Способ определения анизотропии порового пространства и положения главных осей тензора проницаемости горных пород на керне

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна. Проводят исследование керна, для этого первоначально керновый материал экстрагируют и высушивают, из него изготавливают пластину толщиной 3-5 мм. Затем на закрепленную пластину на горизонтальной поверхности дозированно по каплям на центр пластины подают дистиллированную воду, а наличие анизотропии и направление главных осей анизотропии проницаемости определяют по форме образующегося на пластине мокрого пятна. Техническим результатом изобретения является создание экспресс-метода установления латеральной анизотропии фильтрационно-емкостных свойств пористых сред и положения главных осей тензора проницаемости горных пород на керне. 1 ил.

 

Изобретение относится к области исследования структуры порового пространства горных пород и предназначено для определения латеральной анизотропии фильтрационных свойств терригенного коллектора по результатам исследования его керна.

Известен способ определения коэффициентов анизотропии и характеристик главных осей анизотропии порового пространства горных пород методом ядерного магнитного резонанса, основанный на явлении ограниченной самодиффузии молекул жидкости, заключающийся в том, что наносят на образец видимую метку для измерения угла поворота образца вокруг своей оси, насыщают образец протонсодержащей жидкостью, помещают его в датчик спектрометра, совмещают видимую метку образца с направлением вдоль выбранной оси лабораторной системы координат, далее производят вращение образца вокруг своей оси с равномерным угловым шагом на текущий угол поворота, пока величина указанного угла поворота между меткой и направлением вдоль выбранной оси лабораторной системы координат не достигнет 360°, при этом для каждого текущего угла поворота проводят измерение текущей угловой амплитуды сигнала спин-эхо от протонсодержащей жидкости в исследуемом образце до и после воздействия на образец фиксированной величины импульсного градиента магнитного поля, значение которого после достижения угла поворота в 360° ступенчато изменяют в сторону увеличения или в сторону уменьшения, и вновь проводят по вышеприведенной схеме измерение текущей угловой амплитуды сигнала спин-эхо от протонсодержащей жидкости в исследуемом образце до и после воздействия на образец указанной измененной величины импульсного градиента магнитного поля, далее по массиву измеренных при фиксированной величине импульсного градиента магнитного поля текущих угловых амплитуд сигнала спин-эхо определяются коэффициенты анизотропии и характеристики главных осей анизотропии порового пространства горных пород [1]. Недостатком этого способа изучения порового пространства горных пород является его сложность и долговременность.

Известен также способ изучения анизотропии горных пород на керне, заключающийся в определении латеральной анизотропии коллектора с помощью стандартной методики по определению упругих свойств образца горной породы - керна. Керн подвергается одноосному сжатию и по его боковой поверхности с помощью тензодатчиков измеряются деформации. Если свойства горной породы изотропные, то деформации во всех направлениях равны и в результате измерений получается окружность, если же имеет место анизотропия упругих свойств, то получаются при измерении фигуры в виде овала. При этом экстремальные деформации соответствуют экстремальным фильтрационным свойствам и указывают направления главных осей тензора коэффициентов проницаемости [2]. Недостатком данного способа является также необходимость использования специальных приборов и проведения довольно длительных исследований.

Наиболее близким к описываемому способу является методика определения анизотропных характеристик коллекторов, заключающаяся в анализе результатов литолого-петрофизических исследований ориентированного керна, определении предпочтительной ориентации удлиненных частиц, слагающих коллектор, и эллиптической аппроксимации коллектора. При этом при определении латеральной анизотропии подразумевается, что измерения производятся в плоскостях напластований и направление, перпендикулярное плоскости напластования, совпадает с главным направлением тензора коэффициентов проницаемости [3].

Основным недостатком известного способа является потребность использования дорогостоящего оборудования и длительной обработки результатов проведенных измерений.

Технической задачей предлагаемого изобретения является создание экспресс метода установления латеральной анизотропии фильтрационно-емкостных свойств пористых сред и положения главных осей тензора проницаемости горных пород на керне.

Поставленная техническая задача решается за счет того, что в способе определения анизотропии порового пространства и положения главных осей тензора проницаемости горных пород на керне, включающем исследование ориентированного керна, анализ результатов исследований и определение направления главных осей анизотропии проницаемости в плоскости напластования горных пород, керновый материал экстрагируют и высушивают, из кернового материала изготавливают пластину толщиной 3-5 мм, на закрепленную пластину на горизонтальной поверхности дозировано по каплям на центр пластины подают дистиллированную воду, а наличие анизотропии и направление главных осей анизотропии проницаемости определяют по форме образующегося на пластине мокрого пятна.

