Способ определения кинетики износа поверхностей деталей машин

Изобретение относится к машиностроению, в частности к способам изучения процесса износа поверхностей деталей машин. Сущность: подают ток на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации. Регистрируют изменение силы тока в цепи во времени. Рассчитывают текущее значение общего сопротивления электрической цепи, используя зависимость для текущего изменения опорной контактной площади микронеровности, являющейся функцией изменения величины контактного сближения поверхностей. Определяют текущее значение силы тока по высоте микрорельефа. Задаются рядом значений моментов времени и определяют изменение величины контактного сближения поверхностей от времени (эксплуатационного износа) и изменение опорной контактной площади микронеровности от времени. Технический результат: расширение возможности исследования микрогеометрии поверхностей, возможность прогнозировать кинетику изменения микрорельефа в реальных условиях эксплуатации и сделать выводы о предпочтительности применения того или иного микрорельефа в реальных условиях эксплуатации. 6 ил.

 

Изобретение относится к машиностроению, в частности к способам изучения процесса износа поверхностей деталей машин.

Известен следующий аналог - способ, основанный на регулярном взвешивании деталей для определения момента начала установившегося износа и определении времени от начала работы трущейся пары до момента начала установившегося износа (Ю.Г. Шнейдер. Эксплуатационные свойства деталей с регулярным микрорельефом. - Ленинград, Машиностроение, 1982 г. - стр.136 [1]).

К недостаткам данного способа можно отнести недостаточную точность измерений и принципиальную невозможность его использования в случаях неразборных конструкций.

Наиболее близким по технической сущности к способу определения кинетики износа поверхностей деталей машин, является способ определения момента окончания приработки, суть которого заключается в том, что контактирующие поверхности электрически связаны с сигнальным устройством (лампа) и регистрирующим прибором (электрочасы). Образцы эксплуатируются в условиях обильной подачи нетокопроводящей смазывающей жидкости в зону контакта. Считается, что в начальный момент контакты поверхностей замкнуты, загорается лампа, включаются электрочасы. В момент окончания этапа приработки опорные контактирующие поверхности настолько возрастают, что исходное давление оказывается недостаточным, чтобы прорвать образовавшуюся масляную пленку, контакт между поверхностями нарушается и выключается регистрирующая аппаратура (лампа и электрочасы) [Авторское свидетельство СССР №110825].

Недостатком наиболее близкого аналога, является вынужденное наличие нетокопроводящего смазочного слоя между контактирующими деталями, что значительно ограничивает область его практического применения, так как существует большое количество контактирующих деталей машин циклической автоматики, работающих в режиме сухого трения (например, детали автоматики стрелково-пушечного вооружения). Кроме того, наличие нетокопроводящей смазывающей жидкости, оказывающей существенное влияние на текущие параметры электрической цепи (габаритные параметры пленки соизмеримы с габаритами микронеровности), значительно снижает точность и достоверность полученных результатов. А также данный способ не позволяет регистрировать изменение параметров микрорельефа поверхности во времени, что необходимо для анализа особенностей эксплуатации контактирующих деталей на этапе приработки с целью выбора предпочтительного профиля микрогеометрии.

Технической задачей настоящего изобретения является определение кинетики износа поверхностей деталей машин, с выявлением этапов эксплуатации в реальных условиях работы контактирующих поверхностей.

Сущность способа определения кинетики износа поверхностей деталей машин заключается в подаче тока на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации, и регистрации тока в цепи, при этом сначала регистрируют изменение силы тока в цепи во времени, затем рассчитывают текущее значение общего сопротивления электрической цепи, используя зависимость для текущего изменения опорной контактной площади микронеровности, являющейся функцией изменения величины контактного сближения поверхностей, и определяют текущее значение силы тока по высоте микрорельефа, затем задаются рядом значений моментов времени и определяют изменение величины контактного сближения поверхностей от времени (эксплуатационного износа) и изменение опорной контактной площади микронеровности от времени.

