Устройство для управления руднотермической печью

Изобретение относится к средствам управления руднотермическими печами, предназначенными, например, для получения ферросплавов. Устройство для управления руднотермической печью содержит трансформатор с переключателем ступеней напряжения, каждая фаза вторичной обмотки которого подключена к электроду, перемещаемому внутри ванны печи с помощью своего привода, подключенного входом к выходу элемента сравнения, вход которого связан с выходом датчика тока электрода, блок задания тока, не менее двух дополнительных датчиков температуры, блок вычисления теплового потока, датчик активной мощности печи, блок деления, датчик напряжения печи, нелинейный элемент, подключенный входом к выходу датчика напряжения, и блок умножения. Обеспечивается увеличение производительности печи и срока службы футеровки путем повышения точности поддержания условий протекания химических реакций в ванне руднотермической печи: температуры расплава, геометрии реакционной зоны, наличия и толщины гарниссажного слоя. 3 ил.

 

Предлагаемое техническое решение относится к средствам управления руднотермическими печами и может быть использовано в металлургической и химической промышленности для управления технологическими процессами в руднотермических печах, предназначенных, например, для получения ферросплавов.

Известно устройство (Автоматическое управление электротермическими установками. / Под ред. А.Д. Свенчанского. - М.: Энергоатомиздат, 1990. - С.310-312), содержащее трансформатор с переключением ступеней напряжения, каждая фаза вторичной обмотки которого подключена к электроду, перемещаемому внутри ванны печи с помощью своего привода, подключенного входом к выходу элемента сравнения, связанного одним входом с блоком задания тока, а вторым - с выходом датчика тока электрода.

Основной недостаток данного устройства заключается в том, что регулирование только по току, без учета тепловыделения в реакционной зоне печи, зависящего от ряда технологических факторов, приводит к снижению производительности печи и выхода продукта из-за нарушения условий протекания химических реакций в ванне печи, а также к снижению срока службы футеровки вследствие ее перегрева.

Наиболее близким к предлагаемому авторами решению является устройство (Электрооборудование и автоматика электротермических установок: Справочник. / Под. ред. А.П. Альтгаузена. - М.: Энергия, 1978. - С.265-267), содержащее трансформатор с переключением ступеней напряжения, привод перемещения электрода, блок сравнения, блок задания тока и дополнительные датчики технологических параметров, таких, как температура отходящих газов, давление под крышкой печи, состояние электрофильтра газоочистки, по сигналам которых осуществляется переключение ступеней напряжения.

Недостатками данного устройства являются сложность установления связи между измеряемыми технологическими параметрами и условиями протекания реакций в ванне печи, а также достаточная сложность используемых датчиков и ограниченный срок их службы в условиях агрессивной среды отходящих газов.

Техническая задача, решаемая предлагаемым устройством, состоит в увеличении производительности печи и срока службы футеровки путем повышения точности поддержания условий протекания химических реакций в ванне руднотермической печи: температуры расплава, геометрии реакционной зоны, наличия и толщины гарниссажного слоя.

Поставленная техническая задача решается тем, что в известное устройство, содержащее трансформатор с переключателем ступеней напряжения, каждая фаза вторичной обмотки которого подключена к электроду, перемещаемому внутри ванны печи с помощью своего привода, подключенного входом к выходу элемента сравнения, вход которого связан с выходом датчика тока электрода, блок задания тока, дополнительно введены не менее двух датчиков температуры, расположенных внутри футеровки печи на разном расстоянии от поверхности футеровки, блок вычисления теплового потока, входы которого подключены к выходам соответствующих датчиков температуры, датчик активной мощности печи, блок деления, подключенный первым входом к выходу блока вычисления теплового потока, а вторым - к выходу датчика мощности, трехпозиционный релейный элемент, подключенный входом к выходу блока деления, а выходом - к входу переключателя ступеней напряжения, датчик напряжения печи, нелинейный элемент, подключенный входом к выходу датчика напряжения, и блок умножения, соединенный выходом с другим входом элемента сравнения, первым входом - с выходом блока задания тока, а вторым входом - с выходом нелинейного элемента.