На чертеже представлена схема проведения эксперимента по определению анизотропии порового пространства и положения главных осей тензора проницаемости горных пород на керне, на котором обозначено: 1 - пластина из керна горной породы, 2 - пятно от дистиллированной воды на пластине, 3 - направление главных осей тензора проницаемости образца горной породы.

Сущность изобретения заключается в следующем. В нем используются свойства капиллярных сил, которые обратно пропорциональны диаметрам капилляров. При наличии латеральной анизотропии диаметры капилляров пористой среды в разных направлениях различны, и как следствие при смачивании пористой среды дистиллированной водой капиллярное пропитывание поверхности образца будет не равномерным по окружности, а эллиптическим.

Перед началом экспериментальных исследований испытуемый образец (исходный керновый материал диметром 10-15 см и высотой 15-20 см) торцуется, экстрагируется и высушивается.

Далее, из исследуемого в лаборатории образца, изготавливается специальный образец для проведения исследований по экспресс методу - тонкая пластина (толщиной 3-5 мм), которая выпиливается из исходного кернового материала (позиция 1 на чертеже). Ось симметрии керна считается совпадающей с главным направлением тензора коэффициентов проницаемости и образец выпиливается с помощью циркулярной пилы, либо лазерной резкой.

Подготовленная соответствующим образом пластина закрепляется на строго горизонтальной поверхности. После этого над центром пластины на высоте 5-10 мм от поверхности устанавливается емкость с жидкостью - медицинский шприц, капельница или пипетка. В качестве жидкости можно использовать дистиллированную воду, при необходимости подкрашенную. Используемый объем жидкости может составлять порядка половины порового объема испытываемого образца. Жидкость из установленной над поверхностью пластины емкости дозировано, по каплям вводится в образец таким образом, чтобы каждая капля полностью впитывалась в поверхность пластины и лишь затем на пластину подается следующая капля жидкости.

В результате пропитки образца будет образовываться «мокрое пятно» (позиция 2 на чертеже), которое может иметь различную форму. Например, если в среднем диаметры капилляров одинаковы по всем направлениям, то «мокрое пятно» будет круглым, а если имеет место наличие анизотропии, т.е. размеры диаметров пор в среднем различные, то «мокрое пятно» будет иметь форму эллипса. По ориентации эллипса на пластине керна можно определить направления главных осей тензора проницаемости, которые совпадают с полуосями эллипса.

Использование описываемого способа позволяет без использования дорогостоящего оборудования за короткий срок определять анизотропию фильтрационно-емкостных свойств пористых сред и направления главных осей тензора проницаемости.

Источники информации

1. Авторское свидетельство СССР №2292541 C1, кл. G01N 24/08, 2007.

2. Семенов В.В., Казанский А.Ю., Банников Е.А. Изучение анизотропии горных пород на керне и ее ориентация в пространстве палеомагнитным методом. // Геология, геофизика и разработка нефтяных и газовых месторождений. 2008, №1, с.18-23.

3. Исказиев К.О., Кибиткин П.П., Меркулов В.П. Методика определения анизотропных характеристик коллекторов. // Нефтяное хозяйство. 2007, №1, с.30-31.

Способ определения анизотропии порового пространства и положения главных осей тензора проницаемости горных пород на керне, включающий исследование ориентированного керна, анализ результатов исследований и определение направления главных осей анизотропии проницаемости в плоскости напластования горных пород, отличающийся тем, что керновый материал экстрагируют и высушивают, из кернового материала изготавливают пластину толщиной 3-5 мм, на закрепленную пластину на горизонтальной поверхности дозированно по каплям на центр пластины подают дистиллированную воду, а наличие анизотропии и направление главных осей анизотропии проницаемости определяют по форме образующегося на пластине мокрого пятна.



 

Похожие патенты:

Изобретение относится к петрофизическим методам определения свойств пород и может быть использовано в нефтяной геологии для определения смачиваемости пород-коллекторов нефти и газа.

Изобретение относится к контролю качества бетонов, растворов и цементного камня. .

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.

Изобретение относится к области исследования строительных материалов и контрольно-измерительной технике, и может быть использовано для определения пористости керамических и силикатных материалов.

