Способ легирования сварного шва при дуговой сварке в среде углекислого газа


 


Владельцы патента RU 2492979:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) (RU)

Изобретение может быть использовано при восстановлении сваркой или наплавкой в среде углекислого газа деталей машин, изготовленных из высоколегированных сталей. На месте будущего сварного шва на поверхность детали предварительно наносят слой легирующих элементов в виде пленки путем электроискровой обработки поверхности с использованием электродной высоколегированной проволоки. Подают в зону сварки плавящуюся электродную низколегированную проволоку и создают электрическую дугу между проволокой и восстанавливаемой деталью при одновременной подаче углекислого газа в зону сварки. При этом формируют сварочную ванну из высоколегированных элементов. Способ обеспечивает повышение прочности металла высоколегированного сварного шва до значений, необходимых для восстановления деталей из высоколегированных сталей, за счет максимально возможного перехода в сварной шов легирующих элементов в процессе плавления. 1 табл., 7 пр.

 

Изобретение относится к сварочному производству и может быть использовано при восстановлении деталей машин, изготовленных из высоколегированных сталей сваркой или наплавкой в среде углекислого газа.

Известны способы легирования сварного шва при восстановлении деталей машин с применением различных сварочных технологий, таких как дуговая сварка плавлением, электрошлаковая сварка, газовая сварка, которые позволяют получить в зависимости от используемых материалов (электродов, флюсов, присадочных материалов) сварные швы с различными механическими свойствами. Выбор способа восстановления определяется технологическими (размерами детали, расположением сварного шва в пространстве, материалом детали) и экономическими параметрами. Наиболее технологически простым и экономически эффективным способом восстановления деталей машин является электродуговая сварка плавлением в среде углекислого газа.

Известен способ легирования сварного шва при дуговой сварке в среде углекислого газа (Способ дуговой сварки в защитных газах), позволяющий восстанавливать низколегированные детали. [Технология конструкционных материалов: Учебник для студентов машиностроительных специальностей вузов / A.M. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; Под ред. A.M. Дальского. - 5-е изд., исправленное. - М.: Машиностроение, 2004. 512 с, ил. с.234-237].

Способ легирования сварного шва при дуговой сварке в среде углекислого газа заключается в подаче в зону сварки электродной проволоки, в создании электрической дуги между проволокой и восстанавливаемой деталью с одновременной подачей углекислого газа в зону сварки. Для сварки используют низколегированную электродную проволоку с низким содержанием легирующих элементов, таких как марганец, кремний, титан и другие: Св-10ХГ2СМ, Св-08ГСМТ.

От действия высоких температур электрической дуги происходит расплавление электродной проволоки и основного металла восстанавливаемой детали. Углекислый газ защищает переплавляемый электродный и основной металл от окружающего воздуха. Расплавленный металл восстанавливаемой детали и проволоки с легирующими элементами образуют сварочную ванну, в которой они перемешиваются и после кристаллизации создают низколегированный сварной шов.

При сварке в углекислом газе протекает реакция диссоциации углекислого газа на оксид углерода и кислород. Кислород способствует окислению легирующих элементов и выводу их в окружающую среду в процессе переноса расплавленного металла с проволоки в сварочную ванну, что снижает количественное содержание в ней легирующих элементов. В процессе кристаллизации образуется низколегированный сварной шов, что обеспечивает прочность восстановленной детали из низколегированной стали.

Использование известного способа легирования сварного шва позволяет осуществлять восстановление деталей из низколегированных сталей с пределом прочности (временным сопротивлением) σв=0,35-0,45 ГПа.

Однако использование известного способа ограничено в условиях восстановления деталей из средне- и высоколегированных сталей.

