Устройство для создания градиента температур в образце

Изобретение относится к пьезоэлектронике и может быть использовано для получения градиента поляризации в однородных по химическому составу образцах пьезоэлектрической керамики. Сущность: устройство содержит нагреваемый и охлаждаемый стаканы с плоским днищем, оснащенные термопарами, и теплоизоляционный кожух. Охлаждаемый стакан помещен коаксиально внутрь нагреваемого стакана с зазором между стенками стаканов, равным 0,25÷0,30 диаметра внутреннего стакана. Технический результат: расширение рабочего интервала температур от -50 до +150°С. 1 ил.

 

Изобретение относится к электронной технике, а именно к пьезоэлектронике, к устройствам для поляризации пьезоэлектрической керамики.

Существующие в настоящее время промышленные методы поляризации керамических пьезоэлектрических элементов используемых в пьезоакустических преобразователях создают однородную поляризацию по толщине образца. Такая поляризация образцов позволяет получать в переменных электрических полях только продольные или поперечные колебания. В то же время значительный практический интерес представляют пьезокерамические преобразователи, в которых создаются изгибные колебания.

Практическое применение пьезопреобразователей с изгибными колебаниями:

Пьезопреобразователи на основе изгибных колебаний пьезокерамических элементов являются элементами пассивных интеллектуальных конструкций, которые регистрируют информацию о состоянии объекта. Как активные интеллектуальные конструкции они содержат триаду: датчик (сенсор), процессор (анализ и принятие решения), актюатор (исполнительный механизм). Законченный прибор, составной частью которого является такой пьезопреобразователь, может обеспечивать тепловые измерения, измерения механической нагрузки, измерения отклонения и растяжения и получение другой информации, которая может храниться в базе данных и считываться немедленно в случае, например, организации эвакуации из высотного здания. Это позволит решить задачу мониторинга высоких зданий, мостов, дамб, туннелей, трубопроводов и других инфраструктур. Пьезопреобразователи позволяют создать миниатюрные радиодатчики с практически неограниченным сроком службы, без сменных элементов питания, пассивную интеллектуальную конструкцию можно сделать абсолютно герметичной. С помощью устройств на основе пьезоэффекта возможно осуществление устройств и систем гашения вибраций, что чрезвычайно актуально, например, для прецизионного машиностроения, электротехнической промышленности (мощные трансформаторы), судостроения, летательных и ракетных аппаратов и др. Устройства и системы гашения вибрации могут быть диверсифицированы и использованы для подавления акустических волн в воздухе и воде.

Создание изгибных колебаний возможно в пьезоэлектрических материалах с градиентом поляризации по толщине образца.

Градиент поляризации в образце может создаваться непосредственно или за счет градиента других физических свойств (например, температуры или концентрации составляющих химических компонент) [S. Zhong, Z.-G. Ban, S.P. Alpay, J.V. Mantese. Large piezoelectric strains from polarization graded ferroelectrics. Appl. Phys. Let. 2006. V.89. P.142913; Z.-G. Ban, S.P. Alpay, J.V. Mantese. Fundamentals of graded ferroic materials and devices. Phys. Rev. B.2003. V.67. P.184104].

Использование материалов с постоянным градиентом температуры по толщине образца для широкого практического применения наименее пригодно, поскольку требует привязки к специальному оборудованию (печи, элементы Пельтье, термостаты и т.п.). В последнее время наблюдается тенденция к созданию градиентных функциональных материалов. Градиентные функциональные материалы (functionally graded materials) - это материалы, у которых концентрация химических составляющих (или другая физическая характеристика) изменяется непрерывно или пошагово по толщине.

Получение материалов на основе твердых растворов с градиентом концентрации химического состава - один из способов создания градиента поляризации и пьезоэлектрических свойств в сегнетоэлектрических материалах. Неоднородность системы является результатом воздействия композиционных, температурных градиентов или градиентов напряжения. В то же время практически реализовано два способа получения пьезоэлектрических материалов с градиентом физических свойств -склеивание однородных по химическому составу образцов, поляризованных в противоположном направлении и создание керамики с градиентом концентрации химического состава.