Предлагаемое устройство поясняется чертежами, где на фиг.1 представлена функциональная схема предлагаемого устройства, на фиг.2 - характеристика трехпозиционного релейного элемента, на фиг.3 - характеристика нелинейного элемента.

Устройство содержит трансформатор 1 с переключателем ступеней напряжения 2. К вторичным обмоткам различных фаз трансформатора подключены электроды 3 (на фиг.1 показан один электрод). Каждый электрод оснащается датчиком тока электрода 4. Электрод перемещается в вертикальном направлении в ванне печи своим приводом 5, в качестве которого может использоваться электромеханический или электрогидравлический привод.

Вход привода 5 подключен к выходу элемента сравнения 6, подключенного первым входом к выходу датчика тока 4, а вторым входом - к выходу блока умножения 7, подключенного первым входом к выходу блока задания тока 8, а вторым входом - к выходу нелинейного элемента 9, подключенного к выходу датчика напряжения печи 10, измеряющего напряжение вторичной обмотки трансформатора.

Вход переключателя ступеней напряжения 2 подключен к выходу релейного элемента 11, вход которого подключен к выходу блока деления 12, подключенного первым входом к выходу блока вычисления теплового потока 13, а вторым входом - к выходу датчика мощности 14.

Блок вычисления теплового потока 13 подключен своими входами к выходам датчиков температуры 15, 16, причем в футеровке печи установлены не менее двух датчиков температуры на различном расстоянии от поверхности футеровки. В качестве датчиков температуры 15, 16 могут использоваться, например, термоэлектрические преобразователи (термопары).

Устройство работает следующим образом.

Питание руднотермической печи осуществляется от трансформатора 1 с переключателем ступеней напряжения 2. К вторичным обмоткам различных фаз трансформатора 1 подключены электроды 3. Может использоваться подключение каждого из электродов к отдельному однофазному трансформатору. Ток электрода измеряется датчиком тока 4.

Электрод перемещается в ванне печи в вертикальном направлении своим приводом 5, входной сигнал которого вырабатывается элементом сравнения 6 на основании текущего значения тока электрода, измеренного датчиком тока 4, и уставки тока, вырабатываемой умножителем 7 путем умножения сигнала на выходе блока задания тока 8 на сигнал, вырабатываемый нелинейным элементом 9 на основании используемой ступени напряжения. Номер используемой ступени напряжения определяется по напряжению вторичной обмотки трансформатора, измеряемому датчиком напряжения 10.

Текущее значение теплового потока рассчитывается блоком вычисления теплового потока 13 по сигналам датчиков температуры 15, 16, установленных в футеровке. Как минимум, необходимы два датчика температуры, установленных на различном расстоянии от поверхности футеровки в одном радиальном направлении от геометрического центра ванны печи на одинаковой высоте относительно пода печи. Тепловой поток по сигналам двух датчиков температуры определяется как

q = λ Δ t S , ( 1 )

где Δt - разность температур, измеренных первым и вторым датчиками; λ - теплопроводность материала футеровки; S - расстояние между датчиками.

Возможна установка более чем двух датчиков температуры в одном радиальном направлении от центра ванны печи на одинаковой высоте относительно пода печи, при этом тепловой поток рассчитывается согласно (1) для каждой пары соседних датчиков температуры, а по результатам этих вычислений рассчитывается его среднее значение. Возможна также организация нескольких рядов датчиков температуры (не менее двух датчиков в каждом ряду) в различных радиальных направлениях от центра ванны и на различной высоте относительно пода печи. В этом случае усредняются значения теплового потока, рассчитанные, как описано выше, для каждого ряда датчиков. Усреднение теплового потока по радиальным направлениям и высоте печи позволяет повысить точность определения состояния реакционной зоны.

Блок деления 12 определяет отношение теплового потока через футеровку печи, вычисленного блоком вычисления 13, к активной мощности, потребляемой печью, измеренной датчиком мощности 14. Варианты исполнения датчика мощности 14 могут быть различными, так, активная мощность может определяться по результатам измерений действующих значений напряжения и тока и угла фазового сдвига. Измерения при этом проводятся для каждого электрода отдельно, определенные для каждого электрода значения мощности суммируются. Учитывая некоторые искажения формы кривой тока, потребляемого печью, относительно синусоидальной, наиболее точно активная мощность определяется путем интегрирования по времени произведения мгновенных значений напряжения и тока в аналоговой или цифровой форме.