Наиболее близким к заявляемому способу легирования сварного шва при дуговой сварке в среде углекислого газа является способ легирования сварного шва при дуговой сварке в среде углекислого газа, позволяющий восстанавливать детали из среднелегированной стали [Пат. 2354515 РФ, МПК B23K 9/16, B23K 23/00. Способ легирования сварного шва при дуговой сварке плавлением в среде углекислого газа / Кривочуров Н.Т., Иванайский Е.А., Иванайский В.В., Вольферц Г.А.; патентообладатель. Федеральное государственное образовательное учреждение высшего профессионального образования «Алтайский государственный аграрный университет» - №2007127238/02; заявл. 16.07.2007; опубл. 10.05.2009, Бюл. №14].

Способ легирования сварного шва при дуговой сварке в среде углекислого газа заключается в нанесении на поверхность восстанавливаемой детали слоя легирующих элементов в виде порошка из легирующих элементов (компонентов), в подаче в зону сварки электродной низколегированной проволоки, в создании электрической дуги между проволокой и восстанавливаемой деталью с одновременной подачей углекислого газа в зону сварки.

Выбирают легирующий порошок, с содержанием основных легирующих элементов в мас.%: хрома 14; кремния 5,2; вольфрама 6,1; кобальта 4,8; остальное - никель.

Легирующий порошок наносят на поверхность восстанавливаемой детали, например, методом напекания с образованием слоя спрессованных отдельных частиц легирующих элементов.

Далее осуществляют дуговую сварку. Для этого в зону сварки подают электродную проволоку, создают электрическую дугу между проволокой и восстанавливаемой деталью с одновременной подачей углекислого газа в зону сварки. Для сварки используют низколегированную электродную проволоку марки Св08ГА с низким содержанием марганца в качестве легирующего элемента.

От действия высоких температур электрической дуги происходит расплавление электродной проволоки, легирующего порошка и основного металла восстанавливаемой детали с образованием на поверхности восстанавливаемой детали в зоне действия электрической дуги сварочной ванны, а также диссоциация углекислого газа на оксид углерода и кислород.

Действие электрической дуги и тепловой конвекции вызывает активное перемешивание металла в сварочной ванне.

Расплавленный металл сварочной ванны нагревает находящиеся рядом с ней частицы порошка слоя легирующих элементов и металл восстанавливаемой детали, находящийся рядом с зоной действия электрической дуги, расплавляет их, расширяя тем самым сварочную ванну. При этом каждая частица порошка слоя легирующих элементов окружена газовой средой, и вся поверхность частицы контактирует с ней. При плавлении частиц порошка в каждой из них происходит разрушение кристаллической решетки. Свободные атомы легирующих элементов, находящиеся на поверхности каждой расплавляемой частицы порошка, вступают во взаимодействие с газовой средой, остальные атомы, расположенные в глубине частицы порошка перемешиваются с расплавленным металлом электродной проволоки и основным металлом восстанавливаемой детали.

В процессе взаимодействия свободных атомов легирующих элементов с газовой средой происходит их окисление кислородом углекислого газа со всей поверхности частицы с образованием оксидов, которые испаряются в окружающую среду. Это приводит к тому, что не все атомы легирующих элементов поступают в металл сварочной ванны. В процессе перемешивания с металлом сварочной ванны оставшиеся атомы легирующих элементов равномерно распределяются в сварочной ванне, доводя низколегированный металл сварочной ванны до средне-легированного металла, который при кристаллизации образует среднелегированный сварной шов.

Для формирования сварного шва по всей поверхности восстанавливаемой детали осуществляют перемещение электрической дуги относительно детали, после чего процесс образования среднелегированного сварного шва повторяется.

После кристаллизации образуется среднелегированный сварной шов с содержанием основных легирующих элементов в мас.%: хром - 2,3; вольфрам - 1,2; кобальт - 0,7. Количественное содержание основных легирующих элементов в сварном шве меньше, чем их количественное содержание в слое порошка из легирующих элементов приваренного к восстанавливаемой детали. Переход легирующих элементов из слоя легирующего порошка в сварной шов составляет 25-35%.

