Способ гидроабразивных испытаний погружных насосов и стенд для его осуществления



Способ гидроабразивных испытаний погружных насосов и стенд для его осуществления
Способ гидроабразивных испытаний погружных насосов и стенд для его осуществления

 


Владельцы патента RU 2494363:

Закрытое акционерное общество "Новомет-Пермь" (RU)

Группа изобретений относится к области гидродинамики, в частности к стендовому оборудованию для моделирования гидроабразивного износа насосов.

Способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос. Испытания проводят при частоте вращения насоса, превышающей его номинальную частоту, а узел подвода и испытываемый насос размещают в подвешенном состоянии посредством гибких элементов.

Стенд для гидроабразивных испытаний погружных насосов содержит приводной механизм в виде электродвигателя, кинематически соединенный с валом испытываемого насоса, бак, подсоединенный к насосу, узел подачи абразивного материала, узел подвода жидкости, соединительные трубопроводы, узел регулирования расхода и систему измерительных датчиков. Электродвигатель, узел подвода и испытываемый насос размещены в подвешенном состоянии посредством гибких элементов, закрепленных на раме стенда.

Технический результат группы изобретений - повышение достоверности и ускорение испытаний. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретения относятся к области гидродинамики, в частности к стендовому оборудованию для моделирования гидроабразивного износа насосов, и может быть использовано для испытания нефтяных погружных насосов.

Известен способ испытания насосов, включающий подачу жидкости с механическими примесями на вход насоса, перекачку жидкости при различных режимах работы насоса с поддержанием постоянной концентрации примесей (авторское свидетельство №1071802 SU, кл. F04B 51/00, опубл. 15.10.1982).

Известен также способ гидроабразивных испытаний погружных насосов [Яременко О.В. Испытания насосов: Справочное пособие. М., Машиностроение, 1976, с.208], включающий подачу абразивного материала в испытуемый насос вместе с рабочей жидкостью и измерение изменения массы деталей насоса до и после испытаний. Испытания проводят в условиях, имитирующих работу насоса в скважине, то есть при частоте вращения вала, не превышающей номинального значения [там же, с.141]. Способ позволяет исследовать износ проточной части ступеней центробежного насоса.

Недостатком данных способов является продолжительность проведения испытаний, особенно для насосов малых радиальных размеров. По данным [Gulich J.F. Centrifugal Pumps, Springer-Verlag Berlin Heidelberg 2008, 2010, с.872; Животовский Л.С., Смойловская Л.А. Лопастные насосы для абразивных гидросмесей. - М.: Машиностроение, 1978, с.56], главным фактором, определяющим износ, является скорость движения перекачиваемой жидкости с механическими примесями, которая зависит от окружной скорости вращения вала насоса. Поскольку радиус рабочих колес погружных насосов сравнительно мал (от 37 до 75 мм) [Агеев Ш.Р., Григорян Е.Е., Макиенко Г.П. Российские установки лопастных насосов для добычи нефти и их применение. Энциклопедический справочник. Пермь: ООО «Пресс-Мастер», 2007, с.74-75], то скорость гидроабразивного износа ступеней в процессе эксплуатации невысока вследствие низкой окружной скорости и невысоких скоростей движения жидкости.

В качестве прототипа выбран способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос (авт., св. №328263 СССР, F04D 1/00, 1972).

Недостатком способа является низкая скорость износа погружного насоса из-за работы в относительно мягких условиях и, как следствие, длительное время проведения испытаний на износ.

Увеличить окружную скорость вращения рабочего колеса можно за счет увеличения частоты вращения вала испытываемого насоса относительно номинальной 2910 об/мин. Проведение испытаний при повышенной частоте вращения вала насоса позволит повысить скорость гидроабразивного износа проточных каналов насоса, что, в конечном итоге, сократит время проведения испытаний.

Известен испытательный стенд для исследования износа проточной части центробежного насоса, включающий приводной механизм в виде электродвигателя, модель проточной полости насоса, размещенные в ней образцы испытуемых материалов, и узел подачи абразивной смеси в камеру (патент РФ №2011011, кл. F04B 51/00, 15.04.1994).