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п.

Изобретение относится к технологиям нефтедобычи, а именно к способам гидродинамического моделирования залежей и проектирования на их основе разработки месторождений.

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации.

Изобретение относится к области нефтяной геологии и является петрофизической основой объемного моделирования нефтенасыщенности, подсчета балансовых и извлекаемых запасов залежи дифференцированно, с учетом предельно нефтенасыщенной и переходной зон, для прогнозирования результатов опробования и анализа разработки.

Изобретение относится к теоретической теплотехнике и может быть использовано для определения коэффициента диффузии жидкости в материалах, имеющих капиллярно-пористую структуру.

Изобретение относится к нефтегазовой промышленности. .

Изобретение может быть использовано при разработке месторождений углеводородов. Устройство для оценки динамики процесса прямоточной капиллярной пропитки образцов пород относится к области петрофизических исследований. Устройство предназначено для определения динамики изменения веса образца породы в процессе капиллярной прямоточной пропитки и расчета на основе полученных данных некоторых петрофизических параметров, в частности количества защемленного газа. В устройстве реализовано автоматическое сохранение уровня контактирующей с образцом жидкости без жесткой или упругой связи с буферной емкостью, подпитывающей водой образцовую камеру. Это позволяет проводить, практически без погрешности, постоянное взвешивание образцовой камеры с образцом, который в процессе впитывания воды за счет капиллярного насыщения постоянно увеличивает свой вес. Данные изменения веса во времени, зафиксированные электронными весами, обрабатываются с помощью компьютера. Техническим результатом является повышение точности оценки динамики насыщения породы за счет гидродинамической связи образцовой камеры и буферной емкости. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов влагопроводности ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ определения коэффициента влагопроводности листовых ортотропных капиллярно-пористых материалов включает создание в исследуемом образце равномерного начального влагосодержания, импульсное соприкосновение исследуемого образца с источником влаги, измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента влагопроводности. При этом импульсное увлажнение исследуемого изделия осуществляют по прямой линии движущимся источником влаги постоянной производительности в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного увлажнения на прямых, параллельных линии импульсного увлажнения, расположенных на одинаковом заданном расстоянии от нее. Затем рассчитывают искомый коэффициент по формуле: D = x 0 2 / ( 2 τ max ) , где τmax - время достижения максимума на кривой изменения ЭДС гальванического преобразователя; х0 - расстояние между линией импульсного увлажнения и расстоянием до линий расположения электродов гальванического преобразователя. Техническим результатом изобретения является повышение точности контроля и обеспечение возможности определения коэффициентов влагопроводности в различных направлениях ортотропного листового материала.
Изобретение относится к области экологии и сельского хозяйства и предназначено для определения коэффициента фильтрации плывунного грунта в зоне распространения подзолистых почв. Через образец грунта пропускают поток воды. На поверхности образца грунта размещают грузик. Фиксируют начало погружения грузика. Измеряют параметры образца и потока воды. Рассчитывают по измеренным показателям коэффициент фильтрации грунта. Фиксируют величину концентрации фульвокислоты в потоке воды, прошедшем через образец грунта. При снижении величины концентрации на 10% от начального значения вводят в поток воды, направляемый в образец грунта, раствор фульвокислоты, восстанавливая величину концентрации фульвокислоты в потоке воды, прошедшем через образец грунта, до начального значения. Использование заявленного способа расширяет функциональные возможности определения коэффициента фильтрации грунта, позволяет быстро и точно определить коэффициент фильтрации грунта, подверженного воздействию фульвокислоты, в зоне распространения подзолистых почв. 1 табл., 1 пр.

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости хлебобулочного изделия и устройства для его осуществления, включающем выемку пористого куска мякиша, при выемке пористый кусок мякиша представляет собой всю плоскость разреза хлебобулочного изделия. Когерентное излучение от источника поступает в коллиматор, на выходе которого формируется пучок параллельных световых лучей. Далее световой пучок освещает поверхность пористого куска мякиша хлебобулочного изделия, находящегося в рабочей зоне, образуя некоторый угол «θ» с нормалью к поверхности. Отраженные от пористой поверхности рассеянные световые лучи собирают и строят изображение структуры пористого куска мякиша в плоскости наблюдения, где и измеряют размеры пор куска мякиша хлебобулочного изделия, при этом пористость определяют по формуле: I ¨ = S ¯ I ¨ S I ˙ ⋅ 100 , где S ¯ I ¨ - суммарная усредненная площадь пор куска мякиша; S I ˙ - площадь пористого куска мякиша. Причем рабочей зоне устанавливают всю поверхность разреза хлебобулочного изделия.Технический результат - повышение точности измерения за счет количественного измерения пористости хлебобулочного изделия. 2 н.п.ф-лы, 1 ил.