Такое содержание легирующих элементов в сварном шве позволяет получить среднелегированный металл, достаточный по прочности для восстановления деталей из среднелегированной стали. Прочность такого шва с временным сопротивлением σв=0,5-0,8 ГПа и твердостью 400 НВ.

Однако прочность металла шва, образованного вышеописанным способом, является недостаточной для восстановления деталей из высоколегированных сталей. Это обусловлено неполным переходом легирующих элементов из порошка в металл сварного шва вследствие окисления части легирующих элементов и их испарения в виде оксидов в окружающую среду в процессе плавления легирующего порошка.

Задача, решаемая изобретением, заключается в разработке способа легирования сварного шва при дуговой сварке в среде углекислого газа, повышающего прочность металла высоколегированного сварного шва до значений, необходимых для восстановления деталей из высоколегированных сталей за счет максимально возможного перехода в сварной шов легирующих элементов в процессе плавления благодаря снижению поверхности контакта легирующих элементов с кислородом углекислого газа в сварочной ванне.

Для решения поставленной задачи в способе легирования сварного шва при дуговой сварке в среде углекислого газа, заключающемся в нанесении на поверхность восстанавливаемой детали на месте будущего сварного шва слоя легирующих элементов, с последующей подачей в зону сварки электродной низколегированной проволоки, созданием электрической дуги между проволокой и восстанавливаемой деталью при одновременной подаче углекислого газа в зону сварки и образованием сварочной ванны, слой легирующих элементов наносят на поверхность восстанавливаемой детали в виде пленки путем электроискровой обработки поверхности восстанавливаемой детали электродной высоколегированной проволокой.

Заявляемый способ легирования сварного шва при дуговой сварке в среде углекислого газа отличается от известного способа-прототипа новым выполнением операции нанесения слоя легирующих элементов на поверхность восстанавливаемой детали, а именно слой легирующих элементов наносят на поверхность восстанавливаемой детали в виде пленки путем электроискровой обработки поверхности электродной высоколегированной проволокой. Наличие существенного отличительного признака свидетельствует о соответствии заявляемого решения критерию патентоспособности изобретения «новизна».

Нанесение слоя легирующих элементов на поверхность восстанавливаемой детали в виде пленки путем электроискровой обработки поверхности электродной высоколегированной проволокой в совокупности с известными операциями способа приводит к повышению прочности металла сварного шва до значений, необходимых для восстановления деталей из высоколегированных сталей за счет максимально возможного перехода легирующих элементов в процессе плавления в сварной шов путем снижения поверхности контакта легирующих элементов с кислородом углекислого газа в процессе образования сварочной ванны.

Причинно-следственная связь «Нанесение слоя легирующих элементов на поверхность восстанавливаемой детали в виде пленки путем электроискровой обработки поверхности электродной высоколегированной проволокой приводит к максимально возможному переходу в процессе плавления легирующих элементов в сварной шов» в результате поиска в уровне техники не обнаружена, что свидетельствует о новизне данной причинно-следственной связи, и, следовательно, о соответствии заявляемого решения критерию патентоспособности изобретения «изобретательский уровень».

Способ осуществляют следующим образом.

Способ легирования сварного шва при дуговой сварке в среде углекислого газа заключается в предварительном нанесении на поверхность восстанавливаемой детали на месте будущего сварного шва слоя легирующих элементов и в формировании высоколегированного сварного шва.

Предварительное нанесение на поверхность восстанавливаемой детали слоя легирующих элементов на месте будущего сварного шва осуществляют путем электроискровой обработки поверхности электродной высоколегированной проволокой в газовой среде. Для образования на поверхности восстанавливаемой детали слоя легирующих элементов используют электродную высоколегированную проволоку, содержащую, например, хром, вольфрам и их карбиды, которую располагают над местом будущего сварного шва. Восстанавливаемую деталь и электродную высоколегированную проволоку подключают к установке электроискровой обработки, в которой восстанавливаемая деталь является катодом, а электродная проволока - анодом. Искровые разряды, создаваемые установкой между катодом и анодом, расплавляют электродную высоколегированную проволоку и переносят расплавленный металл из легирующих элементов на поверхность восстанавливаемой детали.

