Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной взрывобезопасности. Система контроля кислорода и водорода в газовых средах содержит канал, входной сенсор водорода, расположенный во входной части полости канала, входной каталитически активный элемент, установленный в поперечном сечении средней части полости канала за входным сенсором водорода, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала после входного каталитически активного элемента, причем сенсоры подключены к системе регистрации и управления. Система дополнительно снабжена выходным каталитически активным элементом, установленным в поперечном сечении выходной части полости канала за выходным сенсором водорода и сенсором кислорода, причем входной и выходной каталитически активные элементы снабжены автономными нагревателями для поддержания коэффициента рекомбинации водорода на каталитически активных элементах равным 1. Изобретение обеспечивает возможность непрерывного контроля кислорода и водорода в газовой смеси в объеме помещения с высокой степенью точности и надежности. 4 з.п. ф-лы, 1 ил.

 

Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической и атомной промышленности для контроля параметров газовых сред, в частности для контроля газовых смесей, содержащих кислород и водород.

Известен хроматографический газоанализатор, основными частями которого являются система для ввода исследуемой смеси веществ (пробы), хроматографическая колонка, детектирующее устройство (детектор), системы регистрации и термостатирования / БСЭ, М. Советская энциклопедия, т.28, 1978, с.392/.

Недостатком известного устройства является его высокая стоимость и низкая производительность. Кроме того, устройство работает в периодическом режиме и его практически невозможно использовать в необслуживаемых или редко обслуживаемых помещениях.

Наиболее близким к заявляемому устройству является устройство для измерения содержания кислорода и водорода в газах / RU 42663 U1, G01N 27/12, 2004/. Данное устройство принято за прототип. Прототип содержит газовые сенсоры, подключенные к регистрирующим приборам, канал и каталитически активный элемент, установленный в поперечном сечении средней части полости канала. В качестве газовых сенсоров используют входной сенсор водорода, установленный во входной части полости канала, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала. Входной и выходной сенсоры водорода, сенсор кислорода и каталитически активный элемент подключены по меньшей мере к одному источнику питания.

Недостатком известного устройства является отсутствие защиты от попадания исходной (непрореагировавшей на каталитическом активном элементе) газовой смеси в выходную часть полости канала, вследствие чего определение истинных концентраций кислорода и водорода оказывается ошибочным.

Предложенное техническое решение позволяет создать систему контроля кислорода и водорода в газовых сред, лишенную указанных недостатков. Техническим результатом является повышение надежности работы и достоверности контроля газовых смесей содержащих кислород и водород.

Для решения поставленной задачи, а также для достижения заявленного технического результата систему контроля кислорода и водорода в газовых средах, содержащую канал, входной сенсор водорода, расположенный во входной части полости канала, входной каталитически активный элемент, установленный в поперечном сечении средней части полости канала за входным сенсором водорода, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала после входного каталитически активного элемента, причем сенсоры подключены к системе регистрации и управления, предлагается:

- дополнительно снабдить выходным каталитически активным элементом, установленным в поперечном сечении выходной части полости канала за выходным сенсором водорода и сенсором кислорода;

- снабдить входной и выходной каталитически активные элементы автономными нагревателями для поддержания коэффициента рекомбинации водорода на каталитически активных элементах равным 1.

Дополнительно предлагается выполнить входной и выходной каталитически активные элементы из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием для увеличения каталитически активной площади.

На фиг.1 представлен один из вариантов заявляемой системы контроля кислорода и водорода в газовых сред, где 1 - измерительная часть системы; 2 - канал; 3 - входная часть полости канала; 4 - выходная часть полости канала; 5 - входной каталитически активный элемент; 6 - входной сенсор водорода; 7 - выходной сенсор водорода; 8 - сенсор кислорода; 9 - нагреватель входного каталитически активного элемента; 10 - выходной каталитически активный элемент; 11 - нагреватель выходного каталитически активного элемента; 12 - электрическая связь; 13 - система регистрации и управления; 14 - помещение с анализируемым газом; 15 - служебное помещение.

