Способ контроля судовой газотурбинной установки

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения. Сущность изобретения заключается в том, что дополнительно в процессе эксплуатации ГТУ при работе на режимах от номинального и выше вычисляют отношение температуры газов за ТВД к температуре газов за ТНД и сравнивают его с наперед заданным предельным значением, определяемым расчетным путем для каждого тина двигателей и уточняемым в процессе ПСИ конкретного двигателя, если разница между вычисленным и предельным значением становится меньше первой наперед заданной величины, формируют сообщение в судовую систему управления «Минимальный остаток ресурса горячей части ГТУ», если разница между предельным и вычисленным значением становится меньше второй наперед заданной величины, формируют сообщение в судовую систему управления «Необходим останов ГТУ», выключают ГТУ и проводят регламентные работы по газогенератору.

Технический результат изобретения - повышение надежности работы ГТУ и безопасности судна за счет повышения качества контроля технического состояния ГТУ. 1 ил.

 

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения.

Известен способ контроля газотурбинного двигателя (ГТД), реализованный в электронно-гидромеханической системе автоматического управления (САУ) супервизорного типа, Кеба И.В. «Летная эксплуатация вертолетных ГТД», М., «Транспорт», 1976 г., с.78-81.

Способ заключается в том, что с целью защиты ГТД управляющее воздействие гидромеханического регулятора корректируется по температуре газов за турбиной в ограниченном диапазоне электронным корректором.

Недостатком известного способа является его низкая эффективность.

Наиболее близким к данному изобретению по технической сущности является способ контроля судовой ГТУ, заключающийся в том, что в ЛСУ ГТУ измеряют температуру газов турбиной высокого давления (ТВД) и турбиной низкого давления

(ТНП) и сравнивают их с наперед заданными предельными значениями, при превышении любой температурой предельного значения формируют сообщение в судовую систему управления «Превышена температура газов», Багерман А.З. «Обеспечение надежной эксплуатации газотурбинных двигателей в морских условиях», СПб., ЦНИИ им. Академика А.Н.Крылова, 2010 г., с.41.

Недостатком этого способа является то, что он позволяет только констатировать случившийся факт - переход газогенератора в нерабочее состояние. Не анализируется динамика выработки ресурса «горячей части» газогенератора ГТУ.

Это снижает надежность работы ГТУ и безопасность судна, т.к. для судовых ГТУ, применяемых на морских и океанских грузовозах, поломку ГТУ необходимо прогнозировать, чтобы судно в нужный момент оказалось там, где возможен ремонт или замена ГТУ.

Целью изобретения является повышение надежности работы ГТУ и безопасности судна.

Поставленная цель достигается тем, что в способе контроля судовой ГТУ, заключающемся в том, что в ЛСУ ГТУ измеряют температуру газов за ТВД и ТНД и сравнивают их с наперед заданными предельными значениями, при превышении любой температурой предельного значения формируют сообщение в судовую систему управления «Превышена температура газов», дополнительно в процессе эксплуатации ГТУ при работе на режимах от номинального и выше вычисляют отношение температуры газов за ТВД к температуре газов за ТНД и сравнивают его с наперед заданным предельным значением, определяемым расчетным путем для каждого типа двигателей и уточняемым в процессе ПСИ конкретного двигателя, если разница между вычисленным и предельным значением становится меньше первой наперед заданной величины, формируют сообщение в судовую систему управления «Минимальный остаток ресурса горячей части ГТУ», если разница между предельным и вычисленным значением становится меньше второй наперед заданной величины, формируют сообщение в судовую систему управления «Необходим останов ГТУ», выключают ГТУ и проводят регламентные работы по газогенератору.

На фигуре представлена схема устройства, реализующая заявляемый способ.

Устройство содержит последовательно соединенные блок 1 датчиков (БД), ЛСУ 2, блок 3 управления дозирующим агрегатом, дозирующий агрегат 4 (ДГ), стоп-кран 5 (СК), причем ДГ 4 подключен к БД 1, ЛСУ 2 подключена к системе 6 управления судном.

Устройство работает следующим образом.

Система 6 управления судном задает в ЛСУ 2 режим работы ГТУ: запуск, холостой ход, номинальный режим, максимальный режим.