Изобретение поясняется чертежами, где на фиг.1 изображен график зависимости изменения электрического тока в цепи от времени, на фиг.2 - график зависимости изменения опорной площади поверхности по высоте микрорельефа, на фиг.3 - график зависимости изменения сопротивления по высоте микрорельефа, на фиг.4 - график зависимости изменения силы тока по высоте микрорельефа, на фиг.5 - график зависимости изменения контактного сближения поверхностей по времени, на фиг.6 - график зависимости опорной контактной площади поверхности по времени.

Способ определения кинетики износа контактирующих поверхностей заключается в следующем: через контактную пару подают электрический ток, после чего контактирующие поверхности нагружают в соответствии с режимом работы в реальных условиях, регистрируют изменение силы тока и строят экспериментальную зависимость силы тока от времени:

I = I ( t )                                                   (1)

Затем используя расчетную зависимость изменения опорной контактной площади микронеровности S=S(z(t)), структура которой определяется геометрией профиля микрорельефа (в зависимости от вида обработки):

- для протяженного сегмента

S = n l ( z ) H                                         (2)

где Н - длина сегмента;

l(z) - опорная длина профиля, регламентированная ГОСТ 2789-73;

n - количество участков базовой длины на поверхности;

- для сегмента, «полученного» вращением образующей вокруг вертикальной оси:

S = n π ( l ( z ) 2 ) 2                                    (3)

где l(z) - опорная длина профиля, регламентированная ГОСТ 2789-73;

n - количество участков базовой длинны на поверхности, и выражение для текущего значения электрического тока в цепи:

I ( z ( t ) ) = U R Σ ( z ( t ) )                                  (4)

где z(t) - текущая величина контактного сближения поверхностей, рассчитывают текущее значение общего сопротивления электрической цепи:

R Σ ( z ( t ) ) = R 1 + R 2 + R 3 + ρ n 0 z ( t ) d ξ S ξ ,                               (5)

где R1, R2 - интегральные сопротивления контактирующих деталей;

R3 - коммутационное сопротивление электрической цепи;

ρ - удельное сопротивление материала микронеровностей;

n - количество микронеровностей на контактирующих поверхностях;

ξ∈[0;z(t)],

и текущее значения электрического тока в цепи:

I ( z ( t ) ) = U R Σ ( z ( t ) ) = U R 1 + R 2 + R 3 + ρ n 0 z ( t ) d ξ S ( ξ ) ,                    (6)

где U - напряжение в электрической цепи,

приравнивая правые части выражений (1) и (6) и последовательно задаваясь рядом значений моментов времени t*, определяем соответствующие им значения контактного сближения поверхностей z(t*) как первые положительные корни уравнений вида:

I ( z ( t * ) ) = U R 1 + R 2 + R 3 + ρ n 0 z ( t * ) d ξ S ( ξ ) .                                     (7)

В результате получаем искомые зависимости z=z(t) и S=S(t), описывающие кинетику приработки контактирующих деталей.

Примером реализации данного способа может послужить определение кинетики приработки алюминиевой пластины с габаритными размерами 10×50×50 мм, контактирующей в течение трех часов с вольфрамовой пластиной с теми же габаритами. Удельное сопротивление алюминия 2,7·10-8 Ом·м, вольфрама - 5,5·10-8 Ом·м. Микрорельеф поверхности алюминиевой пластины регулярный, выпуклый, микронеровности сферические. Через контактную пару подают электрический ток и нагружают ее в соответствии с режимом эксплуатации в реальных условиях, регистрируют изменение силы тока и получают зависимость электрического тока в цепи от времени I(t) (фиг.1). Используя расчетную зависимость изменения опорной площади поверхности по высоте микрорельефа (фиг.2)

S = n π l 2 4 = n π ( R 2 ( z + a ) 2 )

где R - радиус сегмента;

а - смещение центра сегмента относительно поверхности;

z - высота сегмента;

n - количество сегментов на поверхности,

зависимость для сопротивления

R = ρ z S

где ρ - удельное сопротивление материала;

z - высота сегмента;

S - опорная площадь сегмента,

и зависимость для силы тока

I = U R

где U - напряжение;

R - сопротивление

получаем зависимость изменения сопротивления по высоте микрорельефа (фиг.3), и зависимость изменения силы тока по высоте микрорельефа (фиг.4). Применяя зависимость изменения электрического тока в цепи от времени, получим зависимость изменения контактного сближения поверхностей по времени (фиг.5) и зависимость опорной контактной площади поверхности по времени (фиг.6).