Измерительная часть системы 1 содержит газовые сенсоры, подключенные к системе регистрации и управления 13, канал 2, входной каталитически активный элемент 5, установленный в поперечном сечении канала 2 и выходной каталитически активный элемент 10, установленный в поперечном сечении выходной части 4 канала 2.

В качестве газовых сенсоров используют входной сенсор водорода 6, установленный во входной части 3 полости канала 2 до входного каталитически активного элемента 5, выходной сенсор водорода 7 и сенсор кислорода 8, расположенные в полости канала 2 между входным 5 и выходным 6 каталитически активными элементами. Причем каталитически активные элементы 5 и 6 снабжены автономными нагревателями 7 и 11, соответственно.

Сенсоры кислорода и водорода подключены к системе регистрации и управления 13 с помощью электрической связи 12.

Система работает следующим образом.

Газовую смесь вводят в контакт с нагретыми газовыми сенсорами и измеряют концентрацию компонент газовой смеси системой регистрации и управления 13.

Исходную газовую смесь вводят в контакт с нагретым входным сенсором водорода 6, установленным во входной части полости 3 канала 2 газоанализатора. Регистрируют концентрацию водорода в исходной газовой смеси с помощью подключенной к нему системы регистрации и управления 13.

Затем исходную газовую смесь пропускают через входной каталитически активный элемент 5, нагретый индивидуальным нагревателем 9, и осуществляют в нем полную рекомбинацию по меньшей мере одного из реагентов, например, кислорода и/или водорода.

Прошедшую входной каталитически активный элемент 5 газовую смесь вводят в контакт с установленными в выходной части полости 4 канала 2 нагретыми выходным сенсором водорода 7 и сенсором кислорода 8 и регистрируют концентрации водорода и кислорода в газовой смеси с помощью подключенной к сенсорам системе регистрации и управления 13. После регистрации концентраций водорода и кислорода выходным сенсором водорода 7 и сенсором кислорода 8 газовая смесь покидает полость канала 2 через выходной каталитически активный элемент 10, нагретым при помощи индивидуального нагревателя 11.

Измерительную часть системы 1 размещают в помещении 14 с исходной газовой смесью, содержащей по меньшей мере кислород и водород. Систему регистрации и управления 13 и источники питания размещают в служебном помещении 15. Входной сенсор водорода 6 фиксирует «истинную» концентрацию (парциальное давление) водорода в измеряемом объеме в исходной газовой смеси ( С H 2 в х ) , поступившей во входную часть полости 3 канала 2. В исходной газовой смеси концентрацию кислорода ( С O 2 в х ) не определяют, так как этому измерению сильную помеху создает наличие водорода. Поэтому исходная газовая смесь, поступившая в канал 2, движется вверх. При этом на поверхности входного каталитически активного элемента 5, выполненного, например, из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием, протекает каталитическая реакция окисления водорода до паров воды с коэффициентом рекомбинации равным единице. Для предотвращения концентрационного проникновения кислорода и водорода из помещения 14 в полость канала 2 через выходную полость канала 4 в ней устанавливается выходной каталитически активный элемент 10, который производит каталитическое дожигания кислорода и водорода и обеспечивает, таким образом, корректную работу сенсора кислорода 8.

Истинную концентрацию кислорода в исходной газовой смеси определяют по соотношению:

С O 2 в х = С O 2 в ы х + К с т ( С H 2 в х - С H 2 в ы х ) ( 1 )

где С O 2 в ы х - концентрация кислорода, фиксируемая сенсором кислорода 8;

С H 2 в х - концентрация водорода, фиксируемая входным сенсором водорода 6;

С H 2 в ы х - концентрация водорода, фиксируемая выходным сенсором водорода 7;

Кст - стехиометрический коэффициент ( К с т 1 2 ) .

Пример конкретного выполнения системы

Канал 2 выполнен из стали 12Х18Н10Т.

