПК-402 может изменяться в пределах от 104 до 106.

Пеногаситель MAC-200 - термостойкий реагент, который нашел широкое применение при бурении скважин на нефть и газ и может быть использован при бурении скважин на термальные воды и перегретый пар. Пеногаситель MAC-200 представляет собой высокодисперсный пирогенный кремнезем (аэросил) с модифицированной поверхностью. Основой аэросила является чистая аморфная непористая двуокись кремния в виде мелкодисперсных частиц сферической формы, сохраняющая работоспособность в диапазоне температур от - 40° до 250°C.

В предлагаемом буровом растворе, в отличие от существующих, предусматривается использование катионного полимера ВПК-402 в такой концентрации, при которой обеспечивается управление полярностью связей молекул воды, что приводит к формированию устойчивого водо-катионнополимерного каркаса и снижению показателя фильтрации. Цикличность и катионный заряд в каждом мономерном звене полимера придают полимеру высокую термо- и солеустойчивость. При этом одновременно повышаются ингибирующие свойства раствора. Использование в указанных концентрациях катионного полимера в составе бурового раствора исключительно меняет межчастичное взаимодействие в растворе за счет изменения полярности связей воды. Водная фаза, поляризованная катионным полимером, практически не реагирует на ввод электролитов с одно- и поливалентными катионами вплоть до насыщения. Таким образом, при вскрытии солевых отложений предлагаемый раствор не требует дополнительной обработки и перерасхода материалов, особенно понизителей фильтрации. При увеличении забойной температуры в процессе углубления необходимо произвести несложную химобработку, которая заключается во вводе жидкого парафина C10-C16 в указанном количестве. Жидкий парафин C10-C16 в составе бурового раствора входит в ячейки сформированного водо-катионнополимерного каркаса и тем самым повышает их устойчивость настолько, что они сохраняются в виде структур даже при 200°-220°C. Выбор жидкого парафина от C10 до C16 объясняется следующим: с уменьшением длины цепи менее C10 возрастает пожароопасность, а с увеличением более C16 наблюдается возрастание вязкости вплоть до непрокачиваемого состояния.

Предлагаемый буровой раствор отличается от известных простотой состава, управлением технологическими показателями, ингибирующими свойствами, соле- и термоустойчивостью и низкими значениями показателя фильтрации при забойных высокотемпературных условиях.

Изобретение поясняется Таблицами 1, 2, и 3.

В таблице 1 отражаются результаты исследований по влиянию концентрации ВПК-402 на устойчивость набухающих глинистых пород в сравнении с известным раствором.

В таблице 2 приведены технологические показатели буровых растворов: показателей фильтрации (ПФ), пластической вязкости (ηпл) и динамического напряжения сдвига (τ0) до и после термостатирования, которое проводилось в течение 36 часов при 220°C. В таблице 2 также приведены показатели буровых растворов, включающих в качестве добавки такие соли, как NaCl, CaCl2, Al2(SO4)3.

В таблице 3 приведены результаты экспериментальных исследований, отражающие изменение показателей фильтрации (ПФ), в условиях воздействия температуры до и после термостатирования, которое проводилось в течение 36 часов при 220°C.

В таблицах 1, 2, 3 приведены примеры, подтверждающие осуществление изобретения. Аналогичные результаты были получены для многоатомных спиртов, таллового масла и их смесей.

Из таблиц 1-3 следует, что при содержании ВПК-402 ниже 1,4% показатель фильтрации ПФ [см3 за 30 мин] более 10 см3 (табл.2, п.2), а после термостатирования ПФ имеет неприемлемые значения (табл.2, пп.2, 3), и при этом устойчивость глин не обеспечивается (табл.1, п.3). Причем эксперименты проводились при температуре 25°C и ΔP=0,75 МПа.

Таким образом, минимально допустимое содержание ВПК-402 в предлагаемом растворе составляет 1,4%, что приводит к снижению показателя фильтрации, позволяет управлять реологическими свойствами и сохранить устойчивость глинистых пород.