Таким образом, предложенный способ позволяет расширить возможности исследования микрогеометрии поверхностей, прогнозировать кинетику изменения микрорельефа в реальных условиях эксплуатации, а также сделать выводы о предпочтительности применения того или иного микрорельефа в реальных условиях эксплуатации.

Способ определения кинетики износа поверхностей деталей машин, заключающийся в подаче тока на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации, и регистрации тока в цепи, отличающийся тем, что регистрируют изменение силы тока в цепи во времени, затем рассчитывают текущее значение общего сопротивления электрической цепи, используя зависимость изменения текущей опорной контактной площади микронеровности, являющейся функцией изменения величины контактного сближения поверхностей, и определяют текущее значение силы тока по высоте микрорельефа, затем задаются рядом значений моментов времени и определяют изменение величины контактного сближения поверхностей от времени и опорной контактной площади микронеровности от времени.



 

Похожие патенты:

Изобретение относится к технической диагностике и может быть использовано для обнаружения дефектов поверхности катания колес железнодорожных транспортных средств в движении.

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа рельефа, линейных размеров и физических характеристик поверхности объектов в режимах сканирующего туннельного микроскопа и атомно-силового микроскопа.

Изобретение относится к зондовой микроскопии, а именно к устройствам, обеспечивающим комплексные исследования сложных объектов при контроле и создании требуемой среды измерения.

Изобретение относится к измерительной технике и предназначено для измерения шероховатости наружной сферической поверхности детали. .

Изобретение относится к контрольно-измерительной технике, используемой при послеремонтном контроле поверхностей крупногабаритной трубопроводной арматуры /ТПА/. .

Нутромер // 2381440
Изобретение относится к измерительной технике и предназначено для использования в качестве устройства измерения линейных величин неровностей профиля поверхности внутренней полости трубы.

Изобретение относится к измерительной технике и предназначено для усовершенствования работы инструментов, измеряющих высоту рельефа поверхности, и для сертификации высотных стандартов.

Изобретение относится к машиностроению, а именно к области создания средств и методов бесконтактного измерения неровностей поверхностей, геометрических размеров, эксцентриситета и перемещений деталей машин и механизмов.

Изобретение относится к измерительной технике. Устройство используют для контроля отклонения от прямолинейности поверхности боковой рабочей грани головки рельса в горизонтальной плоскости и поверхности катания головки рельса в вертикальной плоскости бесконтактным методом. Устройство автоматического контроля прямолинейности сварных стыков рельсов содержит корпус, механическую часть, торцевые панели, бесконтактные датчики базирования, датчики бесконтактного измерения расстояния до поверхности рельса и электронный блок. Механическая часть состоит из базирующих призм, закрытых с внешней стороны торцевыми панелями, которые имеют вырезы, соответствующие поверхностям, ответным контролируемым, между которыми установлены встроенные магниты. Каждая призма имеет опорные наконечники, контактирующие с контролируемыми поверхностями. Рядом с наконечниками расположены бесконтактные датчики базирования, сопряженные с электронным блоком. В центральной части корпуса между вспомогательными призмами расположены датчики бесконтактного измерения расстояния до поверхности рельса, сопряженные с электронным блоком, осуществляющим отображение отклонений от прямолинейности на аналоговых индикаторах и на графическом дисплее и хранение результатов отклонения в блоке памяти. Изобретение касается также способа использования этого устройства. В результате обеспечивается возможность получить наглядную и достоверную информацию, сокращается время, необходимое для контроля прямолинейности сварных стыков рельсов. 2 н.п. ф-лы, 10 ил.

