Способ обработки изделий из высокоуглеродистых легированных сплавов



Способ обработки изделий из высокоуглеродистых легированных сплавов
Способ обработки изделий из высокоуглеродистых легированных сплавов
Способ обработки изделий из высокоуглеродистых легированных сплавов
Способ обработки изделий из высокоуглеродистых легированных сплавов
Способ обработки изделий из высокоуглеродистых легированных сплавов
Способ обработки изделий из высокоуглеродистых легированных сплавов
C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2494154:

Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) (RU)

Изобретение относится к области обработки поверхности изделий из высокоуглеродистых легированных сплавов концентрированными потоками энергии. Для улучшения эксплуатационных характеристик изделий за счет уменьшения напряженного состояния в результате значительного снижения протяженности границы раздела между основным материалом изделий и зонами обработки поверхности на изделие локально воздействуют сфокусированным импульсным электронным лучом с плотностью мощности 104-105 Вт/см2, диаметром луча на поверхности 0,5-2 мм и длительностью импульса 1-30 миллисекунд, формируя на поверхности изделия модифицированные зоны с дискретным точечным распределением заданной геометрии, затем изделие подвергают термической обработке при температуре 600-1100°C и времени выдержки 30-60 минут. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области обработки поверхности изделий из высокоуглеродистых легированных сплавов концентрированными потоками энергии с целью улучшения эксплуатационных характеристик изделий.

В современных технологиях металлообработки известны различные способы улучшения тех или иных эксплуатационных характеристик изделий облучением высококонцентрированными потоками энергии.

Известен способ обработки изделий, в котором воздействие на изделие осуществляют электронным лучом с последующей термической обработкой изделия для снятия напряжений [RU 2118381 C1, C21D 1/09, 27.08.1998].

Также известен способ обработки изделий из высокоуглеродистых легированных сплавов, включающий воздействие на него локальным сфокусированным импульсным излучением ОКГ с обеспечением на поверхности изделия модифицированных зон в виде дискретного точечного распределения по спирали (заданной геометрии) при перемещении изделия по заданной траектории [SU 1781309 A1, C21D 1/09, 15.12.1992] Этот способ выбираем за прототип.

Задачей изобретения является создание нового способа обработки изделий из высокоуглеродистых легированных сплавов концентрированным потоком энергии, обеспечивающего улучшение эксплуатационных характеристик изделий.

Технический результат при осуществлении заявляемого изобретения достигается за счет образования на поверхности изделия модифицированных зон повышенной твердости и равномерным распределением в объеме модифицированных зон упрочняющих высокодисперсных вторичных карбидов.

Указанный технический результат при осуществлении изобретения достигается тем, что, как и в известном способе в заявляемом способе обработки изделий из высокоуглеродистых легированных сплавов осуществляют воздействие импульсным концентрированным потоком энергии.

Отличительной особенностью заявляемого способа является то, что на изделие локально воздействуют сфокусированным импульсным электронным лучом с плотностью мощности 104-105 Вт/см2, диаметром луча на поверхности 0,5-2 мм и длительностью импульса 1-30 миллисекунд, формируя на поверхности изделия модифицированные зоны с дискретным точечным распределением заданной геометрии, после чего изделие подвергают термической обработке при температуре 600-11000С с выдержкой 30-60 минут.

Кроме того, на поверхности изделия формируют модифицированные зоны с дискретным точечным распределением в гексагональной упаковке (ось симметрии шестого порядка).

Кроме того, на поверхности изделия формируют модифицированные зоны с дискретным точечным распределением в квадратной упаковке (ось симметрии четвертого порядка).

Кроме того, на поверхности изделия формируют модифицированные зоны с дискретным полосовым однонаправленным распределением (ось симметрии второго порядка).

Кроме того, на поверхности изделия из сплава формируют модифицированные зоны с дискретным полосовым двунаправленным распределением (ось симметрии четвертого порядка).

Предлагаемый способ осуществляется следующим образом: поверхность изделия из высокоуглеродистого легированного сплава локально обрабатывают импульсным сфокусированным электронным лучом. Используют сфокусированный электронный луч с плотностью мощности 104-105 Вт/см2, диаметром луча на поверхности 0,5-2 мм и длительностью импульса 1-30 миллисекунд.