1 способ реализован в ОАО «Элпа» г.Зеленоград, Россия.

2 способ - в институте физики Университета Мартина-Лютера, Германия (Institut fur Physik, FG Physik FerroischerMaterialien, Martin-Luther-Universitat, Halle, Germany) на базе пьезокерамики титаната-станната бария [Steinhausen R. / Pientschke С., Kuvatov A.Z., Langhammer H.T., Beige H., Movchikova A.A., Malyshkina O.V. Modeling and characterization of piezoelectric and polarization gradienrs // J Electroceram. - 2008. - V.20. - P.47-52].

В растворе титаната-станната бария BaTi1-xSnxO3, основным является состав BaTiO3, а BaSnO3 - замещающим.

Рассмотрим технологию получения градиента поляризации в образцах функциональной керамики BaTi1-xSnxO3 (BTS), на примере образцов BTS с градиентом олова 0,075≤х≤0,15, состоящих из двух (составы BTS7.5 и BTS15), трех (BTS7.5; BTS10; BTS15) и четырех (BTS7.5; BTS10; BTS12.5 и BTS 15) слоев с разной концентрацией олова [Steinhausen R. / Pientschke С., Kuvatov A.Z., Langhammer H.T., Beige H., Movchikova A.A., Malyshkina O.V. Modeling and characterization of piezoelectric and polarization gradienrs // J Electroceram. - 2008. - V.20. - P.47-52].

Приготовления образцов с градиентом концентрации олова возможно двумя разными способами:

1. Прессование и спекание слоев порошка с разной концентрацией олова

Функциональная керамика BTS с градиентом олова синтезируется с последовательным прессованием гранулированного порошка с содержанием 7,5; 10; 12,5 и 15% олова и последующим спеканием в течение одного часа при температуре 1400°С под одноосным давлением приблизительно 1 кПа.

Данная технология позволяет получить материал с градиентом химического состава по толщине образца. Двухслойные образцы содержали составы BTS7.5 и BTS15, трехслойные - BTS7.5, BTS10 и BTS15; четырехслойные - BTS7.5, BTS10, BTS12,5 и BTS15. Для практического применения данные материалы интересны тем, что состав BTS15 при комнатной температуре (выше 24°С) находится в параэлектрической фазе, тогда как составы BTS7.5 и BTS10 в сегнетоэлектрической фазе, состав BTS12.5 имеет область Кюри в интервале 24÷31°С.

2. Склеивание образцов с разной концентрацией олова

Четыре образца керамики BTS, содержащие 7,5; 10; 12,5 и 15% олова склеиваются в один.

Градиент пьезоэлектрических свойств по толщине образцов в описанных выше материалах реализуется за счет слоев с разной концентрацией олова. Неоднородное распределение поляризации по толщине имеет место, когда при температуре поляризации компоненты одного слоя находятся в параэлектрической фазе, другого - в сегнетоэлектрической. В то же время примесь олова в керамику титаната бария значительно понижает точку Кюри материала; область Кюри рассмотренных выше керамик BTS с различной концентрацией олова лежит в интервале 15÷75°С.

Недостаток существующих способов: узкий температурный интервал применения данных материалов от 10 до 70°С.

В связи с этим актуальна задача получения градиента поляризации в однородных по химическому составу пьезоэлектрических керамиках с высокой температурой фазового перехода, что значительно расширит температурный диапазон практического применения.