Рациональный режим использования введенной в печь мощности в восстановительных реакциях в ванне печи на практике можно выявлять по отношению мощности тепловых потерь (теплового потока через футеровку) к потребляемой активной мощности, которое должно лежать в определенных пределах, уточняемых для конкретной печи экспериментальным путем. Превышение верхнего предела такого отношения свидетельствует о том, что вводимая мощность чрезмерна, недоиспользуется в реакциях в ванне печи и приводит только к повышенным значениям тепловых потерь и ускоренному износу футеровки. В этом случае необходимо снижение мощности путем перехода на более низкую ступень напряжения питающего трансформатора.

Если отношение теплового потока через футеровку к потребляемой мощности ниже нижнего предела, то для повышения производительности печи необходимо увеличение мощности путем перехода на более высокую ступень напряжения питающего трансформатора.

Команду на переключение ступени напряжения переключателем 2 подает трехпозиционный релейный элемент с зоной нечувствительности 11, подключенный к выходу блока деления 12. Характеристика релейного элемента представлена на фиг.2. Значение выходного сигнала релейного элемента Uвых, равное -Е, приводит к переходу на более низкую ступень напряжения, равное +Е - к переходу на более высокую ступень.

Нелинейный элемент 9 вырабатывает в зависимости от используемой ступени напряжения (номер ступени определяется по напряжению вторичной обмотки трансформатора, измеряемому датчиком напряжения 10) значение выходного сигнала, которое при максимальном значении сигнала на выходе блока задания тока 8 обеспечивает работу печи на максимуме полезной мощности при данной ступени напряжения с учетом допустимых значений тока печного трансформатора. Характеристика нелинейного элемента 9 представлена на фиг.3. Вид характеристики должен уточняться для конкретного печного трансформатора.

Таким образом, управление руднотермической печью осуществляется путем перемещения электрода в функции тока с коррекцией заданного значения тока по номеру используемой ступени напряжения и переключением ступеней напряжения в зависимости от соотношения теплового потока через футеровку и активной мощности, потребляемой печью.

Блок вычисления теплового потока, элемент сравнения, блок деления, блок умножения, релейный элемент и нелинейный элемент могут быть реализованы, например, на цифровых вычислительных средствах.

Использованные технические решения позволяют увеличить производительность печи и выход продукта за счет повышения точности поддержания условий протекания химических реакций в ванне руднотермической печи (температура расплава, геометрия реакционной зоны, наличие и толщина гарниссажного слоя) и увеличить срок службы футеровки печи.

Устройство для управления руднотермической печью, содержащее трансформатор с переключателем ступеней напряжения, каждая фаза вторичной обмотки которого подключена к электроду, перемещаемому внутри ванны печи с помощью своего привода, подключенного входом к выходу элемента сравнения, вход которого связан с выходом датчика тока электрода, блок задания тока, отличающееся тем, что оно дополнительно содержит не менее двух датчиков температуры, расположенных внутри футеровки печи на разном расстоянии от поверхности футеровки, блок вычисления теплового потока, входы которого подключены к выходам соответствующих датчиков температуры, датчик активной мощности печи, блок деления, подключенный первым входом к выходу блока вычисления теплового потока, а вторым - к выходу датчика активной мощности, трехпозиционный релейный элемент, подключенный входом к выходу блока деления, а выходом - ко входу переключателя ступеней напряжения, датчик напряжения печи, нелинейный элемент, подключенный входом к выходу датчика напряжения, и блок умножения, соединенный выходом с другим входом элемента сравнения, первым входом - с выходом блока задания тока, а вторым входом - с выходом нелинейного элемента.



 

Похожие патенты:

Изобретение относится к металлургическому производству. .

Изобретение относится к области охлаждения отработанных печных газов. .

Изобретение относится к черной металлургии. .

Изобретение относится к области управления процессами при обжиге материалов во вращающихся печах с колосниковыми холодильниками и может найти применение в промышленности строительных материалов.