В зоне воздействия электронного луча образуются модифицированные зоны, состоящие из твердого раствора, пересыщенного сверх максимально возможной равновесной растворимости в твердом состоянии. Каждая такая зона образуется за счет однократного воздействия (один импульс) сфокусированного электронного луча на поверхность изделия. После каждого импульсного воздействия изделие перемещают по траектории, обеспечивающей дискретное точечное распределение модифицированных зон по поверхности. Между модифицированными зонами должны существовать прослойки (зоны) из сплава, не подвергшиеся воздействию электронного луча с целью эффективной релаксации напряжений на границе раздела зон. После проведенной обработки сплав подвергается последующей термической обработке с целью выделения упрочняющих высокодисперсных вторичных карбидов из твердого раствора, пересыщенного сверх максимально возможной равновесной растворимости в твердом состоянии и снятия напряжений на границе раздела основного материала с модифицированной зоной.

Авторами обнаружено неизвестное ранее явление изменения микроструктуры хромованадиевых чугунов, как после обработки их импульсным электронным лучом с плотностью мощности 104-105 Вт/см2 с диаметром луча на поверхности 0,5-2 мм и длительностью импульса 1-30 миллисекунд, так и после последующей термической обработки при температуре 500-1100°C и времени выдержки 30-60 минут. Указанные диапазоны параметров импульсной электронно-лучевой обработки и режимов термической обработки обусловлены следующим:

- плотность мощности менее 104 Вт/см2 недостаточна для плавления материала, а плотность мощности свыше значения 105 Вт/см2 приводит к кипению материала и образованию на его поверхности дефектов в виде пор и кратеров;

- диаметр электронного луча менее 0,5 мм приводит к снижению производительности обработки поверхности, а диаметр более 2 мм приводит к образованию трещин на границе раздела между модифицированной зоной и основным материалом, вследствие, увеличения площади границы раздела. Чем меньше площадь границы раздела, тем меньше уровень напряжений между основным материалом и модифицированной зоной;

- длительность импульса менее 1 миллисекунд приводит к снижению глубины модифицированной зоны, а длительность импульса более 30 миллисекунд приводит к кипению материала в зоне воздействия;

- температура термической обработки менее 500°C не приводит к выделению упрочняющих высокодисперсных вторичных карбидов из твердого раствора, пересыщенного сверх максимально возможной равновесной растворимости в твердом состоянии, а температура свыше 1100°C приводит к растворению ультрадисперсных карбидов и плавлению эвтектики;

- время выдержки менее 30 минут недостаточно для полного выделения вторичных фаз, а время выдержки более 60 минут приводит к значительному росту зерна и вторичных карбидов.

Материалы после проведенных обработок имеют высокую абразивную износостойкость вследствие эффективного распределения модифицированных зон по площади поверхности и упрочненных ультрадисперсными вторичными карбидами. Очевидно, что конкретные режимы обработки (плотность мощности луча, длительность импульса) очень сильно зависят от материала образцов. Однако проведенных исследований вполне достаточно для констатации следующего факта. Впервые обнаружено неизвестное ранее явление изменения микроструктуры хромованадиевых чугунов как после обработки их импульсным электронным лучом, так и после последующей термической обработки. Обработанные материалы хорошо сопротивляется абразивному изнашиванию вследствие эффективного распределения по площади поверхности модифицированных зон, обладающих высоким комплексом механических свойств.

Изобретение иллюстрируется чертежами.

На фиг.1 показано схематическое изображение поверхности образца с дискретным точечным распределением в квадратной упаковке (ось симметрии четвертого порядка) модифицированных зон.

На фиг.2 показано схематическое изображение поверхности образца с дискретным точечным распределением в гексагональной упаковке (ось симметрии шестого порядка) модифицированных зон.

На фиг.3 показано схематическое изображение поверхности образца с дискретным точечным полосовым однонаправленным распределением (ось симметрии второго порядка) модифицированных зон.

На фиг.4 показано схематическое изображение поверхности образца с дискретным точечным полосовым двунаправленным распределением (ось симметрии четвертого порядка) модифицированных зон.

На фиг.5 показана микроструктура белого хромованадиевого чугуна на границе с модифицированной зоной, полученной импульсным сфокусированным электронным лучом (РЭМ).