Теоретически создание градиента поляризации возможно, если в процессе приложения электрического поля в образце существует постоянный градиент температуры. На практике это неосуществимо, поскольку проводимость деполяризованной керамики имеет сильную зависимость от температуры. Степень нагрева поляризуемого образца ограничена вероятностью теплового пробоя. Время поляризации определяется временем релаксации объемных зарядов в образце, обеспечивающих стабилизацию поляризованного состояния. Электрофизические характеристики поляризуемого сегнетоэлектрика ограничивают область допустимых режимов, обусловленных условием теплообмена.

Технический результат заявляемого изобретения заключается в создании устройства для создания градиента температур в образце пьезоэлектрической керамики для получения в нем градиента поляризации, позволяющем получать поляризованную пьезоэлектрическую керамику с рабочим интервалом температур расширенным более чем в три раза по сравнению с готовыми изделиями, полученными в известных устройствах, и включающим область отрицательных температур, а именно: поляризованная пьезоэлектрическая керамика сохраняет свои свойства при температуре от -50 до +150°С.

Расширение вышеуказанного рабочего интервала температур возможно при соблюдении в устройстве для создания градиента температур в образце пьезоэлектрической керамики для получения в нем градиента поляризации следующих температурных режимов: поляризацию однородного по химическому составу образца пьезоэлектрической керамики с оппозитными плоскими элементами поверхности при температуре 100÷180°С; выдержку образца в течение 3÷5 дней при температуре 20÷25°С; градиентный нагрев образца поляризованной пьезоэлектрической керамики в течение 20÷30 минут, при котором один из плоских элементов поверхности образца нагревается до температуры параэлектрической фазы, а второй плоский элемент поверхности, оппозитный первому, имеет температуру сегнетоэлектрической фазы; охлаждение в электрически свободном состоянии, т.е. с закороченными электродами.

Изобретение поясняется графическими материалами: Фиг.1.

Фиг.1. Устройство для получения градиента поляризации в однородной по химическому составу пьезоэлектрической керамике с оппозитными плоскими элементами поверхности. 1 - нагреваемый стакан; 2 - охлаждаемый стакан; 3, 4 - термопары; 5 - теплоизоляционный кожух; 6 - нагреватель; 7 - образец; 8 - электроды, 9 - подача охлаждающего воздуха от компрессора; 10 - электроизоляция.

Устройство, разработанное для создания и поддержания в образце необходимого градиента температуры и получения градиента поляризации (Фиг.1), состоит из нагреваемого стакана 1, охлаждаемого стакана 2, имеющих плоское днище, причем охлаждаемый стакан помещен коаксиально внутрь нагреваемого стакана с зазором между стенками стаканов, равным 0,25÷0,30 диаметра охлаждаемого стакана. Между плоскими днищами обоих стаканов расположен образец 7 однородной по химическому составу пьезоэлектрической керамики. Образец имеет плоские оппозитные поверхности. Верхняя поверхность (грань) образца примыкает к плоскому днищу охлаждаемого подачей воздуха 9 от компрессора (не показан) стакана 2, нижняя, оппозитная верхней, поверхность образца примыкает к внутренней поверхности плоского днища стакана 1. Охлаждаемый стакан зафиксирован внутри нагреваемого стакана посредством электроизоляции 10. В качестве нагревателя 6 используется низковольтная печь (не показана). Устройство имеет теплоизоляционный кожух 5. Устройство оснащено термопарами 3 и 4.

Контроль температуры и скорости нагрева осуществляется по специализированной программе. Для создания и поддержания градиента температуры по толщине образца проведена разработка и изготовлено устройство для контролируемого охлаждения верхней поверхности образца. Нижняя грань образца нагревается до необходимой для поляризации температуры с использованием низковольтной печи.

Поддержание постоянной температуры в процессе поляризации и контроль температуры осуществляется микроконтроллерным терморегулятором «Минитерм-300.31», имеющим встроенный программный задатчик температур, встроенный порт RS232 для связи с управляющим компьютером и работающий с термопарой типа L в диапазоне температур от -50 до +400°С. Для контроля температуры используются две независимые термопары: термопара 3 - для нагревательного элемента встроена в терморегулятор «Минитерм-300.31», термопара 4 выносная.

