Способ балансировки вала гибкого ротора

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке гибких роторов компрессоров, турбоагрегатов и валопроводов газоперекачивающих агрегатов. Способ балансировки вала гибкого ротора заключается в том, что вал разбивают на участки. Выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции. Корректируют дисбалансы участков вала удалением материала в плоскостях коррекции. Измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции. На поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков. Поочередно, после снятия очередного грузика, балансируют вал с использованием соответствующей плоскости коррекции. Массы уравновешивающих грузиков определяют из определенной зависимости. Изобретение направлено на повышение точности балансировки. 3 ил.

 

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке гибких роторов компрессоров, турбоагрегатов и валопроводов газоперекачивающих агрегатов.

В ГОСТ 31320-2006 «Методы и критерии балансировки гибких роторов» указано: «Для гибких роторов распределение дисбаланса вдоль оси является … более важной характеристикой, … поскольку от этого распределения зависит степень возбуждения … изгибных колебаний.

Ротор полностью уравновешен, если устранены локальные дисбалансы на каждом участке ротора … вдоль него, посредством коррекции дисбалансов этих участков».

Известен способ балансировки вала по патенту №2426014 Российской федерации, при котором вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции. Балансируют вал по технологии, предусмотренной для жестких роторов.

Данный способ балансировки вала взят за прототип.

Недостатком известного способа является то, что многоплоскостная уравновешенность вала обеспечивается без учета погрешностей изготовления каждого участка.

При изготовлении удлиненных валов 2,4-4 м и более, массой 500-1000 кг и более, погрешности концентричности (эксцентриситеты) участков вала могут достигать 5-7 мкм и более.

Остаточные дисбалансы в каждой плоскости коррекции после балансировки не должны превышать 200-300 г·мм. Обусловленные собственными эксцентриситетами локальные дисбалансы участков вала длиною 500 мм, диаметром 200 мм могут достигать 600-860 г·мм и более при известных величинах эксцентриситетов. При известном способе балансировки эти величины не могут быть учтены, что приведет к случайному положению остаточных дисбалансов (погрешностям).

Технической задачей настоящего изобретения является повышение точности балансировки за счет минимизация локальных дисбалансов вала, обусловленных эксцентриситетами его участков, полученных вследствие погрешностей изготовления.

Технический результат достигается тем, что вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции, на поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно после снятия очередного грузика балансируют вал с использованием соответствующей плоскости коррекции, при этом массы уравновешивающих грузиков определяют из зависимости:

m y = π 4 D y Δ D i D i 2 l i ρ

где: my - масса уравновешивающего грузика, Dy - диаметр окружности установки центра массы грузика; ΔDi - величина максимального радиального биения участка вала, Di - диаметр цилиндрической поверхности участка, вала; li - длина участка вала, ρ - плотность материала.

На поверхностях участков вала в плоскостях коррекции устанавливают эти грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно после снятия очередного грузика балансируют вал с использованием соответствующей плоскости коррекции.

Способ поясняется чертежами, представленными на фигурах 1, 2 и 3.

На фиг.1 изображен вал. установленный на измерительных призмах.

На фиг.2 - определяемые места поверхностей участков для установки уравновешивающих грузиков.

На фиг.3 - вал, установленный на балансировочном станке.

Вал 1 (фиг.1) разбивают на участки, устанавливают его на измерительные призмы 2. Определяют центры масс ЦМ участков вала, например, с использованием любой САПР. Выбирают плоскости поперечных сечений А, Б, В, Г, Д, проходящих через центры масс участков, в качестве плоскостей коррекции. Проводят измерения максимальных радиальных биений поверхностей участков в плоскостях коррекции с использованием измерительных приборов 3, например индикаторов часового типа или растровой системы.

Определяют места поверхностей участков для установки уравновешивающих грузиков my, диаметрально противоположных максимальным радиальным биениям ΔDi (фиг.2).

Устанавливают вал на балансировочный станок 4 (фиг.3), устанавливают грузики 5. Проводят многоплоскостную балансировку вала после снятия очередного уравновешивающего грузика (показано применительно к плоскости B), корректируя дисбалансы удалением металла в плоскостях коррекции. При этом массы уравновешивающих грузиков рассчитывают из зависимости:

m y = π 4 D y Δ D i D i 2 l i ρ

где: my - масса уравновешивающего грузика, Dy - диаметр окружности установки центра массы грузика; ΔDi - величина максимального радиального биения участка вала; Di - диаметр цилиндрической поверхности участка, вала; li - длина участка вала, ρ - плотность материала.