В качестве сенсора кислорода 8 используется гальваническая концентрационная ячейка (ГКЯ) с проводящим только ионы кислорода твердым электролитом выполненным из частично стабилизированного диоксида циркония. Величина ЭДС ГКЯ сенсора кислорода (Е) определяется уравнением:

E = R T n F ln ( Р ' O 2 Р " O 2 ) ,

где: n=4 - количество электронов, участвующих в электродной реакции; Т - температура, К; R - универсальная газовая постоянная; F - число Фарадея; Р O 2 ' - парциальное давление кислорода в исследуемой среде; Р O 2 " - парциальное давление кислорода на электроде сравнения.

В качестве входного 6 и выходного 7 сенсоров водорода используются сенсоры кислорода из твердого оксидного электролита на основе частично стабилизированного диоксида циркония, дооснащенные камерой с постоянным давлением паров воды, выполненной из никеля НП0 и водородопроницаемой мембраной выполненной из никеля НМг0.08в. При этом значение концентрации водорода С H 2 определяют в соответствии с индивидуальной калибровкой зависимости С H 2 = f ( E ) , где Е - ЭДС водородного сенсора, определяется выражением

E = E 0 R T n F ln ( Р H 2 O Р H 2 ) ,

где: Т - температура, К; R - универсальная газовая постоянная; F - число Фарадея; n - число электронов, участвующих в реакции; Р H 2 O - парциальное давление паров воды в паро-водородной камере; Р H 2 - парциальное давление водорода в исследуемой среде.

Примеры осуществления работы системы

1. На вход поступает газовая смесь, содержащая 6 об.% водорода, при этом показания сенсоров были следующими:

С H 2 в х = 16 о б . % , С O 2 в ы х = 16 о б . % , С H 2 в ы х = 0.

Определяем С O 2 в х по формуле (1).

С O 2 в х = 16 + 1 2 6 = 19 о б . %

2. На вход поступает газовая смесь, содержащая 16 об.% водорода, при этом показания сенсоров были следующими:

С H 2 в х = 16 о б . % , С O 2 в ы х = 16 о б . % , С H 2 в ы х = 0.

Определяем С O 2 в х по формуле (1).

С O 2 в х = 6 + 1 2 16 = 14 о б . % .

1. Система контроля кислорода и водорода в газовых средах, содержащая канал, входной сенсор водорода, расположенный во входной части полости канала, входной каталитически активный элемент, установленный в поперечном сечении средней части полости канала за входным сенсором водорода, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала после входного каталитически активного элемента, причем сенсоры подключены к системе регистрации и управления, отличающаяся тем, что система дополнительно снабжена выходным каталитически активным элементом, установленным в поперечном сечении выходной части полости канала за выходным сенсором водорода и сенсором кислорода, причем входной и выходной каталитически активные элементы снабжены автономными нагревателями для поддержания коэффициента рекомбинации водорода на каталитически активных элементах равным 1.

2. Система по п.1, отличающаяся тем, что входной и выходной каталитически активные элементы выполнены из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием.

3. Система по п.1, отличающаяся тем, что в качестве сенсора кислорода используется гальваническая концентрационная ячейка с проводящим только ионы кислорода твердым электролитом на основе частично стабилизированного диоксида циркония.

4. Система по п.1, отличающаяся тем, что в качестве в качестве входного и выходного сенсоров водорода используются сенсоры кислорода из твердого оксидного электролита на основе частично стабилизированного диоксида циркония, дооснащенные камерой с постоянным давлением паров воды и водородопроницаемой мембраной, выполненной из никеля.

5. Система по п.1, отличающаяся тем, что канал выполнен из стали 12Х18Н10Т.



 

Похожие патенты:

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. .

Изобретение относится к аналитической химии и приборостроению, может быть использовано для различных анализов жидкой пробы и направлено на уменьшение времени анализа и увеличение воспроизводимости результатов анализа за счет автоматизации забора жидкой пробы перед ее перемещением в реактор, а также возможности забора пробы как из одиночной емкости, так и из множества емкостей, проходящих точку забора пробы, а также из потока анализируемой жидкости.