Повышение термостойкости до 220°C и снижение показателя фильтрации в забойных условиях обеспечивается вводом жидких парафинов C10-C16. При уменьшении жидкого парафина C10-C16 (менее 5,3%) (табл.2, п.3) показатель фильтрации после термостатирования увеличивается, а при увеличении жидкого парафина C10-C16 (более 8,8%) (табл.2, п.7) наблюдается перерасход при незначительном изменении показателя фильтрации.

Дополнительно проверялась термостойкость утяжеленного раствора путем термостатирования при 220°C в течение 36 часов. Буровой раствор при указанных концентрациях компонентов в составе раствора полностью восстанавливается после термостатирования при 220°C (табл.2, п.4-7). Кроме того, при содержании в составе раствора жидкого парафина C10-C16 снижается показатель фильтрации при высоких забойных температурах, например при 130°C и 220°C (табл.3).

Предлагаемый буровой раствор обладает повышенной устойчивостью к солевой агрессии: добавка солей натрия, кальция, алюминия и др. практически не влияет на технологические показатели бурового раствора (табл.2, п.п.8-10 и табл.3, п.7).

Данный буровой раствор может быть приготовлен, например, следующим образом. Сначала перемешивают воду с глинопорошком до его полного распускания, затем в глинистую суспензию добавляют ВПК-402 и жидкий парафин C10-C16, и затем вводят пеногаситель MAC-200.

В случае необходимости увеличение плотности бурового раствора производится добавками барита до требуемой плотности бурового раствора.

В отличие от всех существующих буровых растворов на водной основе, используемых при строительстве скважин, pH среды практически не оказывает влияние на ингибирующие и термосолестойкие свойства, а также на технологические показатели предлагаемого бурового раствора и поэтому его регулирование не производится.

Таблица 1
Влияние концентрации ВПК-402 на устойчивость набухающих глинистых пород
Состав раствора Поведение глинистых образцов, выдержанных в среде раствора в течение 10 сут
Известный раствор (прототип)
1 94,34% Вода +5,6% Глинопорошок +0,06% ВПК-402 набухание и разрушение
2 94,1%) Вода +5,6% Глинопорошок +0,3% ВПК-402 набухание и разрушение
Предлагаемый раствор
3 87%) Вода +4,1% Глинопорошок +1,3% ВПК-402 +7,5% Жидкий парафин С1016 +0,1% МАС-200 незначительное набухание
4 86,8%) Вода +4,1% Глинопорошок +1,4% ВПК-402 +7,5% Жидкий парафин С1016 +0,2% МАС-200 набухание отсутствует
5 86,7%) Вода +4,1% Глинопорошок +1,6% ВПК-402 +7,4% Жидкий парафин C10-C16+ 0,2% МАС-200 Набухание отсутствует
6 86,6% Вода +3,9% Глинопорошок +2,1% ВПК-402 +7,2%о Жидкий парафин C10-C16 +0,2% МАС-200 набухание отсутствует
7 86,5% Вода +3,9% Глинопорошок +2,4% ВПК-402 +7% Жидкий парафин С1016 +0,2% МАС-200 набухание отсутствует
Таблица 2
Технологические показатели буровых растворов до и после термостатирования
Состав раствора, масс.% Добавка соли, % ПФ Показатели раствора
при 25°C при 82°C
ηпл τ0 ηпл τ0
1 94,1% Вода +5,6% Глинопорошок+0,3% ВПК-402 75 10 17,1 6 11,7
после термостатирования при 220°C в течение 36 ч >100 раствор расслоился
2 94% Вода +4,5% Глинопорошок +1,3% ВПК-402 +0,2% МАС-200 11 18 5,4 13 3,7
после термостатирования при 220°C в течение 36 ч >40 16 3,4 9 2,8
Предлагаемый раствор
3 89,74% Вода +4,3% Глинопорошок +1,3% ВПК-402 +4,6% Жидкий парафин C10-C16 +0,06% МАС-200 7 20 5,7 14 4,4
после термостатирования при 220°С в течение 36 ч 25 16 5,4 12 4,4
4 89,94% Вода +3,3% Глинопорошок +1,4% ВПК +5,3% Жидкий парафин C10-C16 +0,06% МАС-200 4 28 8,4 15 6,2
после термостатирования при 220°С в течение 36 ч 6 16 5,4 12 4,4
5 87% Вода +4,1% Глинопорошок +1,8% ВПК +6,9% Жидкий парафин C10-C16 +0,2% МАС-200 3,5 40 8,4 16 6,2
после термостатирования при 220°С в течение 36 ч 4,5 23 5,8 13 4,8
6 85,1% Вода +4,1% Глинопорошок +1,8% ВПК +8,8% Жидкий парафин C10-C16 +0,2% МАС-200 3 44 9,6 16 6,6
после термостатирования при 220°С в течение 36 ч 4 25 6,2 15 5,2
7 82% Вода +3,8% Глинопорошок +1,7% ВПК +12,3% Жидкий парафин C10-C16 +0,2% МАС-200 3 55 10,8 25 9,4
после термостатирования при 220°C в течение 36 ч 4 38 10,2 24 8,8
8 87% Вода +4,1% Глинопорошок +1,8% ВПК +6,9% Жидкий парафин C10-C16 +0,2% МАС-200 30% NaCl 4 35 8,2 18 5,8
после термостатирования при 220°C в течение 36 ч 5 26 6,2 16 5,2
9 87% Вода +4,1% Глинопорошок +1,8% ВПК +6,9% Жидкий парафин C10-C16 +0,2% МАС-200 30% CaCl2 4 48 7,4 26 5,8
после термостатирования при 220°С в течение 36 ч 6 46 6,4 22 6,0
10 87% Вода +4,1% Глинопорошок +1,8% ВПК +6,9% Жидкий парафин C10-C16 +0,2% МАС-200 15% Al2(SO4)3 4 38 6,4 23 6,4
после термостатирования при 220°C в течение 36 ч 4,5 44 8,4 26 7,8