Связь между системой 6 и ЛСУ 2 осуществляется по цифровому каналу связи (например, RS 485 или Ethernet).

ЛСУ 2 в соответствии с полученной от системы 6 командой по сигналам датчиков из БД 1 по известным зависимостям (см., например, книгу Кеба И.В. «Летная эксплуатация вертолетных ГТД», М., «Транспорт», 1976 г., с.117-135) вычисляет потребный расход топлива в КС ГТУ и с помощью блока 3 и ДГ 4 поддерживает режим работы ГТУ, изменяя расход топлива в КС ГТУ. При работе ГТУ стоп-кран 5 находится в положении «Открыт».

В ЛСУ 2 с помощью БД 1 измеряют температуру газов за ТВД и ТНД и сравнивают их с наперед заданными предельными значениями. Для судовой ГТУ на базе ГТД Е 70/8 РД производства ОАО «НПО «Сатурн», г.Рыбинск, это 790°С - для ТВД, и 470°С -для ТНД.

При превышении любой температурой предельного значения в ЛСУ 2 формируют и и передают в судовую систему 6 управления сообщение «Превышена температура газов».

Дополнительно в процессе эксплуатации ГТУ при работе на режимах от номинального и выше (для ГТД Е 70/8 РД это режимы, где частот вращения турбокомпрессора выше 95%) в ЛСУ 2 вычисляют отношение температуры газов за ТВД к температуре газов за ТНД и сравнивают его с наперед заданным предельным значением, определяемым расчетным путем для каждого типа двигателей и уточняемым в процессе ПСИ конкретного двигателя (уточненное значение заносится в запоминающее устройство ЛСУ 2 - на фигуре не показано).

Для судовой ГТУ на базе ГТД Е 70/8 РД это значение может меняться в зависимости от конкретного двигателя в диапазоне от до 1,24 до 1,26.

Если разница между вычисленным и предельным значением становится меньше первой наперед заданной величины (для судовой ГТУ на базе ГТД Е 70/8 РД эта величина равна 0,05), формируют сообщение в судовую систему управления «Минимальный остаток ресурса горячей части ГТУ». При получении этого сообщения необходимо принять меры по поставке на судно запасных модулей ТНД и ТВД либо планировать маршрут судна (если в его силовой установке более одной ГТУ) таким образом, чтобы оно все время находилось от рем. базы на расстоянии не более трех дней хода с одним отказавшим ГТУ.

Если разница между предельным и вычисленным значением становится меньше второй наперед заданной величины (для судовой ГТУ на базе ГТД Е 70/8 РД эта величина равна 0), формируют сообщение в судовую систему управления «Необходим останов ГТУ», выключают ГТУ и проводят регламентные работы по газогенератору: проводят осмотр узлов ТВД и ТНД и, в зависимости от состояния ТВД и ТНД проводят замену одного или обоих модулей.

Таким образом, за счет повышения качества контроля технического состояния судовой ГТУ повышается надежность работы ГТУ и, как следствие, безопасность судна.

Способ контроля судовой газотурбинной установки (ГТУ), заключающийся в том, что в ЛСУ ГТУ измеряют температуру газов за турбиной высокого давления (ТВД) и турбиной низкого давления (ТНД) и сравнивают их с наперед заданными предельными значениями, при превышении любой температурой предельного значения формируют сообщение в судовую систему управления «Превышена температура газов», отличающийся тем, что дополнительно в процессе эксплуатации ГТУ при работе на режимах от номинального и выше вычисляют отношение температуры газов за ТВД к температуре газов за ТНД и сравнивают его с наперед заданным предельным значением, определяемым расчетным путем для каждого типа двигателей и уточняемым в процессе ПСИ конкретного двигателя, если разница между вычисленным и предельным значением становится меньше первой наперед заданной величины, формируют сообщение в судовую систему управления «Минимальный остаток ресурса горячей части ГТУ», если разница между предельным и вычисленным значением становится меньше второй наперед заданной величины, формируют сообщение в судовую систему управления «Необходим останов ГТУ», выключают ГТУ и проводят регламентные работы по газогенератору.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) турбовинтовыми силовыми установками (СУ) самолетов.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к автоматическому регулированию подачи топлива в камеру сгорания газотурбинного двигателя. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД.