Изобретение относится к области анионпроводящих неорганических твердых электролитов, а именно к керамическим твердым электролитам, обладающим высокой проводимостью по сульфид-ионам в области температур (300-500°С), и может быть использовано для исследования кристаллических и аморфных полупроводниковых сульфидов методом ЭДС, в составе электрохимических ячеек для кулонометрического изменения состава нестехиометрических соединений и для газового анализа серосодержащих сред, в твердоэлектролитных источниках тока.

Изобретение относится к измерительной технике. .

Изобретение относится к средствам для исследования или анализа газов, а точнее к системам, определяющим содержания кислорода, использующим твердоэлектролитные ячейки, и может быть использовано в прикладной электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода в жидких и газовых средах.

Изобретение относится к аналитическому приборостроению и может быть использовано в энергетике, ядерной технике, химической технологии, металлургии, газовом анализе для измерения содержания водорода в расплавах щелочных металлов и их парах, инертных газах и водяном паре.

Изобретение относится к области газового анализа и может быть применено в аналитическом приборостроении. .

Изобретение относится к области аналитического приборостроения, в частности к газовому анализу. .

Изобретение относится к области аналитического приборостроения, в частности к газовому анализу. .

Изобретение относится к области аналитического приборостроения, в частности к газовому анализу, и может быть использовано при разработке газоанализатора, предназначенного для измерения парциального давления кислорода в обогащенном кислородом воздухе, применяемом для дыхания экипажей высотных самолетов и в барокамерах.

Изобретение относится к измерительной технике. Сущность изобретения: датчик водорода в жидких и газовых средах включает селективную мембрану (11), пористую электроизоляционную керамику (7) и корпус (5) с потенциалосъемником (9), керамический чувствительный элемент (4) с эталонным электродом (14), пористый платиновый электрод (8), кремнеземную ткань (6), соединительный материал (12), пробку (10) с отверстием, гермоввод (2), цилиндрическую втулку (1). Полость корпуса (5) между гермовводом (2) и керамическим чувствительным элементом (4) герметична. Керамический чувствительный элемент (4) выполнен в виде сопряженных между собой цилиндрического элемента и части сферы, расположенной в нижней части цилиндрического элемента. Верхняя часть наружной цилиндрической поверхности керамического чувствительного элемента (4) герметично соединена с корпусом (5) посредством соединительного материала (12). Эталонный электрод (14) расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента (4) и поверхностью пробки (10). Наружная сферическая часть керамического чувствительного элемента (4) покрыта слоем пористого платинового электрода (8). Конец центральной жилы (13) выведен через отверстие в пробке (10) в объем эталонного электрода (14). Втулка (1) соединена с нижней частью корпуса (5). Технический результат изобретения состоит в расширении функциональных возможностей, снижении стоимости и увеличении быстродействия датчика. 10 з.п. ф-лы, 1 ил.

Устройство для определения концентрации кислорода и водорода в газовой среде относится к средствам измерительной техники и может быть использовано для контроля параметров газовых сред, в частности содержащих кислород и водород. Устройство состоит из канала (7), расположенного под углом к горизонту, входного сенсора водорода (2) и входного сенсора кислорода (3), расположенных во входной части полости канала (7), входного каталитически активного элемента (1), установленного в полости канала (7) над выходными сенсорами водорода (2) и кислорода (3), выходного сенсора водорода (5) и выходного сенсора кислорода (6), расположенных в полости канала (7) между входным (1) и выходным (4) каталитически активными элементами. Причем входной (2) и выходной (4) каталитически активные элементы выполнены из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием. В качестве входного сенсора водорода (5) и выходного сенсора водорода (7) использованы твердоэлектролитные датчики концентрации водорода с керамическим чувствительным элементом, выполненным из кислородпроводящей керамики. Технический результат заключается в повышении быстродействия и чувствительности устройства, обеспечении защиты от ошибочных показаний устройства. 2 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположена пара электродов, к электродам дисков подают напряжение постоянного тока. При напряжении величиной 500-700 мВ откачивают свободный кислород, находящийся во внутренней полости ячейки, и по величине предельного тока, соответствующего содержанию свободного кислорода в анализируемом газе, определяют кислородосодержание. При дальнейшем увеличении напряжения до 1300-1500 мВ из полости ячейки откачивают связанный кислород и по величине предельного тока, соответствующего суммарному содержанию свободного кислорода в анализируемом газе и связанного кислорода, полученного в результате электролиза паров воды, определяют влажность анализируемого газа. Техническим результатом является расширение арсенала средств для измерения влажности анализируемого газа и возможность дополнительно определять кислородосодержание в нем, а также повышение надежности способа. 2 ил.