На фиг.6 показана микроструктура белого хромованадиевого чугуна на границе с модифицированной зоной, полученной импульсным сфокусированным электронным лучом с последующей термической обработкой (РЭМ).

Вариант конкретного выполнения.

Импульсной обработке электронным лучом подвергали образцы из хромованадиевого чугуна (17% Cr, 5% V, 2.8% C, 1% Si, Feост. (мас.)). Образцы из хромованадиевого чугуна были подвергнуты обработке импульсным сфокусированным электронным лучом с плотностью мощности 1,5×104 Вт/см2, диаметром луча на поверхности 1 мм, длительностью импульса 15 миллисекунд с формированием дискретно точечного распределения в квадратной упаковке (ось симметрии четвертого порядка) модифицированных зон по площади поверхности.

Результаты исследований с использованием растровой электронной микроскопии и микрорентгеноспектрального анализа (Leo Evo 50) показали, что модифицированные зоны состоят из двух фаз. Первая фаза занимает основной объем модифицированной зоны и по химическому составу близка к карбидам. Первая фаза в отличие от второй не растворяется в «царской водке». Вторая фаза имеет малые размеры (≤1 мкм) и не поддается микрорентгеноспектральному анализу. Диаметр каждой зоны на поверхности составил порядка 1000-1100 мкм, а их глубина 500-600 мкм.

Проведенные измерения твердости и модуля упругости образцов (измерительный комплекс Nanotest) показали следующие результаты:

- твердость исходных образцов составила Нср=2,62±0,94 ГПа, модуль упругости Е=89±23 ГПа;

- твердость модифицированных зон составила Нср=0,65±0,16 ГПа, модуль упругости Е=52±6 ГПа;

- твердость модифицированных зон после термической обработки составила Hср=15.52±4.96 ГПа, модуль упругости Е=289±26 ГПа.

Проведенные испытания образцов на абразивное изнашивание при трении о нежесткозакрепленные абразивные частицы (ГОСТ 23.208-79) показали следующие результаты:

- коэффициент относительной абразивной износостойкости исходных образцов составил КИ=10±0.7;

- коэффициент относительной абразивной износостойкости образцов после импульсной обработки электронным лучом составил КИ=6±1.2;

- коэффициент относительной абразивной износостойкости образцов после импульсной обработки электронным лучом и последующей термической обработки составил КИ=15±1.

Проведенные измерения образцов с помощью измерительного комплекса NanoTest показали, что модифицированные зоны имеют очень низкие показатели твердости и модуля упругости, относительно исходных образцов. Низкие значения указанных свойств модифицированных зон, вероятно, связаны с их аморфным метастабильным состоянием. Последующая термическая обработка образцов (температура 1100°C, время выдержки 30 минут) приводит к значительному увеличению твердости и модуля упругости модифицированных зон. Анализ структуры модифицированных зон после термической обработки показал наличие значительного количества выделившихся вторичных карбидов. Вторичные карбиды в зависимости от режимов термообработки имеют различную дисперсность от десятков нанометров до единиц микрометров и занимают практически весь объем каждой модифицированной зоны.

Результаты исследований образцов из хромованадиевого чугуна после обработки импульсным сфокусированным электронным лучом и последующей термической обработки показали, что твердость модифицированных зон в среднем увеличивается в 6 раз по сравнению с исходным состоянием сплава, модуль упругости в 3 раза и абразивная износостойкость образцов в 1,5 раза.

1. Способ обработки изделий из высокоуглеродистых легированных сплавов, включающий воздействие на изделие импульсным концентрированным потоком энергии, отличающийся тем, что на изделие локально воздействуют сфокусированным импульсным электронным лучом с плотностью мощности 104-105 Вт/см2, диаметром луча на поверхности 0,5-2 мм и длительностью импульса 1-30 мс с дискретным точечным распределением, формируя на поверхности изделия модифицированные зоны заданной геометрии, после чего изделие подвергают термической обработке при температуре 600-1100°C и времени выдержки 30-60 мин.

2. Способ обработки по п.1, отличающийся тем, что на поверхности изделия формируют модифицированные зоны с дискретным точечным распределением в гексагональной упаковке.