Недостатком данного стенда является относительно низкая достоверность результатов испытания на износ и ограниченные возможности. Это обусловлено тем, что испытанию подвергаются образцы материалов, размещенные в проточной полости насоса, и не исследуется износ радиальных и осевых пар трения ступеней насоса, а также износ всех частей внутренних проточных полостей рабочего колеса и направляющего аппарата.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является стенд для гидроабразивных испытаний погружных насосов, включающий приводной механизм в виде электродвигателя, узел подвода жидкости, камеру с элементом крепления рабочего колеса, имитирующую корпус насоса и подсоединенную к баку, узел подачи абразивного материала, соединительные трубопроводы и систему измерительных датчиков (патент РФ №2371694, МПК G01M 13/00, опубл. 20.11.2007). Испытуемый насос состоит из одного рабочего колеса и двух направляющих аппаратов. Элемент для крепления рабочего колеса выполнен в виде вала переменной жесткости, кинематически связанного с валом электродвигателя и имитирующего вал погружного насоса. Камера снабжена крышкой с отверстием переменного сечения для регулирования расхода рабочей жидкости. Этот стенд предназначен для исследования износа радиальных и осевых пар трения в одной рабочей ступени центробежного насоса.

Недостатком данного устройства является отсутствие возможности моделирования гидроабразивного износа межступенчатых уплотнений и длительное время проведения испытаний на гидроабразивный износ межлопастных проточных каналов направляющих аппаратов и рабочих колес.

Задача, на решение которой направлено изобретение, заключается в ускорении гидроабразивных испытаний на износ погружных насосов, а также повышении достоверности результатов.

Указанный технический результат достигается тем, что в способе гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материала подают с рабочей жидкостью из узла подвода во вращающийся насос, согласно изобретению, испытания проводят при частоте вращения насоса, превышающей его номинальную частоту, а узел подвода и испытываемый насос размещают в подвешенном состоянии посредством гибких элементов.

Выбор скорости вращения вала насоса для проведения испытаний определяется свойствами материалов испытуемых насосов. Для материала Х11Н8М1,5Д20, широко используемого в производстве погружных насосов в настоящее время, и радиусах рабочего колеса в пределах 35-45 мм минимальной частотой вращения вала для ускоренных испытаний является 4500 об/мин, при которой кратно увеличивается скорость гидроабразивного разрушения материала.

Для реализации заявляемого способа разработан стенд гидроабразивных испытаний погружных насосов, содержащий приводной механизм в виде электродвигателя, кинематически соединенный с валом испытуемого насоса, бак, подсоединенный к насосу, узел подачи абразивного материала, узел подвода жидкости, соединительные трубопроводы, узел регулирования расхода, и систему измерительных датчиков, отличающийся тем, что электродвигатель, узел подвода и испытуемый насос размещены в подвешенном состоянии посредством гибких элементов, закрепленных на раме стенда.

Такое размещение позволяет имитировать режим вибрации насоса на насосно-компрессорных трубах в скважине, что сокращает время проведения испытаний.

Для моделирования работы насоса в искривленной скважине стенд может быть дополнительно снабжен узлом изгиба насосной секции.

Сущность изобретений поясняется чертежами, где на фиг.1 представлен общий вид заявляемого стенда гидроабразивных испытаний погружных насосов, на фиг.2 - узел изгиба.

Стенд содержит входной трубопровод 1 для подачи рабочей жидкости в бак 2, загрузочную воронку 3 в верхней части бака для подачи абразивного материала. В качестве приводного механизма используется электродвигатель 4, вал которого кинематически соединен с валом испытуемого многоступенчатого насоса 5. В нижней части насоса 5 имеется узел подвода жидкости 6, к которому подведен гибкий трубопровод из бака 2. На выходе насоса 5 установлен узел регулирования расхода 7 с отверстием переменного сечения для установки рабочего режима насоса 5, который через гибкий трубопровод соединен с баком 2. Для контроля параметров работы стенда установлены датчик давления 8 на выходе насоса 5, датчик расхода 9 выходящей рабочей жидкости и датчики вибрации 10, распределенные по длине насоса 5. Электродвигатель 4 и соединенный с ним испытуемый насос 5 подвешены к раме 11 стенда на гибких элементах 12, прикрепленных к узлу регулирования расхода 7 (фиг.1). Такое исполнение стенда позволяет моделировать режим вибрации, который возникает при работе в скважине насоса, подвешенного на насосно-компрессорных трубах.

Стенд может быть дополнительно снабжен узлом (фиг.2), имитирующим изгиб насоса в центральной части. Узел представляет собой балку 13, установленную вдоль насоса 5 и прикрепленную к его верхней и нижней части с помощью зажимов 14, в средней части балки 13 на винте 15 расположен выдвижной ролик 16. Регулированием величины выдвижения ролика 16 с помощью винта 15 задается необходимый изгиб насоса. В таком случае возникает неравномерная нагрузка на радиальные пары трения насоса, что вызывает повышенный износ насоса.