Изобретение относится к методам неразрушающего контроля горных пород, а именно к способам установления детальной характеристики структуры трещинно-порового пространства кристаллических пород, определения скрытых неоднородностей, флюидопроницаемости. Способ определения неоднородностей упругих и фильтрационных свойств горных пород заключается в том, что выбуренные из горного массива цилиндрические образцы керна различной длины просвечивают ультразвуковыми продольными P-волнами по регулярной сетке во множестве направлений как угловых, так и вдоль оси образца керна. Затем определяют скорости упругих продольных волн в высушенных образцах и в насыщенных жидкостью. Получают массив данных скоростей упругих продольных волн для обоих состояний, который обрабатывают для получения данных о двумерном распределении скоростей и их отклонений от среднего значения для высушенных образцов и насыщенных жидкостью, представляемом в виде цветной или монохромной топографической карты с изолиниями с заполнением между ними или без него с координатами двугранный угол наблюдения - высота наблюдения датчика. Далее сравнивают полученные результаты измерений скоростей в высушенных образцах и в насыщенных жидкостью. Затем сравнивают результаты измерения скоростей упругих волн для образцов, насыщенных жидкостью, и для образцов в обоих состояниях, далее делают вывод о неоднородностях упругих и фильтрационных свойств горных пород, о степени насыщенности жидкостью горной породы и судят о том, какие нарушения имеются в естественном залегании массива пород. Техническим результатом является повышение эффективности и упрощение прогноза неоднородностей массива горных пород, невидимых трещин, внутренних контактов пород. 3 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области тестирования на герметичность и может быть использовано для тестирования на герметичность фильтрованного устройства (2) для сепарации аэрозолей и пылей из объемного потока газа. Сущность: посредством загрузочного устройства (16) тестовый аэрозоль подают, если смотреть в направлении потока, до фильтрующего элемента (9) в поток неочищенного газа. Осуществляют замер числа частиц и/или определяют концентрацию частиц, если смотреть в направлении потока, в очищенном потоке газа после фильтрующего элемента (9). При этом в загрузочное устройство (16) подают первый смешанный объемный поток из тестового аэрозоля и сжатого воздуха, который формирует аэрозольный генератор (37). Произведенный при помощи аэрозольного генератора (37) первый смешанный объемный поток смешивают с объемным потоком воздуха для получения второго, более разреженного смешанного объемного потока. Подают второй, более разреженный смешанный объемный поток на загрузочное устройство (16). Технический результат: минимизация расхода сжатого воздуха. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к способу испытания бумажных фильтрующих элементов для очистки жидкостей, нефтепродуктов. Способ контроля ресурса фильтроэлемента включает прокачку жидкости, смешанной с искусственным загрязнителем, и фиксацию перепада давления на фильтроэлементе через равные величины его прироста. Определяют исходную величину поверхностного натяжения и плотность используемой жидкости с учетом фактической температуры, задают величину поверхностного натяжения изопропанола, вертикально закрепляют полностью погруженный в жидкость фильтроэлемент, осуществляют прокачку загрязненной жидкости снаружи-внутрь фильтроэлемента, замеряя текущее значение перепада давления на фильтроэлементе. После каждого прироста перепада давления на величину, равную 10% предельно допустимого значения, прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности фильтроэлемента. При значении показателя герметичности не менее заданной величины продолжают прокачку жидкости и при увеличении перепада давления на фильтроэлементе еще на 10% прокачку прекращают и подают под давлением воздух изнутри-наружу фильтроэлемента до момента появления первого пузырька воздуха на его поверхности, фиксируют величину давления воздуха в этот момент и замеряют расстояние от точки появления первого пузырька до уровня жидкости над фильтроэлементом, после чего рассчитывают показатель герметичности. При значении показателя герметичности менее заданной величины судят о выработке ресурса фильтроэлемента, а величину перепада давления на фильтроэлементе, зафиксированную на предыдущем приросте давления на 10%, принимают за критическое значение. Технический результат: повышение точности определения ресурса фильтроэлемента. 1 ил., 1 пр.