3. Способ обработки по п.1, отличающийся тем, что на поверхности изделия формируют модифицированные зоны с дискретным точечным распределением в квадратной упаковке.

4. Способ обработки по п.1, отличающийся тем, что на поверхности изделия формируют модифицированные зоны с дискретным полосовым однонаправленным распределением.

5. Способ обработки по п.1, отличающийся тем, что на поверхности изделия из сплава формируют модифицированные зоны с дискретным полосовым двунаправленным распределением.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к термомагнитной обработке магнитомягких материалов. Для улучшения магнитных характеристик холоднокатаной рулонной анизотропной электротехнической стали осуществляют высокотемпературный отжиг, выдержку, охлаждение до комнатной температуры и обработку в знакопеременном магнитном поле.

Изобретение относится к способу восстановления поверхности непрерывно-литого сляба (1), в частности из стали, перед его прокаткой и устройству для его осуществления.

Изобретение относится к области машиностроения, в частности к термической обработке колец подшипников качения, которые эксплуатируются на железнодорожном транспорте, и может быть использовано в подшипниковой промышленности при производстве деталей подшипников, в частности внешних колец.

Изобретение относится к металлургии и может использоваться при термической обработке изделий типа штоков. .

Изобретение относится к металлургии и может использоваться при термической обработке изделий типа штоков. .

Изобретение относится к металлургии и может использоваться при термической обработке изделий типа штоков. .

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, в частности к охлаждающим устройствам при горячей прокатке стальной полосы. .

Изобретение относится к области металлургии, в частности к охлаждающим устройствам при горячей прокатке стальной полосы. .
Изобретение относится к теплотехнике и может быть использовано в металлургии, машиностроении, промышленности стройматериалов при нагреве мелких изделий машиностроения под закалку, нормализацию, отпуск и цементацию. Способ термообработки изделий в горизонтальной печи включает нагрев мелких изделий при их перемещении вдоль методической и огневой секций печи с помощью шнекового механизма, при этом нагрев в огневой секции, примыкающей к зоне выгрузки изделий, осуществляют с помощью системы мелких факелов с эффектом поверхностного горения на корпусе шнекового механизма, образованных путем взаимодействия потока газа, подаваемого параллельно стенкам корпуса шнекового механизма, и потока воздуха, подаваемого перпендикулярно стенкам корпуса шнекового механизма, а нагрев в методической секции, примыкающей к зоне загрузки изделий, осуществляют с помощью подачи на поверхность шнекового механизма высокоскоростного потока продуктов сгорания, образующихся в огневой секции, что обеспечивает повышение энергоэффективности за счет значительного сокращения подачи избыточного воздуха в методическую зону, увеличение температурного напора при высоких скоростях струй продуктов сгорания, натекающих в методическую зону печи, и увеличение коэффициента использования топлива в связи с повышенной теплоотдачей в ней при малых коэффициентах избытка воздуха и снижение выбросов оксида углерода, догорающего в буферной зоне методической секции.

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из Fe-Cr-Co сплавов осуществляют термическую обработку изделий, включающую гомогенизацию, закалку, термомагнитную обработку и многоступенчатый отпуск, при этом перед проведением термомагнитной обработки дополнительно проводят нагрев и выдержку с обеспечением выделения сигма-фазы. 1 табл.
Изобретение относится к теплотехнике и может быть использовано в металлургии, машиностроении, промышленности стройматериалов при нагреве мелких изделий машиностроения под закалку, нормализацию, отпуск и цементацию. Печь для термообработки изделий содержит шнековый механизм для транспортировки нагреваемых изделий, включающий цилиндрический корпус с размещенным в нем шнеком, коаксиально шнековому механизму установлено струйно-факельное нагревательное устройство, разделенное на методическую и огневую секции, герметизированная методическая секция примыкает к зоне загрузки изделий и содержит изолированный цилиндрический корпус и установленную коаксиально ему перфорированную жаровую трубу, а огневая секция примыкает к зоне выгрузки изделий, при этом в торце корпуса огневой секции установлены система подачи потока газа параллельно стенкам корпуса шнекового механизма и система подачи потока воздуха перпендикулярно стенкам корпуса шнекового механизма, причем методическая и огневая секции сообщены каналом подачи продуктов сгорания из огневой секции в методическую секцию, что обеспечивает повышение энергоэффективности за счет сокращения подачи избыточного воздуха в методическую зону, увеличение температурного напора при высоких скоростях струй продуктов сгорания в методической зоне, увеличение коэффициента использования топлива и снижение выбросов оксида углерода.