Изобретение относится к электрометаллургии, в частности к способам получения слоистых слитков импульсно-электрошлаковым переплавом. .

Изобретение относится к способу работы пирометаллургической печи, в частности дуговой печи, при работе которой несколько рабочих параметров удерживают внутри заданных пределов.

Изобретение относится к способу регулирования работы решетчатого охлаждающего устройства для охлаждения горячего сыпучего материала, например цементного клинкера, который перемещается с помощью соответствующего транспортирующего средства от конца загрузки сыпучего материала к концу разгрузки охлажденного материала, в то время как охлаждающая решетка и распределенный на ней слой сыпучего материала пронизывается, по существу, снизу вверх потоками охлаждающего воздуха, которые регулируются посредством устройств регулирования, расположенных под охлаждающей решеткой.

Изобретение относится к области электрометаллургии, конкретнее к способу управления электрическим режимом дуговой печи плавки стали при непрерывной подаче металлизованных окатышей в ванну агрегата с подогревом металла трехфазными электрическими дугами.

Изобретение относится к области металлургии и может быть использовано для обработки и определения свойств жидкого или полужидкого металла. Устройство содержит тигель, который, по меньшей мере, частично окружен, по меньшей мере, одной индукционной катушкой, измерительное средство для непосредственного измерения, косвенного измерения и их комбинации, по меньшей мере, одного электрического параметра, выбранного из группы, состоящей из тока, напряжения, потребляемой мощности и частоты, при этом, по меньшей мере, один электрический параметр используется для частичного определения сопротивления нагрузки в области, по меньшей мере, частично окруженной индукционной катушкой, удельного сопротивления материала, температуры материала, доли твердой фазы материала, доли жидкой фазы материала и их комбинации. Одна или более индукционных катушек выполнены с возможностью генерирования переменной мощности и/или магнитного поля переменной частоты, которые могут модулироваться для контроля охлаждения загрузки расплавленного металла в тигле от температуры ликвидуса до выбранной энтальпии, сопротивления и/или вязкости. Изобретение позволяет активно контролировать полужидкое состояние металла подачей индукционной мощности посредством анализа в реальном времени или вне реального времени электрических сигналов обратной связи, которые получают от индукционных катушек. 2 н. и 39 з.п. ф-лы, 12 ил., 1 табл.

Изобретение относится способу и устройству управления расплавлением в печи исходного материала, в частности стального лома. Расплавляют исходный материал посредством нагрева, по меньшей мере, одной горелкой, снабжаемой топливом и окислителем. Осуществляют контроль температуры отходящего газа печи в трубопроводе отходящего газа, по меньшей мере, в одной точке измерения ниже по потоку от зоны дожигания. Подают в стандартном рабочем режиме к горелке номинальный расход топлива и номинальный расход окислителя. Регистрируют изменения температуры отходящего газа через заданные промежутки времени и сравнивают с задаваемым предельным значением. При изменении температуры отходящего газа в единицу времени больше предельного значения горелку на задаваемый срок действия пониженного режима переводят в пониженный рабочий режим, в котором отношение расхода топлива и расхода окислителя уменьшают посредством, по меньшей мере, одной из следующих мер: А) задаваемое скачкообразное понижение расхода топлива до пониженного расхода и В) задаваемое скачкообразное повышение расхода окислителя до повышенного расхода. По истечении времени понижения возвращаются в стандартный рабочий режим. Изобретение направлено на сокращение потребности в используемой энергии. 2 н. и 17 з.п. ф-лы, 4 ил.
Изобретение относится к теплотехнике и может быть использовано в разных отраслях промышленности, например металлургии, машиностроении, промышленности стройматериалов при нагреве и термообработке различных материалов и изделий. В предложенном изобретении достигается технический результат, заключающийся в повышении эффективности и качества нагрева различных материалов и изделий за счет создания равномерного температурного поля в рабочем пространстве печи с исключением скачков давления и мгновенного реагирования изменением последовательности включения горелок на изменение тепловой нагрузки. Указанный технический результат в предложенном изобретении достигается следующим образом. В способе управления импульсной подачей топлива в нагревательных и термических печах с частотно-широтно-импульсной модуляцией двухпозиционной подачи топлива в горелки, согласованной с текущим уровнем тепловой нагрузки, определяют текущий период следования импульсов подачи топлива из соотношения: ΔT=K(T)·q·(1-q)·Tи, где ΔТ - заданная амплитуда колебания температур в рабочем пространстве печи, [°С], К(Т) - коэффициент усиления линейной системы (печи) в зависимости от температуры, [°С/с], q=τи/Ти - относительная длительность импульса (включения горелки), τи - длительность импульса (включения горелки), [с], Ти - текущий период следования импульсов подачи топлива, [с]. Текущую длительность интервала подачи топлива каждой горелки задают, разбивая текущий период следования импульсов подачи топлива на равные интервалы, количество которых равно числу горелок. Последовательность включения горелок осуществляют путем сравнения текущей длительности импульса включения каждой горелки с текущей длительностью интервала подачи топлива каждой горелки и следующих за ним интервалов до окончания текущего периода следования импульсов подачи топлива. 3 з.п. ф-лы.