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для управления авиационными газотурбинными двигателями. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД). .

Изобретение относится к области теплоэнергетики и может быть использовано в энергетических парогазовых установках с газотурбинными двигателями, паровыми турбинами и котлами-утилизаторами, снабженными блоками дожигающих устройств.

Изобретение относится к компрессору газотурбинного двигателя, оборудованного системой отбора воздуха, а также к газотурбинному двигателю, такому как авиационный турбореактивный или турбовинтовой двигатель, оборудованному компрессором этого типа.
Изобретение относится к области стендовых испытаний двухкаскадных газотурбинных двигателей, в частности к стендовым испытаниям газотурбинных двигателей после восстановительного ремонта, и предназначено для обеспечения запасов устойчивой работы компрессора высокого давления КВД и тяги (мощности) двигателя в процессе эксплуатации двигателя после восстановительного ремонта. При стендовых испытаниях двухкаскадных газотурбинных двигателей после восстановительного ремонта без разборки узлов и замены деталей проточной части отладку скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме) производят на значения, полученные в эксплуатации перед восстановительным ремонтом. В случае выхода значений этих параметров за границы эксплуатационного допуска отладку параметров производят на значения, соответствующие ближайшей (верхней или нижней) границе их эксплуатационного допуска.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно замеряют частоту вращения компрессора ГТД, сравнивают ее с наперед заданным значением, определяемым расчетно-экспериментальным путем для каждого типа ГТД, уточняемым в процессе приемосдаточных испытаний (ПСИ) для каждого конкретного ГТД и корректируемым в зависимости от положения рычага управления двигателя (РУД), температуры и давления воздуха на входе в ГТД, скорости полета самолета и величины отборов воздуха из компрессора ГТД на самолетные нужды, в случае если частота вращения компрессора ГТД растет и становится больше наперед заданного значения, уменьшают расход топлива в КС ГТД с помощью резервного устройства дозирования до тех пор, пока частота вращения компрессора ГТД не снизится до наперед заданного значения, обеспечивающего тягу ГТД требуемого уровня. Технический результат изобретения - повышение надежности работы ГТД и безопасности самолета за счет повышения качества работы САУ в части защиты ГТД от неконтролируемого роста тяги на критичных режимах полета самолета. 1 ил.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения. Сущность изобретения заключается в том, что дополнительно с помощью автономного блока защиты двигателя (БЗД) ГТУ измеряют частоту вращения силовой турбины ГТУ, обеспечивающей привод судового винта, сравнивают измеренное значение с наперед заданным предельным, определяемым расчетно-экспериментальным путем для каждого типа ГТУ и уточняемым в процессе приемо-сдаточных испытаний ГТУ, при увеличении частоты вращения силовой турбины выше наперед заданного предельного на наперед заданное время с помощью БЗД и стоп-крана прекращают подачу топлива в КС ГТУ, формируют сигнал «Защита по раскрутке силовой турбины» и передают его в систему управления судном. Технический результат изобретения - повышение надежности работы ГТУ и безопасности судна. 1 ил.

Газотурбинный двигатель, например двухконтурный турбореактивный двигатель, включает промежуточный кожух, содержащий выполненную в виде тела вращения внутреннюю стенку, ограничивающую с наружной стороны канал течения первичного потока воздуха и средства отбора воздуха. На заднем по потоку конце закрепляется наружный кожух компрессора высокого давления. Средства отбора воздуха находятся в канале этого компрессора высокого давления и связаны на выходе со средствами повторного впрыскивания воздуха в переднюю по потоку часть этого компрессора высокого давления. Средства отбора воздуха связаны со средствами повторного впрыскивания воздуха при помощи кольцевого коллектора, охватывающего внутреннюю выполненную в форме тела вращения стенку промежуточного кожуха по потоку перед компрессором высокого давления. Они располагаются в радиальном направлении между этой выполненной в форме тела вращения внутренней стенкой и выполненной в форме тела вращения наружной стенкой промежуточного кожуха, которая ограничивает с внутренней стороны канал течения вторичного потока воздуха газотурбинного двигателя. Изобретение позволяет упростить запитывание кольцевого коллектора воздухом не увеличивая массу и длину газотурбинного двигателя. 12 з.п. ф-лы, 4 ил.