1. Буровой раствор, включающий воду, глинопорошок, полиэлектролит ВПК-402, отличающийся тем, что раствор дополнительно содержит жидкий парафин C10-C16 и пеногаситель MAC-200 при следующем соотношении компонентов, мас.%:

Глинопорошок 3,3-5,3
ВПК-402 1,4-2,4
Жидкий парафин C10-C16 5,3-8,8
Пеногаситель MAC-200 0,06-0,2
Вода Остальное

2. Раствор по п.1, отличающийся тем, что раствор дополнительно содержит утяжелитель, в качестве которого используют барит, взятый в количестве, необходимом для получения бурового раствора расчетной плотности.



 

Похожие патенты:

Изобретение относится к способам и композициям для определения геометрии трещин в подземных образованиях. .

Изобретение относится к области получения изолирующего гелеобразующего раствора на водной основе и может быть использовано в строительной индустрии, нефтегазодобывающей отрасли для изоляции водопритоков, при работах по увеличению нефтеотдачи.
Изобретение относится к нефтедобывающей промышленности, в частности, к составам для изоляции водопритока в добывающих и нагнетательных скважинах. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам селективной изоляции водопритоков в газовых и нефтяных скважинах, герметизации затрубного пространства, устранению межпластовых перетоков в скважинах с близкорасположенным газонефтеводяным контактом, в том числе в условиях низкопроницаемых коллекторов.
Проппант // 2490299
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении операции гидравлического разрыва продуктивного пласта (ГРП) для повышения эффективности добычи углеводородного сырья.
Изобретение относится к хелатам цирконя и их использованию на нефтяных месторождениях. .
Изобретение относится к хелатам цирконя и их использованию на нефтяных месторождениях. .