Устройство работает следующим образом.

Собранный для испытания насос 5 (для испытания используется одна или несколько насосных секций погружного насоса) устанавливается на узел подвода 6 и при помощи муфты соединяется с приводным электродвигателем 4.

В узле регулирования расхода 7 изменяют сечение отверстия для задания требуемой подачи в стенде и соединяют его с насосом 5. При необходимости с помощью винта 15 выдвигают ролик 16, чтобы создать заданный изгиб насоса. К верхней части насоса 5 крепятся гибкие элементы 12 и соединенные насос 5, двигатель 4, узел подвода 6 и узел регулирования расхода 7 подвешиваются на них. К узлу подвода 6 и узлу регулирования расхода 7 подключаются гибкие трубопроводы для соединения с баком 2. Бак 2, система трубопроводов и полость насоса 5 заполняются рабочей жидкостью. После чего включают электродвигатель 4, работающий на частоте вращения вала, превышающей номинальное значение, и через загрузочную воронку 3 в верхней части бака 2 подают абразивный материал.

Полученная смесь, содержащая рабочую жидкость с абразивным материалом, поступает через узел подвода 6 на вход насоса 5, расположенного со стороны электродвигателя 4. Далее смесь перекачивается насосом 5 и через регулируемое отверстие в узле регулирования расхода 7 попадает в бак 2. По мере измельчения абразивных частиц в процессе перекачивания смеси в бак 2 добавляют новый абразивный материал. В процессе испытания развивается гидроабразивный износ проточных каналов насоса, а также износ пар трения ступеней и промежуточных подшипников. При проведении испытаний датчиком 8 фиксируются давление на выходе насоса 5, датчиком 9 - расход рабочей жидкости, а датчиком 10 - уровень вибрации. После остановки стенда и слива рабочей жидкости производят замеры износа взвешиванием и измерением изменения геометрических размеров деталей.

Таким образом, описанные способ и стенд для его осуществления позволяют проводить ускоренные гидроабразивные испытания насосов в среде, содержащей механические примеси, в условиях приближенным к эксплуатационным, в том числе и для искривленных скважин. Продолжительность испытаний не более 10 часов.

1. Способ гидроабразивных испытаний погружных насосов, при котором насос с электродвигателем размещают в подвешенном состоянии, абразивный материал подают с рабочей жидкостью из узла подвода во вращающийся насос, отличающийся тем, что испытания проводят при частоте вращения насоса, превышающей его номинальную частоту, а узел подвода и испытываемый насос размещают в подвешенном состоянии посредством гибких элементов.

2. Стенд для гидроабразивных испытаний погружных насосов, содержащий приводной механизм в виде электродвигателя, кинематически соединенный с валом испытываемого насоса, бак, подсоединенный к насосу, узел подачи абразивного материала, узел подвода жидкости, соединительные трубопроводы, узел регулирования расхода и систему измерительных датчиков, отличающийся тем, что электродвигатель, узел подвода и испытываемый насос размещены в подвешенном состоянии посредством гибких элементов, закрепленных на раме стенда.

3. Стенд по п.2, отличающийся тем, что он дополнительно снабжен элементом для изгиба испытуемого насоса, выполненным в виде зажимов на концах насоса и выдвижного ролика с регулируемой величиной выдвижения, установленного в центральной части планки, соединяющей зажимы и расположенной вдоль насоса.



 

Похожие патенты:

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей.

Изобретение относится к области экспериментальной гидродинамики морского транспорта. .

Изобретение относится к области экспериментальной техники для исследований гидродинамики и динамики судов и касается создания опытовых бассейнов с возможностями моделирования в них волнения.

Изобретение относится к области экспериментальной техники и может быть использовано для испытаний различных подводных объектов и пусковых устройств, в частности пусковых устройств торпедных аппаратов.

Изобретение относится к испытательной технике, в частности к методам и средствам проверки технического состояния скважинных установок электроцентробежных насосов (УЭЦН) при проведении мероприятий по техническому обслуживанию.

Изобретение относится к области двигателестроения и может быть использовано в испытаниях топливной аппаратуры дизельных двигателей. .

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. .

Изобретение относится к области экспериментальной гидродинамики морского транспорта и касается создания лабораторий для исследований ледовых качеств судов. .

Изобретение относится к испытательным машинам, а конкретно к каплеударным испытательным установкам. .