При кристаллизации расплавленного металла на поверхности восстанавливаемой детали образуется металлическая пленка из легирующих элементов.

Формирование высоколегированного сварного шва производят дуговой сваркой плавящейся электродной низколегированной проволокой, которую подают в зону сварки над металлической пленкой. Между электродной низколегированной проволокой и восстанавливаемой деталью с пленкой создают электрическую дугу. Одновременно в зону сварки подают углекислый газ. Для сварки используют электродную низколегированную проволоку с низким содержанием марганца в качестве легирующего элемента.

От действия высоких температур электрической дуги в зоне действия электрической дуги, происходит одновременное расплавление электродной проволоки, металлической пленки легирующих элементов и основного металла восстанавливаемой детали с образованием на поверхности восстанавливаемой детали сварочной ванны. Кроме того, углекислый газ диссоциируется на оксид углерода и кислород.

Действие электрической дуги и тепловой конвекции вызывает активное перемешивание металла в сварочной ванне.

Расплавленный металл сварочной ванны нагревает соседний участок пленки и металл восстанавливаемой детали, находящийся вне зоны действия электрической дуги, расплавляет их, расширяя тем самым размер сварочной ванны. Газовая среда контактирует с поверхностью металлической пленки из легирующих элементов.

При плавлении металлической пленки происходит разрушение ее кристаллической решетки. Часть свободных атомов легирующих элементов, находящихся на поверхности пленки, вступает во взаимодействие с газовой средой, другая часть свободных атомов легирующих элементов, находящихся в глубине пленки, перемешивается с расплавленным металлом электродной проволоки и основным металлом восстанавливаемой детали.

В процессе взаимодействия свободных атомов легирующих элементов с газовой средой происходит их окисление кислородом углекислого газа с образованием оксидов, которые испаряются в окружающую среду. При этом в процессе окисления участвуют только атомы легирующих элементов, расположенные на поверхности пленки.

В процессе перемешивания с металлом сварочной ванны участвуют атомы легирующих элементов, расположенные в глубине пленки, которые равномерно распределяются в сварочной ванне, доводя низколегированный металл сварочной ванны до высоколегированного металла, который при кристаллизации образует высоколегированный сварной шов.

Для формирования сварного шва по всей оверхности восстанавливаемой детали осуществляют перемещение электрической дуги относительно детали, после чего процесс образования высоколегированного сварного шва повторяется.

Прочность такого шва с временным сопротивлением σв=0,9-1,3 ГПа.

В лабораториях ДВГУПС проведены физико-механические испытания образцов сварных швов, полученных заявляемым способом.

Образцы сварных швов для испытаний изготавливают следующим образом.

Берут стальную пластину размерами 100×250 мм и толщиной 10 мм из низкоуглеродистой стали (марки Ст-3). На ее поверхность наносят слой легирующих элементов в виде пленки с помощью электроискровой обработки поверхности в газовой среде электродной высоколегированной проволокой. Для нанесения пленки используют установку «Элитрон-101» и генератор импульсов «Элитрон-350». Обработку проводят вращающимся торцевым электродом при следующих параметрах: сила тока 24 А, частота 100 Гц, время обработки 2 мин на см2 поверхности. В качестве высоколегированного электрода используют электроды, выполненные из различных легирующих элементов: хрома, вольфрама и стандартных твердых сплавов на основе карбидов вольфрама, хрома и никеля

Наплавку сварного шва производят электродуговой сваркой в среде углекислого газа сварочным полуавтоматом ESABMig505/505w, током 180 А при напряжении на дуге 22 В. Расход углекислого газа составляет 1,6×10-4 м3/с, скорость сварки - 9×10-3 м/с. Для сварки используют низкоуглеродистую и низколегированную сварочную проволоку Св-08ГА диаметром 1,4 мм.