Изобретение относится к области многокамерных печей для обжига углеродистых блоков. Способ регулирования печи (1) заключается в том, что зона естественного предварительного нагревания разделена на по меньшей мере одну первую зону (Z1) естественного предварительного нагревания, располагающуюся на некотором первом расстоянии от устройства нагревания, и одну вторую зону (Z2) естественного предварительного нагревания, располагающуюся на некотором втором расстоянии от устройства нагревания, причем упомянутое первое расстояние превышает упомянутое второе расстояние, и в котором изменяют потоки газов, циркулирующих в полых перегородках, таким образом, чтобы контролировать газовые потоки (30, 31), проходящие через первую зону (Z1) естественного предварительного нагревания, на основе газовых потоков (31), выходящих из второй зоны (Z2) естественного предварительного нагревания, для того, чтобы регулировать повышение температуры перегородок и анодов в первой зоне (Z1) естественного предварительного нагревания и контролировать положение фронта дегазации. Изобретение позволяет повысить качество сжигания топлива. 2 н. и 20 з.п. ф-лы, 11 ил.

Изобретение относится к электротехнике и может найти применение в регуляторах электрической энергии прецизионного технологического оборудования, например в установках выращивания сапфира. Техническим результатом является снижение пульсаций температуры в зонах регулирования электропечи. Устройство содержит n регуляторов напряжения, подключенных первыми силовыми выводами к выводам для подключения сети, вторыми силовыми выводами к выводам для подключения n нагрузок, формирователь синхроимпульсов, вход которого соединен с выводами для подключения сети, а выходы - с входом распределителя импульсов, а также n формирователей импульсов управления, выполненных на основе реверсивного двоичного счетчика и имеющих импульсные информационные входы, подключенные к выходам распределителя импульсов, импульсные синхронизирующие входы, управляющие входы, управляющие выходы, подключенные через логическую схему к импульсным синхронизирующим входам, причем в качестве логической схемы используется конъюнктор, а в формирователи импульсов управления введены импульсные управляющие информационные выходы, соединенные с управляющими входами регуляторов напряжения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к металлургии. Технический результат - повышение точности поддержания температуры в печи. Измеряют температуру в печи для получения значений обратной связи температуры в печи. Рассчитывают разность между значениями установки температуры в печи и значениями обратной связи температуры в печи как значение DV1 несоответствия. В соответствии со значениями температуры обратной связи температуры в печи и значением установки температуры в печи рассчитывают разности между значениями установки температуры в печи и значениями обратной связи температуры в печи за единицу времени (градиент). Устанавливают градиент значений изменения температуры в печи как значение DV2 несоответствия. Определяют скорость V перемещения материала в печи из регулятора скорости и получают первое множество выходных компонентов FFV прямой подачи в соответствии со скоростью V. Получают второе множество выходных компонентов FFT прямой подачи в соответствии с разностью между значениями установки температуры в печи и значениями обратной связи температуры в печи, то есть значениями DV1 несоответствия. Выполняют поиск параметров управления PID в соответствии со значениями DV1 и DV2 несоответствия на основе правила управления с нечеткой логикой и формируют регулирующий параметр OP1 управления в соответствии с параметром управления PID. Управляют клапаном для регулирования потока каменноугольного газа и клапаном для регулирования потока воздуха путем комбинирования регулирующего параметра OP1 управления с первым множеством компонентов FFV прямой подачи и вторым множеством компонентов FFT прямой подачи. 2 н.п. ф-лы, 3 ил., 5 табл.