Устройство для создания градиента температур в образце пьезоэлектрической керамики для получения в нем градиента поляризации, содержащее нагреваемый и охлаждаемый стаканы с плоским днищем, оснащенные термопарами, причем охлаждаемый стакан помещен коаксиально внутрь нагреваемого стакана с зазором между стенками стаканов, равным 0,25÷0,30 диаметра внутреннего стакана, и теплоизоляционный кожух.



 

Похожие патенты:

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе: силовых переключателей, схем памяти, сенсорных датчиков, систем обработки информации и др.

Изобретение относится к устройствам для формирования сигнала пьезоэлектрического датчика для передачи по двухпроводному интерфейсу. .

Изобретение относится к области нанотехнологии и направлено на обеспечение перемещения образца по трем координатам (X, Y, Z), в частности, для перемещения образцов, держателей образцов и других элементов в сканирующей зондовой микроскопии.

Изобретение относится к области научного приборостроения и предназначено для использования в сканирующих зондовых микроскопах и нанотехнологических установках для микроперемещений объекта.

Изобретение относится к радиотехнике и может быть использовано в приборостроении и электронной промышленности для корпусирования и герметизации изделий функциональной электроники.

Изобретение относится к области неразрушающего контроля, а именно к средствам дефектоскопии трубопроводов, сварных соединений, корпусов реакторов, железнодорожных рельсов, уложенных в пути, конструкций и сооружений из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем доступе, и предназначено для применения в машиностроении, металлургии, в авиастроении, автомобилестроении, энергетике и других отраслях промышленности.

Изобретение относится к медицинской технике, в частности для применения в ингаляторах. .

Изобретение относится к нанотехнологии, а более конкретно к устройствам, обеспечивающим перемещения объекта по трем координатам (X, Y, Z) и точную повторяемость положений объекта при его переустановке, например для перемещения образцов, держателей образцов, зондов и других элементов в сканирующей зондовой микроскопии.

Изобретение относится к сканирующей зондовой микроскопии. .

Изобретение относится к области получения монокристаллов сегнетоэлектриков с сформированной доменной структурой и может быть использовано при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, а также при юстировке оптических систем.

Изобретение относится к пьезоэлектронике, к технологии изготовления монолитных многослойных пьезокерамических элементов для электромеханических преобразователей и актюаторов. Сущность изобретения: способ включает операции приготовления шликера на основе порошка пьезокерамического материала и органической связки, литья шликера через фильеру на движущуюся ленту и его сушку с образованием тонких «сырых» пленок из связки с пьезокерамическим порошком, резки сплошных «сырых» пленок на групповые заготовки, покрытия каждой групповой заготовки металлосодержащей пастой через сеткотрафарет с образованием рисунка, сборки путем наложения друг на друга n групповых заготовок, групповых пакетов, прессования групповых пакетов, рубки, в соответствии с рисунком сеткотрафарета, групповых пакетов на отдельные n-слойные заготовки пьезокерамических элементов, сборки «сырых» многослойных заготовок-столбиков из m «сырых» заготовок n-слойных пьезоэлементов путем их склеивания с последующей сушкой, высокотемпературной обработки, металлизации боковых сторон, поляризации многослойных заготовок-столбиков, измерения параметров многослойных пьезоэлементов-столбиков. Технический результат: повышение надежности работы в сложных внешних условиях, упрощение процесса изготовления и снижение его трудоемкости. 1 з.п. ф-лы, 10 ил.