Использование: для изготовления иглы кантилевера сканирующего зондового микроскопа. Сущность изобретения заключается в том, что для изготовления иглы кантилевера используют хрупкую прозрачную подложку, которую заполняют оптически прозрачной жидкостью и в горизонтальном положении укладывают в пластическую массу, которую периодически замораживают и размораживают. Затем с помощь источника света с направленным плоским световым потоком воздействуют на подложку, добиваясь появления микротрещин на подложке, которые впоследствии разрушают подложку, в результате чего происходит скалывание и образование иглы кантилевера. В качестве подложки можно использовать любой подручный хрупкий материал. Технический результат: повышение производительности и снижение материалоемкости при изготовлении иглы кантилевера со сверхострой вершиной. 3 з.п. ф-лы, 3 ил.

Данное изобретение относится, в целом, к области абразивной подготовки поверхности, а более конкретно к способам и устройству измерения профиля подготовленной поверхности. Заявленная группа изобретений включает способ измерения поверхности и устройство измерения поверхности. Причем способ содержит этапы, на которых осматривают множество образцов первой неровной поверхности обрабатываемой детали в двух измерениях, причем каждый из множества образцов имеет, по существу, одинаковый размер, определяют, на основе осмотров образцов, общее число выступов поверхности на каждом из множества образцов, получают предел допустимых отклонений из статистической изменчивости общего числа выступов поверхности на каждом из множества образцов, причем предел допустимых отклонений задается для указания условия выхода за допуск для общего числа выступов поверхности на второй неровной поверхности обрабатываемой детали, осматривают участок второй неровной поверхности обрабатываемой детали в двух измерениях, причем участок имеет, по существу, тот же размер, что и один из множества образцов, определяют, на основе осмотра участка второй неровной поверхности обрабатываемой детали, общее число выступов поверхности на участке и сравнивают общее число выступов поверхности на участке с пределом допустимых отклонений, чтобы определять, находится ли вторая неровная поверхность обрабатываемой детали в условиях выхода за допуск. Технический результат заключается в обеспечении способа и устройства измерения поверхности, посредством которых возможно проводить осмотр и измерение поверхности обрабатываемой детали, например, определять, находится ли профиль поверхности в пределах желаемых спецификаций, пределов допустимых отклонений или допусков, идентифицируя выступы и/или впадины на поверхности, а также возможно идентифицировать изменения и неровности поверхности, вызванные другими условиями, возникающими во время подготовки поверхности, такими как вибрация, температура, скорость колеса и т.п. 2 н. и 18 з.п. ф-лы, 7 ил.

Использование: для создания датчиков контроля толщины осадка в осадкообразующих жидкостях. Сущность изобретения заключается в том, что датчик контроля толщины осадка содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, погружаемые в сосуд с жидкостью, образующей осадок, электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются по меньшей мере три плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки. Технический результат: обеспечение возможности повышения точности измерений. 2 з.п. ф-лы, 4 ил.

Использование: для создания датчиков контроля толщины тонкопленочных диэлектрических материалов. Сущность изобретения заключается в том, что датчик контроля толщины тонкопленочных диэлектрических материалов содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, при этом упомянутые электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются, по меньшей мере, два плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки. Технический результат: обеспечение возможности повышения точности измерения. 2 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и предназначено для обнаружения дефектов поверхности катания железнодорожных колес в движении. Сущность: на участке пути на рельс на середине высоты устанавливают тензодатчики парами симметрично с двух сторон шейки рельса и ориентируют вертикально. В процессе движения колесной пары по измерительному участку определяют симметричные деформации и проводят их частотную фильтрацию в зависимости от скорости движения. Номер колеса определяют по количеству превышений порога селекции. Регистрируют локальные минимумы симметричных деформаций, определяют скорость и продольную координату колеса на рельсе, момент входа колеса в зону чувствительности пары тензодатчиков. Используя фильтрованные симметричные деформации и эталонные деформации, определяют вертикальную силу от колеса на рельс. При превышении силой ее критического значения колесную пару бракуют. Технический результат: повышение достоверности результатов контроля поверхности катания колес грузовых вагонов в движении для своевременного выявления дефектов за счет уменьшения влияния траектории движения колеса по поверхности катания рельса на параметры диагностических сигналов. 1 табл., 3 ил.
Наверх