Поперечные срезы полученных образцов сварных швов подвергались металлографическим исследованиям с использованием микроскопа ЕС МЕТАМ РВ-21 при увеличении до ×1000 и программно-аппаратного комплекса металлографического анализа «СпектрМет-5.6». Микротвердость определялась на приборе ПМТ-3.

Особенности строения полученных образцов изучались на растровом электронно-зондовом микроскопе JXA-8100(IEOL, Япония) с приставкой электронно-зондового микроанализатора - рентгеновского спектрометра EDS (Великобритания) с волновой дисперсией. Элементный состав изучался с помощью рентгеновского спектрометра «Спектроскан МАКС-GV». Фазовый состав исследовали на рентгеновском дифрактометре «ДРОН-7». Исследование образцов на износостойкость проводилось по схеме «диск-колодка» на машине для испытания материалов на трение и износ ИИ 5018. Исследование твердости образцов проводилось в соответствии с ГОСТ 9012-59 «Металлы. Метод измерения твердости по Бринеллю». Испытания на ударную вязкость проводились в соответствии с ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенной температурах». Испытания на прочность при разрыве проводились в соответствии с ГОСТ 1497-84 «Металлы. Методы испытаний на растяжение».

Для установления перехода легирующих элементов из легирующего слоя в металл сварного шва проводилось взвешивание образцов до нанесения пленки легирующих элементов, после ее нанесения и после образования сварного шва. Кроме того, определялся вес израсходованной электродной низколегированной проволоки. Для измерения массы использовались электронные весы с погрешностью измерения 0,1 грамма. Переход легирующих элементов из слоя легирующих элементов в сварной шов (в %) определялся по формуле Δ=М4×100/(М123), где М1 - масса пластины, М2 - масса пленки, М3 - масса сварочной проволоки, израсходованной на создание сварного шва, М4 - масса пластины со сварным швом.

Пример 1. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод с содержанием хрома 100%. Толщина пленки - 0,8 мм.

Пример 2. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод с содержанием вольфрама 100%. Толщина пленки - 0,8 мм.

Пример 3. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод из твердого сплава Т15К6 с содержанием карбидов титана 15% и карбидов вольфрама 79%. Толщина пленки - 0,9 мм.

Пример 4. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод из твердого сплава ВК-8, с содержанием карбидов вольфрама 92%. Толщина пленки - 1,1 мм.

Пример 5. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод из твердого сплава с содержанием карбидов вольфрама 24%, карбидов хрома 24%, карбидов бора 24%, и карбидов никеля 24%. Толщина пленки - 0,9 мм.

Пример 6. Сварной шов получают вышеописанным способом. В качестве высоколегированного электрода используют электрод из быстрорежущей стали Р18 с содержанием вольфрама 18%. Толщина пленки - 1,0 мм.

Пример 7. Показатели сварного шва, полученного по способу-прототипу, указанные в описании прототипа.

Результаты физико-механических испытаний образцов сварных швов приведены в таблице.

Таблица
№ примеров Переход легирующих элементов из слоя легирующих элементов в сварной шов, % Содержание легирующих элементов в сварном шве, мас.%. Твердость, НВ
Пример №1 74,0 29,0 600
Пример №2 82,0 33,0 630
Пример №3 94,0 55,0 680
Пример №4 92,0 45,0 640
Пример №5 96,0 58,0 650
Пример №6 88,0 12,0 520
Пример №7 25,0-35,0 3,5 410

Результаты физико-механических испытаний показывают, что использование заявляемого способа позволяет получить высоколегированный шов, прочностные показатели которого превышают показатели сварного шва по способу-прототипу в 1,2-1,6 раз, что обеспечивает возможность применения заявляемого способа для восстановления высоколегированных деталей.