Изобретения относятся к области судостроения, в частности к экспериментальным методам испытания моделей в опытовых и ледовых бассейнах при проведении испытаний заякоренных объектов, и могут быть использованы для непосредственных измерений инерционных характеристик изучаемой модели. Устройство включает испытуемую модель плавучего объекта, имитатор дна водоема, якорные связи, соединяющие модель с имитатором дна и оснащенные тросовыми динамометрами для измерения в них сил натяжения, и измеритель линейных и угловых перемещений выбранной точки испытуемой модели. Модель выполнена состоящей из двух не равнозначных по массе частей, к одной из которых, имеющей массу, не превышающую 5% общей массы модели, прикреплены модельные якорные линии удержания и которая соединена с остальной частью модели через динамометр, предназначенный для измерения силы взаимодействия между этими частями. Способ включает монтаж модели к имитатору дна водоема с помощью якорной системы удержания, измерение линейных и угловых перемещений выбранной точки модели, натяжения в связях якорной системы удержания с помощью тросовых динамометров и определение жесткостной характеристики связей. Испытания проводят на модели, состоящей из двух не равнозначных по массе частей, соединенных через динамометр между ними, к меньшей части из которых крепят якорные линии удержания. После монтажа модели к имитатору дна водоема измеряют углы подхода якорных линий к корпусу испытуемой модели при отсутствии внешней нагрузки, и в процессе проведения эксперимента измеряют с помощью динамометра усилие, возникающее между упомянутыми частями испытуемой модели. В ходе дальнейшей обработки результатов эксперимента определяют суммарную силу, действующую на модель со стороны якорной системы удержания, после чего определяют расчетным путем инерционные характеристики модели как разность между соответствующими величинами, определенными по показаниям динамометра между частями испытуемой модели и величинами, рассчитанными как суммарная реакция якорных связей. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области испытательной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Устройство содержит заполненный жидкостью прочный корпус с днищами, на одном из которых размещен быстроразъемный узел крепления пускового устройства подводного аппарата, направляющие элементы для подводного аппарата и устройство для его торможения, заполненную газом демпфирующую полость, систему уставки давления в демпфирующей полости, измерительно-регистрирующую и управляющую работой стенда аппаратуру и систему поддержания в демпфирующей полости постоянства установочного давления. При этом система поддержания давления содержит расположенный в демпфирующей полости уравнивающий цилиндр с пневматическим приводом, шток которого введен в демпфирующую полость прочного корпуса стенда и связан с поршнем уравнивающего цилиндра, замкнутый объем которого снабжен клапаном уравнивания в нем давления с демпфирующей полостью, а пневматический привод включает ресивер с воздухом высокого давления, программно-управляемый клапан и клапан сброса давления из рабочего объема пневматического привода. Технический результат заключается в обеспечении эффективного поддержания постоянного давления в демпфирующей полости стенда. 1 ил.

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки. Модель испытывается в опытовом бассейне в прямом движении. Модель крепится на пилоне буксировочной тележки через динамометр, используемый для гидродинамических исследований, в зоне отсутствия вихреобразования от движения тележки. Моделирование струи силовой установки производится моделированием диаметра сопла и тяги. При движении тележки на фиксированной скорости и обдувки горизонтального оперения струями двигателей маршевой силовой установки определяются аэродинамические характеристики при различных сочетаниях углов атаки горизонтального оперения, тяги двигателей, отклонения рулей высоты, что позволяет экспериментально-расчетным способом оперативно определять параметры, являющиеся одним из основных элементов инструкции в обеспечении расчета управляемости на всех эксплуатационных режимах движения экраноплана и в чрезвычайных нестандартных ситуациях. Достигается осуществление полного аэродинамического расчета экраноплана в целом. 3 ил.