Группа изобретений относится к области термической обработки головки рельсов в охлаждающей ванне. Охлаждающая ванна содержит по меньшей мере один продольный отсек (1), включающий центральную емкость (31) для погружения в нее обрабатываемой головки рельса, подающий коллектор (2) для подачи текучей среды, две вторичные емкости (32), расположенные по бокам от центральной емкости (31) для сбора охлаждающей текучей среды, когда она переливается через верхний край первичной центральной емкости (31). Вдоль вторичных емкостей (32) установлены сливные трубы (12), расположенные таким образом, чтобы каждая пара соответствующих сливных труб (12) была соединена с поперечной трубой (13), установленной под дном отсека (1) и соединенной, в свою очередь, с перепускным контуром охлаждающей текучей среды, при этом на сливных трубах (12) над вторичными емкостями (32) установлены регулируемые по высоте удерживающие элементы (16), которые образуют сквозное отверстие для головки рельса, причем по меньшей мере один удерживающий элемент (16) из каждой их пары выполнен с возможностью поворота вокруг штыря (17). Технический результат заключается в обеспечении стабильного и в среднем равномерного потока охлаждающей текучей среды, контактирующей с погруженной головкой рельса, по всей длине ванны при непрерывном обмене текучей среды, в результате чего оптимизируется скорость охлаждения головки рельса. 3 н. и 12 з.п. ф-лы, 8 ил.
Изобретение относится к металлургии, в частности к метизному производству, и может быть использовано при производстве из высокоуглеродистой стали проволоки больших диаметров, преимущественно 9-12 мм, предназначенной для изготовления, например, высокопрочной арматуры для железобетонных шпал. Технической задачей, решаемой заявляемым изобретением, является обеспечение в проволоке больших диаметров, содержащей до 0,8% С, высоких прочностных свойств (σв>1300 Н/мм2), равномерно распределенных по сечению. Достижение требуемого уровня прочностных свойств в получаемой высокопрочной проволоке больших диаметров из катанки диаметром 15-16 мм достигается за счет регламентации температурно-скоростных условий нагрева и интенсивного охлаждения катанки в процессе термообработки. При этом температуру интенсивного охлаждения поддерживают 550±10°С, а продолжительность выдержки при охлаждении катанки определяется соотношением T=740/(D*V), c, где D - диаметр катанки, мм; V - скорость перемещения катанки в процессе интенсивного охлаждения, м/с. 1 табл.

Изобретение относится к области металлургии, а именно к получению закаленной мартенситной стали, используемой для изготовления различных конструкционных и приводных деталей. Выплавляют сталь состава, вес.%: С 0,18-0,30, Со 1,5-4, Cr 2-5, Al 1-2, Mo+W/2 1-4, V следы - 0,3, Nb следы - 0,1, В следы - 30 ppm, Ni 11-16, Si следы - 1,0, Mn следы - 4,0, Са следы - 20 ppm, редкоземельные элементы следы - 100 ppm, О следы - 50 ppm, N следы - 20 ppm, S следы - 20 ppm, Cu следы - 1, Р следы - 200 ppm, при этом если N≤10 ppm, то Ti+Zr/2 следы - 100 ppm, причем Ti+Zr/2≤10 N, и если 10 ppm<N≤20 ppm, то Ti+Zr/2 следы - 150 ppm, остальное - железо и неизбежные примеси. Из полученной стали формуют деталь и проводят смягчающий отпуск при 600-675°С в течение 4-20 ч с последующим охлаждением на воздухе, закалку при 900-1000°С в течение по меньшей мере 1 ч с последующим масляным охлаждением или охлаждением на воздухе, достаточно быстрым, чтобы избежать выделения межкристаллитных карбидов в матрице аустенита, и старение при 475-600°С в течение 5-20 ч. Сталь имеет высокие ударную вязкость и механическую прочность. 3 н. и 23 з.п. ф-лы, 1 ил., 2 табл.