Способ легирования сварного шва при дуговой сварке в среде углекислого газа, включающий предварительное нанесение на поверхность восстанавливаемой детали на месте будущего сварного шва слоя легирующих элементов и формирование сварочной ванны путем подачи в зону сварки плавящейся электродной низколегированной проволоки и создания электрической дуги между проволокой и восстанавливаемой деталью при одновременной подаче углекислого газа в зону сварки, отличающийся тем, что слой легирующих элементов на поверхность восстанавливаемой детали наносят в виде пленки путем электроискровой обработки поверхности с использованием электродной высоколегированной проволоки.



 

Похожие патенты:

Изобретение относится к водоохлаждаемой горелке для дуговой сварки как плавящимся, так и неплавящимся электродами, и может найти широкое применение во всех отраслях народного хозяйства, связанных с применением сварки черных и цветных металлов, а также их сплавов.

Изобретение относится к сварке плавлением деталей малых толщин с деталями больших толщин. .

Изобретение относится к области дуговой сварки плавлением, в частности к способам плазменной наплавки изделий порошкообразным присадочным материалом сжатой дугой прямого действия.

Изобретение относится к способу сварки неплавящимся электродом в защитных газах и может быть использовано в различных отраслях промышленности при изготовлении, монтаже и ремонте ответственных металлических конструкций из сталей перлитного класса, к качеству которых предъявляются высокие требования.
Изобретение относится к области сварки и может быть использовано в машиностроении, судостроении, нефтехимической, металлургической и других отраслях промышленности при изготовлении различных изделий, конструкций и узлов, включающих соединения из меди или ее сплавов и стали.

Изобретение относится к способу сварки элементов с большой разницей толщин. .

Изобретение относится к сварке металлических деталей, в частности, в самолетостроении и особенно при изготовлении газотурбинных двигателей. .

Изобретение относится к способу автоматической аргонодуговой сварки труб и может найти применение для сварки длинномерных труб переменного сечения для ядерных реакторов. Сварку выполняют автоопрессовкой. После выполнения необходимых для формирования шва сварочных проходов в процессе сварки выполняют дополнительный проход, равный 0,9 оборота основного прохода. В результате повышается качество труб за счет обеспечения минимальных угловых сварочных деформаций. 4 ил.

Изобретение относится к системе крепления газовой форсунки (33) на сварочной горелке и газовой форсунке. Газовая форсунка (33) крепится на держателе (30), расположенном на сварочной горелке (10), с возможностью разъемного крепления газовой форсунки (33) путем поворотного движения газовой форсунки (33). Для обеспечения такого рода крепления предусмотрено, что одна из ступеней держателя (30) газовой форсунки выполнена эксцентриковой и с возможностью установки кольцеобразного фиксирующего элемента (35). Вторая ступень выполнена с направляющей поверхностью (36) для газовой форсунки (33). Третья ступень выполнена с торцевой поверхностью (37) в виде упорной поверхности для газовой форсунки (33). Сопловая трубка (31) сварочной горелки (10) имеет по меньшей мере один участок, который выполнен в виде второй направляющей (38) для газовой форсунки (33). 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к способу многодуговой сварки листовых сварных заготовок для получения из них методами холодной штамповки деталей кузова автомобиля. Предварительно определяют ток и скорость сварки первой дуги из условия обеспечения проплавления на всю толщину листовой заготовки и изотерму плавления на поверхности листов со стороны сварки. Выбирают количество дуг, ток каждой последующей дуги и расстояние между дугами из условия, чтобы изотерма плавления от действия каждой дуги на поверхности листовых заготовок в месте стыка со стороны сварки по ширине соответствовала ширине изотермы на их поверхности со стороны сварки каждой предыдущей дуги, а диаметры кратеров от силового воздействия дуги в сварочной ванне были меньше изотерм плавления сварочной ванны со стороны фронта кристаллизации изотермы плавления сварочной ванны. Электрод первой дуги устанавливают под углом 65-75° к направлению сварки, а электроды последующих дуг устанавливают под углом 105-115° к направлению сварки. Осуществляют сварку заготовок встык на водоохлаждаемом приспособлении в среде защитных газов на постоянном токе с раздельным независимым питанием дуг. В результате достигается уменьшение отклонений геометрии сварного шва от плоскости листов, уменьшение площади литой зоны сварного шва и получение его пластичной структуры. 9 ил.