Изобретение относится к машиностроению и может быть использовано при измерении проницаемости пористых пластически деформируемых материалов для жидкости. Способ заключается в том, что образец помещают в замкнутую цилиндрическую полость между поршнем, создающим давление, и проницаемым для жидкости дном. Задают исследуемые уровни давления, для каждого из которых создают циклическое силовое нагружение образца давлением. Используя выбранное давление для выключения нагружения и давление, равное 0,85-0,95 выбранного давления, для включения нагружения, регистрируют во времени изменение длины образца и временной промежуток снижения давления на цикле разгрузки, а также объем отжатой жидкости. Затем вычисляют коэффициент проницаемости на цикле по формуле K ф i = B i ⋅ m о б i ⋅ ( l i − l i − 1 ) ρ ж ⋅ S n ⋅ ( P − P 1 ) , на каждом цикле определяют остаточное массовое содержание жидкости в образце по формуле C i = C 0 m о б 0 − m i m о б 0 − m i ; где B i = 1 t k i − t 0 i ⋅ ln ( P P 1 ) , mобi=mоб0-mi, uжi=Sn·(li-l1), mi=ρж·uжi Р - исследуемый уровень давления, P1=0,85Р÷0,95Р - минимальное давление, Sn - площадь поршня, l1 - длина образца в начале 1-го цикла, li-1 - длина образца в начале i-го цикла, li - длина образца в конце i-го цикла, t0i - время начала снижения давления на i-ом цикле, tki - время конца i-го цикла, mоб0 - начальная масса образца, mобi - масса образца на i-ом цикле, ρж - плотность отфильтрованной жидкости, uжi - суммарный объем отфильтрованной жидкости до i-го цикла, mi - масса отжатой жидкости до i-го цикла, С0 - исходное массовое содержание жидкости, Сi - текущее массовое содержание жидкости на i-ом цикле, i - изменяется от 1 до k, k - номер цикла, на котором выполняется условие (Kф(k-1)-Kфk)/Kфk≤0,01. Затем по полученным значениям коэффициента проницаемости и массового содержания жидкости на всех выбранных уровнях давления определяют зависимость коэффициента проницаемости как функцию от массового содержания жидкости и уровня давления. Техническим результатом является возможность получения характеристик для пластически деформируемого пористого материала в широком диапазоне давлений при изменении массового содержания жидкости, в частности в процессе отжима жидкости из материала, повышение точности измерения. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик призабойной зоны пластов за счет комбинирования математического моделирования и лабораторных экспериментов. Сущность способа основывается на определении реологических свойств бурового раствора, фильтрата бурового раствора и пластового флюида, измерении свойств внешней фильтрационной корки, а также пористости и проницаемости образца керна. При этом создают математическую модель внешней фильтрационной корки. Прокачивают буровой раствор через образец керна и регистрируют динамику перепада давления на образце и расхода истекающей из образца жидкости. С помощью микротомографии определяют профиль концентрации проникших в образец твердых частиц бурового раствора. Создают математическую модель внутренней фильтрационной корки для описания динамики изменения концентрации частиц бурового раствора в поровом пространстве образца керна и сопутствующего изменения проницаемости образца керна. Создают сцепленную математическую модель внешней и внутренней фильтрационных корок, на основе которой с учетом свойств внешней фильтрационной корки определяют параметры математической модели внутренней фильтрационной корки, при которых одновременно воспроизводятся данные эксперимента по прокачке бурового раствора через образец керна и профиль концентрации проникших частиц бурового раствора. 12 з.п. ф-лы, 8 ил.

Изобретение относится к области испытания и определения свойств материалов. Способ измерения пористости частиц сыпучих материалов целесообразно применять при производстве гранулированных катализаторов, сорбентов, а также для определения свойств пористых материалов различного назначения. Способ измерения пористости частиц сыпучих материалов включает измерение истинной плотности частиц сыпучего материала и перепада давления на слое материала в режимах фильтрации газа и псевдоожижения, формируемых путем изменения расхода газа, по которым судят о пористости его частиц. Техническим результатом является простота реализации, отсутствие использования токсичных веществ, дефицитных материалов, а также обеспечение возможности экспресс-измерений свойств гидрофобных сыпучих материалов с ярко выраженными сорбционными свойствами и развитой поверхностью.
Наверх