Изобретение относится к технологии изготовления высокотемпературных композиционных пьезокерамических материалов и пьезоэлементов из титаната-скандата висмута-свинца (ТСВС). Технический результат: получение высоких пьезопараметров и высокой анизотропии пьезопараметров при низкой механической добротности толщинной и радиальной мод колебаний пьезоэлементов. Сущность: способ включает дозировку порошков исходных компонентов для получения твердого раствора системы ТСВС со структурой перовскита ABO3, помол-смешение порошков и термообработку смеси порошков с образованием спека кристаллитов, дробление и помол спека кристаллитов в порошок со средним размером порошинок не более 2 мкм, добавление к полученному порошку порошка порообразователя в виде гранул диаметром 5…30 мкм из выгорающего органического материала, формирование заготовок для спекания, обжиг заготовок в атмосферообразующей засыпке, механическую обработку для получения заготовок пьезоэлементов, металлизацию заготовок пьезоэлементов, поляризацию заготовок. Операция обжига заготовок композиционных пьезокерамических материалов проводится в атмосферообразующей засыпке, представляющей собой механическую смесь двух предварительно приготовленных атмосферообразующих засыпок, первая из которых является 30%-ной свинецсодержащей засыпкой, а вторая - 50%-ной висмутсодержащей засыпкой. 5 з.п. ф-лы, 1 табл.

Изобретение относится к пьезоэлектрическому и/или пироэлектрическому композиционному материалу. Сущность: материал включает диэлектрическую матрицу (11), наполнитель по меньшей мере из одного неорганического пьезоэлектрического и/или пироэлектрического материала. Наполнитель включает нитевидные наночастицы (12), распределенные по всему объему твердой диэлектрической матрицы (11) с количеством по объему менее 50%. Основные направления удлинения нитевидных наночастиц (12) неорганического наполнителя, распределенного в диэлектрической матрице (11), имеют по существу изотропное распределение в твердой диэлектрической матрице (11). Изобретение также относится к способу изготовления и применения такого гибридного материала для получения конструкционных деталей и пленок на носителе, полученных осаждением на поверхности такого субстрата. Технический результат: высокий пьезоэлектрический и/или пироэлектрический отклик при сниженной доле функционального наполнителя, обеспечение сочетания пластичности, прочности и низкой диэлектрической проницаемости органических полимерных материалов с электроактивными свойствами неорганических пьезоэлектрических и/или пироэлектрических материалов, низкая интенсивность электрического поля при поляризации. 3 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к ракетным двигателям малой тяги. Ракетный двигатель малой тяги с регулированием тяги содержащий камеру сгорания, смесительную головку с каналами и устройствами для подачи и регулирования расхода компонентов топлива, а также форсунки для распределения компонентов топлива, при этом устройства для подачи и регулирования расхода каждого компонента топлива, имеют пьезоэлектрический привод, а для управления тяговыми характеристиками двигатель снабжен источниками питания, которые встроены в электрическую цепь каждого пьезоэлектрического привода, при этом источники питания имеют регулятор напряжения. Изобретение обеспечивает повышение надежности, регулирование подачи компонентов топлива и его массового расхода одним устройством. 2 ил.

Изобретение относится к пьезотехнике, а именно к области создания многослойных пьезокерамических элементов для преобразователей электрической энергии в механическую. Сущность: способ включает приготовление шликера с порошком пьезокерамики, литье шликера через фильеру на движущуюся ленту и получение «сырых» пленок из органической связки с порошком пьезокерамики, резку сплошных «сырых» пленок на групповые заготовки, покрытие определенной части каждой групповой заготовки через сеткотрафарет пастой с порошком металла, сборку групповых заготовок в n-слойные пакеты, гидростатическое прессование собранных пакетов, рубку групповых n-слойных пакетов в соответствии с рисунком сеткотрафарета на отдельные n-слойные заготовки, удаление связки и спекание заготовок в монолит, металлизацию у монолитных заготовок боковых поверхностей, поляризацию монолитных заготовок, измерение параметров полученных монолитных многослойных (n-слойных) пьезокерамических элементов. Перед сборкой групповых заготовок в пакеты групповые заготовки подсушивают и участки каждой групповой заготовки, непокрытые пастой с порошком металла, покрывают через второй сеткотрафарет пастой с порошком пьезокерамики. При этом толщина слоя пасты с порошком керамики одинакова с толщиной слоя пасты с порошком металла. Технический результат: улучшение технологических и эксплуатационных характеристик изделий за счет повышения плоскостности внутренних электродов. 1 табл., 3 ил.