Изобретение относится к области машиностроения и судостроения и может быть применено при изготовлении сварных конструкций. Свариваемые детали располагают в горизонтальной плоскости. Дуговую сварку ведут одновременно с двух сторон стыкового соединения в потолочном и нижнем положении без разделки свариваемых кромок деталей. С каждой стороны стыка деталей устанавливают по одному электроду. Электроды смещают в направлении движения сварочных дуг относительно друг друга. Зажигают сварочные дуги и перемещают электроды вдоль стыка в одном направлении с одинаковой скоростью. Мощность сварочных дуг на каждом из электродов регулируют раздельно. Переднюю сварочную дугу располагают в потолочном положении. Скорость сварки и мощность передней сварочной дуги выбирают с обеспечением 25-35% провара от толщины свариваемых деталей. Дистанцию между электродами выбирают равной 1,0…1,5 длины сварочной ванны передней дуги. Мощность задней дуги выбирают с обеспечением 85-75% провара от толщины свариваемых деталей. Техническим результатом изобретения является обеспечение сварки без разделки кромок стыковых соединений различных толщин. 8 ил.

Способ предназначен для аргонодуговой сварки неплавящимся электродом деталей из алюминиевых и магниевых сплавов, одна из которых тонкостенная, другая толстостенная. На толстостенной детали выполнена канавка, одна сторона которой выше, чем другая. Ширина канавки составляет от 2,5 до 3, а глубина от 0,25 до 0,45 от толщины тонкостенной детали. На сопрягаемые поверхности деталей наносят слой очищающего флюса, который находится на поверхностях деталей от 1 до 10 минут. Затем с деталей удаляют флюс на 2/3 от толщины тонкостенной детали и устанавливают тонкостенную деталь до упора в более высокую стенку канавки на толстостенной детали. Расплавляют детали в зоне их стыка, освобожденной от флюса. При изменении толщины сечения толстостенной детали в процессе сварки ступенчато изменяют сварочный ток без прерывания процесса сварки. Сваривают детали не более чем через 8 часов с момента удаления флюса. Способ позволяет получить сварной шов более прочным и качественным. Снижается трудоемкость и стоимость замкового соединения двух деталей разной толщины. 2 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к способу и машине комбинированной дуговой сварки. Изобретение позволяет достигнуть предотвращение ухудшения ударной вязкости зоны термического влияния за счет поддержания плотности тока газоэлектрической сварки металлическим электродом и дуговой сварки под флюсом в пределах соответствующего диапазона во время сварки стального листа. Используют множество электродов при газоэлектрической сварке и дуговой сварке под флюсом. Для первого электрода газоэлектрической сварки металлическим электродом сварочная проволока имеет диаметр 1,4 мм и более и плотность тока первого электрода газоэлектрической сварки металлическим электродом настроена 320 А/мм2 или более. 2 н. и 12 з.п. ф-лы, 5 ил., 8 табл., 2 пр.

Изобретение относится к способу изготовления сварных сосудов высокого давления. Обечайку изготавливают путем свертки листовой заготовки со стыковкой кромок в сборочно-сварочных приспособлениях, прихватки кромок по краям с использованием технологических пластин, автоматической сварки с последующей калибровкой по внутреннему диаметру обечайки и рентгенотелевизионного контроля качества сварного шва. Днища получают вытяжкой из кружка прессовой обработкой или комбинированной ротационной вытяжкой из кружка посредством проецирования, многопереходной ротационной вытяжки и выглаживания с образованием цилиндрической и сферической частей. Затем в обечайку и днища вваривают штуцеры и вентили. К днищам приваривают прерывистыми швами сварочные остающиеся подкладки. Потом осуществляют сборку и автоматическую сварку обечайки с днищами стыковыми кольцевыми швами с последующим их рентгенотелевизионным контролем качества. После этого к сосуду приваривают опорные и транспортировочные элементы и подвергают его пневмоиспытаниям на герметичность. Изобретение позволяет получать сварные сосуды высокого давления с высокой конструктивной и циклической прочностью, высоким качеством сварных швов, высокой точностью геометрической формы и качеством обработанной поверхности. 7 з.п. ф-лы, 10 ил.