Электрохимическая ячейка относится к устройствам для определения концентраций серосодержащих газов в газовых смесях с применением твердотельных датчиков газа. Устройство предназначено для качественного и количественного определения серосодержащих газов (сероводорода и диоксида серы) в отходящих газах химических производств, теплоэлектростанций, для анализа светлых и темных нефтепродуктов и может быть использовано для определения предельно допустимых концентраций (ПДК) серосодержащих газов в химической, нефтехимической, медицинской и пищевой отраслей промышленности. Электрохимическая ячейка для анализа серосодержащих газов включает трубку из кварцевого стекла с расположенными внутри нее штуцерами для подачи и отвода газа, токоподводящими графитовым и нихромовыми проводниками, графитовым электродом, сульфидпроводящей мембраной, электродом сравнения, расположенным в графитовом проводнике и выполненным из сульфида висмута с добавкой порошкообразного металлического висмута, и рабочим электродом. При этом согласно изобретению в качестве сульфидпроводящей мембраны электрохимической ячейки используют твердый электролит (CaY2S4-х мол.% Yb2S3) при следующем соотношении, мол.%: тиоиттрат кальция (CaY2S4) - 84-100%, полуторный сульфид иттербия (Yb2S3) - остальное. Изобретение обеспечивает уменьшение нижнего порога определяемых концентраций сероводорода и диоксида серы, повышение чувствительности и понижение рабочей температуры чувствительного элемента. 3 ил., 1 табл.

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений. Датчик водорода в жидких и газовых средах включает селективную мембрану и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемником, проходящим через центральное отверстие гермоввода, и нижней втулкой. Керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента. Наружная цилиндрическая поверхность керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Нижняя втулка, выполненная в виде трубки, соединенной с нижней частью корпуса со стороны керамического чувствительного элемента. Нижний конец нижней втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана. Нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями селективной мембраны и заглушки, выполнена герметичной. Вверху потенциалосъемника установлена верхняя втулка, при этом кольцевая полость между внутренней поверхностью стенки верхней втулки и наружной поверхностью потенциалосъемника заполнена ситаллом. Изобретение обеспечивает повышение ресурса и надежности работы датчика водорода в широком диапазоне параметров рабочей среды, посредством обеспечения герметичности внутренней полости керамического чувствительного элемента. 2 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха. Способ измерения влажности воздуха заключается в том, что помещают в поток анализируемого воздуха электрохимическую ячейку с полостью, образованной диском из протонпроводящего электролита и диском из кислородопроводящего электролита, на противоположных поверхностях каждого из дисков расположено по паре электродов, и капилляром, соединяющим полость с потоком газа. К электродам диска из кислородопроводящего электролита прикладывают напряжение постоянного тока, и по величине ЭДС, установившейся на электродах диска из протонпроводящего электролита, рассчитывают влажность анализируемого воздуха, при этом напряжение постоянного тока прикладывают к электродам диска, выполненного из кислородопроводящего твердого электролита, с подачей положительного полюса на электрод, находящийся внутри ячейки, а величину напряжения выбирают из условия обеспечения в цепи постоянного тока величиной 10-15 мА. 4 ил.