Изобретение относится к жидкостям для обработки приствольной зоны подземных формаций. .
Изобретение относится к нефтяной промышленности и может найти применение при удалении асфальтено-смоло-парафиновых отложений АСПО в процессе добычи нефти. .
Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и вскрытии продуктивных пластов

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам получения реагентов-ингибиторов, обладающих дополнительными стабилизирующими свойствами, для обработки буровых растворов на водной основе, применяемых при бурении нефтяных и газовых скважин

Изобретение относится к устройствам для обработки призабойной зоны за счет гидроразрыва пласта газообразными продуктами сгорания твердых топлив
Изобретение относится к нефтегазодобывающей промышленности, в частости к герметизирующим составам для изоляционных работ в скважине, которые могут быть использованы для изоляции межколонного и заколонного пространства при эксплуатации скважин на нефтяных и газовых месторождениях, а также на подземных хранилищах газа. Герметизирующий состав для изоляционных работ в скважине состоит из синтетической смолы и отвердителя. Состав дополнительно содержит ингибитор коррозии «ИНКОРГА3-21Т», в качестве синтетической смолы - Композицию эпоксидную марки ХТ-116 Компонент А, в качестве отвердителя - Отвердитель холодного отверждения марки ХТ-116 компонент Б при следующем соотношении ингредиентов, об.%: Композиция эпоксидная марки ХТ-116 Компонент А - 70-74; Отвердитель холодного отверждения марки ХТ-116 компонент Б - 10-14; Ингибитор коррозии «ИНКОРГА3-21Т» - остальное, причем соотношение мас.ч. Отвердитель холодного отверждения марки ХТ-116 компонент Б и Композиция эпоксидная марки ХТ-116 Компонент А составляет 1:6,5-8,6 соответственно. Изобретение позволяет повысить эффективность изоляционных работ.

Изобретение относится к способам использования добавок контроля потери текучих сред. Буровой раствор, содержащий текучую среду на водной основе и добавку для контроля потери текучей среды, содержащую, по меньшей мере, один полимерный микрогель, содержащий продукт реакции, полученный реакцией полимеризации полимера или сополимера и агента для поперечной сшивки, где полимер или сополимер содержит, по меньшей мере, одну единицу на основе, по меньшей мере, одного соединения из группы: полибутиленсукцинат, полибутиленсукцинат-со-адипат, полигидрокси-бутирата-валерат, полигидрокси-бутират-совалерат, амиды сложных полиэфиров, полиэтилентерефталаты, сульфонированный полиэтилен-терефталат, полипропилены, алифатический ароматический сложный сополиэфир, хитины, хитозаны, белки, алифатические сложные полиэфиры, поли(простые эфиры сложных гидроксиэфиров), поли(гидроксибутираты), поли(ангидриды), сложные поли(ортоэфиры), поли-(аминокислоты), поли(фосфазены), их сополимер, их гомополимер, их тетраполимер и любое их производное. Способ включает получение состава для обработки приствольной зоны на водной основе, содержащего указанную выше добавку, введение состава в подземную формацию, предоставление возможности указанной добавке для поступления в фильтрационную корку на поверхности внутри подземной формации, предоставление возможности фильтрационной корке для деградации и добычу углеводородов из формации. Способ включает получение указанного выше бурового раствора, введение его в подземную формацию, предоставление возможности указанной добавке для поступления в фильтрационную корку на поверхности внутри подземной формации, предоставление возможности фильтрационной корке для деградации и добычу углеводородов из формации. Способ включает получение внутрифильтрового загустителя, содержащего указанные выше текучую среду на водной основе и добавку, размещение загустителя в подземной формации между фильтром с гравийным пакерованием и участком подземной формации. Изобретение развито в зависимых пунктах. Технический результат - повышение эффективности контроля потери текучей среды, снижение остаточного повреждении. 4 н. и 18 з.п. ф-лы, 2 ил., 1 табл., 13 пр.
Изобретение относится к нефтегазодобывающей промышленности, а именно к производству проппантов с полимерным покрытием при добыче нефти и газа методом гидравлического разрыва пласта (ГРП). Способ изготовления проппанта с полимерным покрытием включает нанесение на гранулы полимерного покрытия из фенолформальдегидной смолы с гексаметилентетрамином и жидкой эпоксидной смолой с отвердителем, перед покрытием гранул готовят раствор фенолформальдегидной смолы с гексаметилентетрамином, который смешивают с жидкой эпоксидной смолой с отвердителем, в соотношении, мас.%: жидкая эпоксидная смола с отвердителем 20-80 и раствор фенолформальдегидной смолы с гексаметилентетрамином 20-80, причем содержание растворителя в растворе фенолформальдегидной смолы составляет 5-90%. Изобретение развито в зависимых пунктах формулы. Технический результат - обеспечение монолитного каркаса пачки проппанта при температурах эксплуатации 40-140°C. 2 з.п. ф-лы, 5 пр., 2 табл.
Изобретение относится к нефтегазодобывающей промышленности, в частности к технологии предупреждения газонефтеводопроявлений в межколонном пространстве (МКП) при эксплуатации скважин. Способ заключается в заполнении межтрубного пространства выше цементного раствора глинистым раствором. При этом применяют глинистый нестабилизированный раствор, утяжеленный баритом, который прокачивают во время процесса цементирования перед цементным раствором для создания баритовой пробки. Причем объем утяжеленного раствора не менее объема межтрубного пространства над цементом. Техническим результатом является повышение эффективности предупреждения межколонных газонефтеводопроявлений в нефтяных и газовых скважинах. 1 пр.