Изобретение относится к способу сварки труб большого диаметра, в частности к сварке сформованных цилиндрических заготовок для улучшения эксплуатационных характеристик труб и повышения производительности сварки. Техническим результатом изобретения является повышение процесса изготовления труб, снижение погонной энергии сварки, уменьшение зоны термического влияния на основной металл, повышение механических свойств металла шва и околошовной зоны, уменьшение уровня остаточных напряжений, улучшение геометрии трубы и формы шва. Технический результат достигается введением дополнительной операции - наложением рабочего корневого шва минимальной ширины и с максимальным проплавлением притупления кромок. При выполнении рабочего корневого шва полностью переваривают сваренный до него технологический шов. После этого накладывают рабочие внутренний и наружный швы, перекрывающие корневой шов с обеих сторон. 4 ил.

Изобретение относится к дуговой сварке неплавящимся электродом в среде защитных газов различных металлов и сплавов повышенной толщины, в частности к плоскому соплу для аргонодуговой сварки. Плоское сопло содержит прямоугольную цельнометаллическую сопловую трубку с широкой фронтальной гранью и с узкими боковыми гранями, на которых расположены продольные водоохлаждаемые каналы. Подводящие и отводящие отверстия продольных водоохлаждающих каналов совместно с их подводящими и отводящими патрубками расположены на фронтальной широкой грани сопловой трубки. Крышки выполнены в форме сплошных прямоугольных пластин и размещены на боковых гранях сопла. Размещение водоподводящих и отводящих отверстий со своими соответствующими подводящими и отводящими патрубками на фронтальной широкой плоскости сопловой трубки позволяет увеличить поперечное сечение водоохлаждающих каналов, например, до (4×4) мм2 и более без увеличения поперечного сечения сопловой трубки, что значительно уменьшает потери гидродинамического напора охлаждающей системы. 3 ил., 1 табл.

Изобретение относится к области сварки, в частности, к области придания особого профиля отдельных участков кромок при изготовлении стыковых сварных соединений, и может найти применение при автоматической аргонодуговой сварке встык труб и пластин из стали, снабженных плакирующим слоем. Способ включает механическую обработку кромок с получением скоса кромок по трубе или листу с радиусным переходом 2-3 мм в плакирующий слой и притуплением из плакирующего слоя в виде прямоугольного выступа. Скос кромок по трубе или листу к притуплению выполняют ломаным с углами 1-2° и 4-8°. Притупление из плакирующего слоя выполняют высотой 2,5-3,5 мм и длиной 3,4-4,7 мм. Способ по второму варианту включает механическую обработку кромок с получением скоса кромок, притуплением по трубе или листу и расточкой со скосом со стороны плакирующего слоя на глубину большую, чем толщина плакирующего слоя. Скос кромок по трубе или листу к притуплению выполняют с углом 1-2°. Притупление выполняют в виде прямоугольного выступа высотой 1,8-2,3 мм и длиной 3,2-5,2 мм, а расточка - с углом скоса 52-57°. Техническим результатом изобретения является уменьшение объема сварочного материала при сварке стыка, упрощение конструкции сварочного автомата, улучшение обзора зоны сварки при обеспечении требований к качеству металла шва и сварного соединения в целом. 2 н. и 1 з. п. ф-лы, 2 ил.
Наверх