Группа изобретений относится к области военной техники и может быть использована при создании автоматического стрелкового оружия, например стволов единых пулеметов, изготовленных методом холодного радиального обжатия. Способ местной закалки ствола заключается в том, что ствол устанавливают в приспособление, обеспечивающее его вертикальное перемещение, ориентируют бурт, центрируют, подают охлаждающую жидкость в канал ствола и спрейер, нагревают без вращения выше точки АC3 до температуры 880-900°С. Охлаждают путем резкого перемещения нагретой зоны под спрейер индуктора. Ствол (1) содержит канал с четырьмя нарезами (2). В казенной части ствола выполнен патронник с пульным входом (3). На казенной части ствола имеются два поперечных выреза для замыкателя (4) ствола, а также выемы (5) для прохода уступа рамы. На казенном срезе ствола выполнены кольцевой выступ (6) для упора закраины гильзы и вырез (7) для зацепа выбрасывателя. На дульной части ствола выполнен пламегаситель (10). Ствол имеет оребрение (8) и четыре воздуховодных канала. На стволе жестко крепится кожух (12) с экраном (13) и пластиной (14), газовая камера (15), газовый регулятор (16), эжектор (17), колодка (18) мушки и сошка (19). На наружной части ствола выполнен термически обработанный упорный бурт (20) с двумя продольными пазами (21). Технический результат, получаемый при осуществлении группы изобретений относительно ствола автоматического стрелкового оружия, заключается в устранении круговой качки ствола. 2 н.п. ф-лы, 13 ил.

Изобретение относится к области машиностроения, в частности к термической обработке деталей с использованием индукционного нагрева. Для предохранения от окисления и улучшения качества внутренней поверхности детали осуществляют закалку детали с нагрева токами высокой частоты при одновременной подаче охлаждающей жидкости на внутреннюю и наружную поверхности трубных деталей в стенде, который содержит стойку, гидравлический подъемник, приспособление, состоящее из верхнего центра, корпуса и пружины сжатия, нижнего центра, индуктора, узла управления подачи охлаждающей жидкости, при этом в верхнем центре выполнены каналы с определенными сечением и углом для подачи и равномерного распределения охлаждающей жидкости на внутренней поверхности трубной детали. Индуктор выполнен совмещенным со спрейером, снабженный каналами с определенными сечением и углом для подачи охлаждающей жидкости на наружную поверхность деталей. Верхний центр выполнен с возможностью возвратно-поступательного движения относительно корпуса за счет пружины сжатия. Нижний центр имеет пазы с определенным сечением для беспрепятственного выхода охлаждающей жидкости из внутренней полости обрабатываемой детали. 1 з.п. ф-лы, 5 ил.
Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах. Для повышения производительности процесса способ включает нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, при этом охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала. Амплитуду возвратно-поступательного перемещения раската устанавливают не менее длины окружности водоохлаждаемых роликов, охлаждение раската ведут до температуры его поверхности на 50-100°С ниже температуры начала чистовой прокатки и выдерживают на воздухе в течение 5-10 с. Раскат охлаждают до температуры, равномерно возрастающей от его начала к концу по ходу прокатки на 20-50°С. Диаметр шариков, которыми заполняют концевые участки полости бочек, устанавливают превышающим диаметр шариков, заполняющих ее среднюю часть, в 1,3-1,5, или теплопроводность материала шариков, которыми заполняют внутреннюю полость бочки, устанавливают возрастающей от краев бочки к ее середине. 5 з.п. ф-лы, 2 табл., 5 пр.

Изобретение относится к области металлургии. Для обеспечения контролируемого равномерного охлаждения рулона горячей полосы и получения однородных свойств рулон (1) горячей полосы (2) размещают в устройстве промежуточного хранения, при этом рулон опирают и вращают (100) посредством контакта его боковой поверхности (5) с, по меньшей мере, одним элементом для охлаждения в виде ролика (3, 7). Управление процессом охлаждения намотанной в рулон (1) горячей полосы (2) осуществляют с помощью устройства, содержащего машиночитаемый программный код, который имеет управляющие команды. 4 н. и 21 з.п. ф-лы, 2 ил.
Наверх