Изобретение относится к водной композиции для эксплуатационных скважин и к способу ингибирования бактериального загрязнения с использованием водной композиции для эксплуатационных скважин. Водная композиция для эксплуатации скважин, предназначенная для закачивания в эксплуатационную скважину, содержит: воду, полимер, выбранный из группы, состоящей из галактоманнановых полимеров, производных галактоманнановых полимеров, крахмала, ксантановых камедей, гидроксицеллюлоз, гидроксиалкилцеллюлоз, полимеров поливинилового спирта, сополимеров винилового спирта и винилацетата, и полимеров, которые являются продуктом реакции полимеризации одного или нескольких мономеров, выбранных из группы, состоящей из винилпирролидона, 2-акриламидо-2-метилпропансульфоновой кислоты, акриловой кислоты и акриламида, биоцид, состоящий из 3,5-диметил-1,3,5-тиадиазин-2-тиона в количестве, эффективном для ингибирования бактериального роста. Способ ингибирования бактериального загрязнения с использованием водной композиции для эксплуатационных скважин, предназначенной для закачивания в эксплуатационную скважину, включающий добавление эффективного для ингибирования бактериального роста количества биоцида, состоящего из 3,5-диметил-1,3,5-тиадиазин-2-тиона, в водную композицию для эксплуатационных скважин и закачивание вышеуказанной водной композиции в эксплуатационную скважину. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение эффективности ингибирования бактериального роста. 2 н. и 20 з.п. ф-лы, 6 пр., 9 табл., 6 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при кислотной обработке призабойной зоны пласта для повышения интенсификации добычи нефти. Технический результат - интенсификация добычи нефти, обеспечение совместимости состава обработки и пластового флюида даже при наличии трехвалентного железа в количестве 2000 ppm и более, устойчивости к замерзанию при одновременном сохранении свойства замедления скорости реакции с карбонатной породой. Поверхностно-активный кислотный состав для обработки карбонатных коллекторов содержит, мас.%: соляную кислоту (в пересчете на НСl) 6,0-24,0; спиртосодержащее соединение 5,0-30,0; поверхностно-активное вещество ПАВ - средство моющее техническое «ЖениЛен» 0,5-2,0; катионное ПАВ - ОксиПАВ или Дон-96 0,2-1,0; стабилизатор железа 0,5-3,0; воду остальное. Изобретение развито в зависимых пунктах. 2 з.п. ф-лы, 2 табл., 1 пр., 1 ил.
Наверх