После балансировки с использованием всех плоскостей коррекции уравновешенность вала будет соответствовать требованиям ГОСТ 31320-2006 «Методы и критерии балансировки гибких роторов».

Таким образом, применение предлагаемого способа позволяет минимизировать локальные дисбалансы вала гибкого ротора, обусловленные эксцентриситетами его участков, полученными вследствие погрешностей изготовления, что обеспечивает повышение точности балансировки.

Способ балансировки вала гибкого ротора, при котором вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, отличающийся тем, что измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции, на поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно, после снятия очередного грузика, балансируют вал с использованием соответствующей плоскости коррекции, при этом массы уравновешивающих грузиков определяют из зависимости:
m y = π 4 D y Δ D i D i 2 l i ρ
где my - масса уравновешивающего грузика; Dy - диаметр окружности установки центра массы грузика; ΔDi - величина максимального радиального биения участка вала; Di - диаметр цилиндрической поверхности участка вала; li - длина участка вала; ρ - плотность материала.



 

Похожие патенты:

Изобретение относится к области нефтяного машиностроения, а именно к оборудованию для испытаний гидравлических ясов. .

Изобретение относится к испытанию и техническому диагностированию машин, в частности к способу тяговых испытаний транспортных машин (преимущественно трактора) при трогании с места под нагрузкой.

Изобретение относится к области измерительной техники и может быть использован для определения положения центра масс объектов энерго-, тяжелого и транспортного машиностроения, например, крупногабаритных объемных металлоконструкций.

Изобретение относится к оборудованию для испытаний на надежность окон, дверей, различных открывающихся створок и может быть использовано при механических испытаниях.

Изобретение относится к области машиностроения, а именно к технологии балансировки вращающихся элементов роторных систем, например центробежных насосов, компрессоров, центрифуг и др.

Изобретение относится к станкам для динамической балансировки колес транспортных средств и предназначено для повышения производительности за счет уточнения параметров одной из плоскостей коррекции в процессе балансировки колеса.

Изобретение относится к оборудованию для испытания колесных транспортных средств. .

Изобретение относится к балансировочной технике и может быть использовано для балансировки карданных передач. .

Изобретение относится к рабочему колесу уентробежного насоса, имеющему лопасти. .

Изобретение относится к высокооборотным шнекоцентробежным насосам для подачи различных жидкостей, в частности топлива, и может быть использовано, например, в ракетной технике.

Изобретение относится к области испытания центробежных, осевых и других насосов и предназначено для снятия энергетических, виброшумовых, кавитационных характеристик насосов, ресурсных испытаний, в том числе на горячей воде.

Изобретение относится к области двухконтурных турбореактивных двигателей и предназначено для снижения шума, производимого двигателем, в частности шума, производимого компрессором.

Изобретение относится к радиальным вентиляторам. .

Изобретение относится к насосостроению и может быть использовано для перекачки жидкостей. .

Изобретение относится к вентиляторостроению и позволяет при его использовании обеспечить расширение области устойчивой работы и промышленного использования вентилятора путем уменьшения вращающегося срыва в его лопаточных венцах.

Изобретение относится к области машиностроения и может быть использовано при балансировке роторов с магнитными подвесами компрессоров газоперекачивающих агрегатов.

Изобретение относится к нефтедобывающей отрасли и может быть использовано для гашения вибрации, предотвращения маятникового эффекта, предохранения электрокабеля от механических повреждений.

Изобретение относится к насосостроению, в частности к насосам центробежного типа с рабочим осерадиальным колесом тоннельного тина с односторонним осевым входом. Центробежный насос содержит корпус с входным патрубком, переходящим в центральную часть корпуса. Центральная часть корпуса переходит в напорный патрубок. В центральной части корпуса установлено рабочее колесо тоннельного типа. На переднем кольцеобразном диске колеса выполнены кольцевые каналы. На внутренней стенке центральной части корпуса перед входом в напорный патрубок выполнена ступенька. На внутренней стороне крышки корпуса, установленной со стороны входного патрубка, выполнены кольцевые буртики. Изобретение направлено на увеличение КПД и максимально допустимой скорости вращения и уменьшение лобового сопротивления вращению и уровня шума. 3 ил.

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке гибких роторов компрессоров, турбоагрегатов и валопроводов газоперекачивающих агрегатов

Наверх