Изобретение относится к области производства электрической энергии и может быть использовано в устройствах с автономным питанием. Ветро-пьезоэлектрогенератор, содержащий пьезоэлектрические элементы, флюгер, полотно, электроды. Полотно закреплено на флюгере. Пьезоэлектрические элементы закреплены внутри полотна. Полотно удерживает пьезоэлектрические элементы и не позволяет им деформироваться до более максимального значения. Электроды расположены на противоположных поверхностях пьезоэлектрических элементов. Выходы всех электродов являются выходами ветро-пьезоэлектрогенератора. Заявленное изобретение направлено на упрощение и повышение эффективности производства электрической энергии для маломощных автономных устройств. 4 ил.

Изобретение относится к производству пьезокерамических элементов (ПКЭ) и предназначено для поляризации в воздушной среде крупногабаритных изделий из сегнетожестких материалов с температурой Кюри до 350°C в условиях серийного производства. Технический результат: уменьшение разброса электрофизических параметров ПКЭ за счет создания одинаковых условий поляризации для всех ПКЭ и снижение температуры нагрева за счет повышения напряженности электрического пробоя ПКЭ в воздушной среде. Сущность: устройство содержит установленные по окружности на основании поляризационной камеры n кассет с закрепленными в них ПКЭ, узел распределения напряжения поляризации между ПКЭ, содержащий проходной высоковольтный контакт, выполненный в виде вертикального штока, к которому снизу подключен скользящий контакт, соединенный через один и тот же токоограничивающий резистор с одним из выводов источника высокого напряжения, а сверху он имеет коммутирующий контакт, выполненный в виде гибкой металлической пластины, для последовательного подключения к нему каждой из n кассет при его вращении по окружности от вала электродвигателя через изолирующую муфту, которая посажена на вертикальный шток. Один электрод каждого ПКЭ имеет точечный контакт с поляризационным контактом каждой кассеты. Другой электрод ПКЭ имеет контакт с соединенной с общей шиной проводящей подложкой, которая выполнена с возможностью уменьшения концентрации напряженности электрического поля в межэлектродном промежутке ПКЭ. Повторение последовательного подключения/отключения всех ПКЭ к источнику высокого напряжения в течение одного цикла поляризации через один и тот же токоограничивающий резистор обеспечивает одинаковые условия поляризации ПКЭ. 2 н. и 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к метрологии, а именно к пьезоэлектрическим измерительным преобразователям вибрации и их калибровке. Пьезоэлектрический измерительный преобразователь вибрации с двумя пакетами пьезоэлектрических дисков, один из которых (входной) работает в режиме обратного пьезоэлектрического эффекта, что вызывает деформацию второго (выходного) пакета, работающего в режиме прямого пьезоэлектрического эффекта. Представлены также способ деформационной калибровки пьезоэлектрического преобразователя в лабораторных условиях и в условиях эксплуатации. Совместное использование двух пакетов позволяет при калибровке в лабораторных условиях определить не только коэффициент преобразования преобразователя, но также соотношение между входным напряжением, подаваемым на пакет пьезоэлектрических дисков, работающий в режиме обратного пьезоэлектрического эффекта и выходным напряжением пакета пьезоэлектрических дисков, работающих в режиме прямого пьезоэлектрического эффекта. Технический результат заключается в улучшении эксплуатационных свойств преобразователя вибрации, а также позволяет проводить калибровку преобразователя в эксплуатационных условиях без его демонтажа с объекта измерения и без использования вибростенда. 3 н.п. ф-лы, 2 ил.
Наверх