Изобретение относится к средствам для исследования или анализа газов и может быть использовано в энергетике, металлургии, нефте- и газодобывающей отраслях, автомобилестроении и других отраслях для определения содержания кислорода и химического недожога в газовых средах. Предложен чувствительный элемент газоанализатора кислорода и химнедожога, включающий эталонный электрод и два измерительных электрода, выполненные из пористого материала, обладающего каталитической активностью. Предлагаемый чувствительный элемент состоит из двух твердоэлектролитных электрохимических ячеек, герметично закрепленных в общем термоизоляционном чехле при помощи металлической шайбы. Причем каждая электрохимическая ячейка содержит твердый электролит из диоксида циркония, герметично соединенный с электроизолятором из керамики на основе алюмомагнезиальной шпинели и выполненный в виде усеченного конуса, герметично установленного в конические отверстия металлических трубок из феррито-мартенситной стали. Каждая из электрохимической ячейки снабжена термопарой, совмещенной с потенциалосъемником, расположенными коаксиально внутри каждой электрохимической ячейки. При этом обе ячейки содержат эталонный и измерительный электрод, нанесенные на наружную и внутреннюю поверхности каждой электрохимической ячейки. Термопары с потенциалосъемниками имеют электрический контакт с соответствующими эталонными электродами, при этом в термоизоляционном чехле размещен первый электронагреватель, Изобретение обеспечивает повышение точности и представительности измерений, повышение быстродействия, увеличение межповерочного интервала и ресурса работы. 11 з.п. ф-лы, 7 ил.

Изобретение относится к аналитическому приборостроению. Датчик кислорода электрохимический (1) установлен в реакционной камере (3). Селективная мембрана (4) замещает части стенки реакционной камеры (3). Часть реакционной камеры (3) заполнена сорбентом (5). Масса сорбента соответствует условию, учитывающему взаимосвязь объема реакционной камеры (3), плотности сорбента (5), ресурса работы датчика, температуры реакционной камеры (3), молярный массы сорбента (5) и молярной доли содержания воды в нем, объемного расхода паров воды, уходящих из реакционной камеры, парциального давления паров воды для сорбента (5) при заданной температуре в реакционной камере (3) и универсальной газовой постоянной. Изобретение обеспечивает повышение точности измерения концентрации водорода и улучшение эргономических характеристик датчика водорода. 2 ил.

Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в газовых средах в широком интервале температур и давлений. Датчик водорода в газовых средах включает рабочий элемент, плотно прилегающий посредством уплотнителя к верхней части корпуса датчика. Дополнительная герметичность обеспечена гайкой. Нижняя часть корпуса датчика оконтуривается изоляцией, обеспечивающей плотный контакт с нагревателем, обеспечивающим температурный режим рабочей среды, подаваемой на водородопроницаемую мембрану пароводяной камеры. Через измерительный платиновый электрод, вплотную примыкающий к нижней части керамического чувствительного элемента, герметично соединенного ситаллом с металлическим корпусом чувствительного элемента, возмущение, вносимое измерительным потоком, передается на центральную жилу потенциалосъемника. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Изобретение обеспечивает повышение точности показаний датчика водорода за счет обеспечения герметичности внутренней полости керамического чувствительного элемента и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента вследствие наличия постоянного надежного подогрева при помощи нагревателя и теплоизоляции. 3 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной взрывобезопасности. Система контроля кислорода и водорода в газовых средах содержит канал, входной сенсор водорода, расположенный во входной части полости канала, входной каталитически активный элемент, установленный в поперечном сечении средней части полости канала за входным сенсором водорода, выходной сенсор водорода и сенсор кислорода, расположенные в выходной части полости канала после входного каталитически активного элемента, причем сенсоры подключены к системе регистрации и управления. Система дополнительно снабжена выходным каталитически активным элементом, установленным в поперечном сечении выходной части полости канала за выходным сенсором водорода и сенсором кислорода, причем входной и выходной каталитически активные элементы снабжены автономными нагревателями для поддержания коэффициента рекомбинации водорода на каталитически активных элементах равным 1. Изобретение обеспечивает возможность непрерывного контроля кислорода и водорода в газовой смеси в объеме помещения с высокой степенью точности и надежности. 4 з.п. ф-лы, 1 ил.

Наверх