Изобретение относится к области металлургии и может быть использовано для пирометаллургических установок. Загрузочная область установки закрыта сверху и с боковых сторон колпаком с верхними вытяжными отверстиями, через которые скапливающиеся в колпаке отходящие газы и пыль вытягиваются, шахта для помещения и предварительного нагрева металлического лома имеет в направлении загрузочной области верхний затворный элемент, который выполнен с возможностью открываться для подачи металлического лома в шахту и после закрываться, причем к верхним вытяжным отверстиям колпака подсоединена вытяжная система, выполненная с возможностью управления ее активированием, которое координируют с открытием и закрытием верхнего затворного элемента и/или состоянием загрузки шахты. Изобретение позволяет управлять загрузкой лома и вытяжной системой и предотвращать выход выбросов дыма и пыли в технологическое пространство цеха и окружающую среду. 2 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к электрометаллургии, в частности к способам получения многослойных стальных слитков импульсно-электрошлаковым переплавом. Осуществляют импульсно-электрошлаковый переплав с изменением частоты импульсов комбинированного расходуемого электрода, выполненного с участками, имеющими различный химический состав в зависимости от требуемого химического состава стали на заданном участке слитка, при этом импульсно-электрошлаковую выплавку нижнего и верхнего слоев слитка осуществляют с модуляцией теплового потока шлаковой и металлической ванн, направленного из шлаковой ванны через фронт кристаллизации в тело слитка, с периодом времени, равным постоянной времени теплового процесса шлаковой ванны, и скважностью, равной двум, при этом осуществляют выплавку среднего слоя слитка на частоте резонансных колебаний поверхности жидкой металлической ванны. Изобретение позволяет повысить качество металла многослойного слитка за счет сокращения протяженности приграничных областей с повышенным градиентом концентраций элементов смежных слоев вдоль оси слитка и снижения в них градиента концентраций элементов по сечению слитка без уменьшения производительности ЭШП, а также улучшить усвоения легирующего элемента и равномерное его распределение по объему среднего слоя и приграничных областей слоев слитка. 2 пр., 6 ил.

Изобретение относится к электрометаллургии стали с подачей металлизованных окатышей через полые электроды в зону электрических дуг и на поверхность менисков при контакте электрических дуг с жидким металлом под шлаком. Дуговая печь содержит систему загрузки металлизованных окатышей через трубчатые электроды и компьютерную систему управления ходом плавки, которая снабжена выполненными с возможностью подачи сигналов в микроЭВМ датчиком веса лома, датчиком веса сыпучих материалов, датчиком веса металлизованных окатышей, датчиком потребления активной мощности, датчиком потребления мощности, системой контроля температуры металла, датчиками тока и напряжения, программным блоком расчета параметров процесса плавки металлизованных окатышей, при этом микроЭВМ выполнена с возможностью выдачи сигнала в исполнительный механизм системы загрузки металлизованных окатышей. Изобретение позволяет повысить эффективность процессов плавки металлизованных окатышей в ванне дуговой печи за счет подачи окатышей в зону высоких температур в приэлектродном пространстве дуговой печи в управляемом режиме с помощью компьютерной системы сталеплавильного агрегата. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области литейного производства и может быть использовано в конструкциях устройств для контроля параметров процесса литья. С целью гарантии безаварийного функционирования входящей в устройство электронной системы (4) она размещена в модуле (3), который может быть прикреплен к металлургическому сосуду, задвижке его замка, его запорному устройству или механизму замены литниковой трубки. Указанный модуль имеет тепловую изоляцию (8) и снабжен воздушной системой охлаждения (10), которая используется с очищенным охлажденным воздухом и может быть приведена в действие источником энергии (15) отработанного тепла от металлургического сосуда или внешним источником энергии. 9 з.п. ф-лы, 1 ил.
Наверх