Устройство и способ контроля насоса высокого давления в контуре питания топливом газотурбинного двигателя путем выявления открытия клапана нагнетания и отсечки, установленного на выходе клапана регулирования расхода топлива, путем измерения скорости вращения газотурбинного двигателя, соответствующей открытию клапана нагнетания и отсечки, и путем последующего отслеживания изменения величины этой скорости вращения для того, чтобы предложить замену насоса высокого давления, когда измеренная величина этой скорости вращения достигает заданного порога. Технический результат изобретений - создание простого эффективного и экономически выгодного решения по контролю насоса высокого давления. 3 н. и 6 з.п. ф-лы, 1 ил.

Объектом настоящего изобретения является способ определения углового положения первого ротора турбореактивного двигателя, согласно которому генерируют, по меньшей мере, одну вибрацию во время вращения первого ротора, при этом каждую вибрацию генерируют при прохождении первого ротора через одно и то же контрольное угловое положение; обнаруживают генерируемые вибрации; в данный момент получают угловое положение второго ротора турбореактивного двигателя относительно углового положения, которое он занимал в контрольный момент, представляющий обнаружение одной из вибраций, при этом упомянутый второй ротор связан во вращении с первым ротором и имеет скорость вращения, отличную от скорости вращения первого ротора; и на основании углового положения второго ротора определяют угловое положение первого ротора в этот данный момент. Технический результат изобретения - упрощение определения углового положения ротора без установки датчика скорости, оборудованного зубчатым колесом, на труднодоступном роторе. 4 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно измеряют величину напряжения на выходе источника тока постоянного напряжения, по измеренной величине напряжения по наперед заданной зависимости определяют величину скважности переменного напряжения, которое сможет обеспечить поддержание управляющего сигнала в топливной системе ГТД, устанавливают выбранное значение скважности на выходе источника импульсного питания и через наперед заданное время, необходимое для срабатывания электромагнитного клапана, переключают питание обеих обмоток ДЭМК с питания от источника тока постоянного напряжения на питание от источника импульсного питания. Технический результат от использования изобретения заключается в том, что обеспечивается повышение качества работы САУ и, как следствие, повышение надежности работы двигателя и безопасности самолета. 1 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в системах автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно вводится ограничитель максимального расхода топлива, вход которого подключен к выходу датчика давления воздуха на вход в ГТД, а выход - к дозатору топлива, топливный насос установлен в отдельном корпусе и максимальном при данных габаритах устройства расстоянии от коробки приводов ГТД, а электрогидропреобразователь - на минимально возможном расстоянии от коробки приводов ГТД. Технический результат от использования изобретения заключается в повышении надежности работы ГТД и безопасности полета ЛА. 1 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно при поступлении в процессе взлета самолета сигнала «Пожар в мотогондоле», формируемого противопожарной системой самолета, фиксируют текущее значение частоты вращения вентилятора и используют его в качестве заданного значения частоты вращения вентилятора в течение наперед заданного времени, по истечении которого прекращают подачу топлива в КС и выключают двигатель. Технический результат изобретения заключается в повышении качества управления расходом топлива в КС двигателя на взлете самолета, за счет чего даже при возникновении пожара в мотогондоле обеспечивается работа двигателя на режиме с располагаемой тягой, обеспечивающей нормальный взлет самолета, это повышает надежность работы двигателя, как элемента СУ самолета, и безопасность самого самолета.

Изобретение относится к области теплотехники. Система теплообменника, через которую протекает жидкость, содержащая теплообменник с входом и выходом для жидкости, перепускной клапан с входом и выходом для жидкости и самоочищающийся фильтр с входом и двумя выходами для жидкости, один из которых является выходом для отфильтрованной жидкости, а второй - для неотфильтрованной жидкости, причем выход для отфильтрованной жидкости соединен с входом теплообменника, а выход для неотфильтрованной жидкости соединен с входом клапана; при этом выход теплообменника подсоединен ниже по потоку относительно выхода клапана. Технический результат - исключение засорения теплообменника. 3 н. и 6 з.п. ф-лы, 3 ил.
Наверх