Изобретение относится к области судостроения, более конкретно - к экспериментальной гидромеханике, и касается вопросов проведения экспериментальных исследований в опытовых бассейнах моделей быстроходных судов с воздушными кавернами на днище. Предложена конструкция корпуса модели судна с искусственной каверной для проведения гидродинамических испытаний в опытовом бассейне, которая в днищевой части корпуса содержит нишу, ограниченную поперечным реданом стреловидной формы, скегами и профилированным кормовым участком днища, на котором происходит замыкание каверны. Профилированный кормовой участок днища, на котором происходит замыкание каверны, выполнен на резьбовых стойках, позволяющих регулировать его высоту над основной плоскостью, угол атаки и форму в поперечном сечении. Технический результат заключается в повышении эффективности проведения испытаний моделей. 3 ил.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива. Стенд содержит сливную емкость, расходную магистраль, в которой установлены датчики сплошности, расходомер, гидравлический насос, отсечной кран, а также устройство для заправки и слива, к которому подключен дозатор для дозаправки воды. Дозатор воды настроен на рабочий объем, равный объему ожидаемого гидравлического остатка незабора испытуемого топливного бака, подключенного к расходной магистрали. Верхняя часть сливной емкости выполнена в виде вертикального сужающегося кверху конусного насадка с конусностью 15°, на котором установлены второй датчик сплошности и емкость для перелива. В состав стенда входит магистраль закольцовки с запорным клапаном, встроенная в расходную магистраль на входе в насос, и магистраль заправки с клапаном, встроенная в расходную магистраль на выходе из насоса, второй конец которой подключен к расходной магистрали перед отсечным краном. Перед заправкой испытуемого бака полностью заполняют водой расходную магистраль и сливную емкость, а затем производят дозаправку гидросистемы дозированным объемом воды, равным ожидаемому гидравлическому остатку незабора. После этого производят испытание. При срабатывании обоих датчиков сплошности в любой последовательности закрывают отсечной кран, фиксируют момент прорыва газа в магистраль расхода и момент полного заполнения сливной емкости. Затем, зная расход и указанные моменты времени, а также объем дозаправки дозатором вычисляют величину гидравлического остатка незабора. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и снижение трудоемкости экспериментальных работ. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива в динамических условиях. Стенд содержит подвижную горизонтальную платформу с приводом, сливную емкость с расходной магистралью, сливной трубопровод с датчиком сплошности и гибкое звено. Платформа установлена на раме стенда при помощи несколько параллельных шарнирных стоек. На платформе жестко закреплены испытуемый бак с заборным устройством и сливной трубопровод с датчиком сплошности. На расходной магистрали установлены расходомер, отсечной кран, регулятор расхода, гидравлический насос. Вход насоса подсоединен к сливной емкости магистралью закольцовки с установленным на ней клапаном. Сливной трубопровод жестко закреплен на платформе, подключен к испытуемому баку и через гибкое звено соединен с расходной магистралью. Гибкое звено выполнено в виде трубы с герметичными сферическими шарнирами на концах и расположено параллельно стойкам. Длина гибкого звена равна высоте стоек. Технический результат - повышение точности определения гидравлического остатка в испытуемом баке ракеты и исключение силовых нагрузок на сливной трубопровод испытуемого бака. 1 ил.

Изобретение относится к области судостроения, а более конкретно - к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения ледовых модельных исследований в ледовом опытовом бассейне. Предложен способ определения толщины ледового поля при испытаниях моделей судов и морских инженерных сооружений в ледовом опытовом бассейне, заключающийся в зондировании ледового поля ультразвуковыми импульсами с последующим преобразованием отраженных импульсов в напряжение на электронном устройстве и регистрацией результатов измерения, при этом под нижнюю поверхность ледового поля на исследуемом участке подводят плоский жесткий экран, прижимая его к нижней поверхности ледового поля, отражающий зондирующие ледовое поле ультразвуковые импульсы. Предложено также устройство для осуществления данного способа. Технический результат заключается в повышении достоверности и точности результатов эксперимента по определению толщины ледового поля. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области судостроения, а более конкретно к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения модельных испытаний в ледовом опытовом бассейне. Предложен способ моделирования ледяного покрова в опытовом бассейне, включающий намораживание ледяного покрова, образование на ледяном покрове несквозных прорезей глубиной, равной менее толщины намораживаемого ледяного покрова, и последующее проведение испытаний модели инженерного сооружения или судна. Для образования несквозных прорезей на ледяном покрове предварительно, перед намораживанием ледяного покрова, в рабочей зоне вдоль опытового бассейна протягивают вертикально ориентированные полосы или ряд расположенных друг над другом нитей с общей высотой, соответствующей требуемой глубине создаваемых во льду несквозных прорезей, обладающих пониженной адгезионной прочностью сцепления со льдом, которые размещают друг от друга по ширине опытового бассейна на расстоянии, превышающем ширину модели инженерного сооружения или судна, испытуемой в ледовом опытовом бассейне, и располагают по высоте так, чтобы верхняя нить или верхний край полосы находились на уровне свободной поверхности воды в опытовом бассейне, а прорези на ледяном покрове получают путем извлечения из ледяного покрова вмороженных в толщу льда упомянутых полос или нитей. Предложено также устройство для осуществления данного способа. Технический результат заключается в повышении достоверности процесса моделирования частично надрезанного ледяного покрова. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов. Стенд для отработки всеглубинного пускового устройства арбалетного типа для необитаемых подводных аппаратов содержит смонтированную на неподвижном основании систему перезарядки силового блока. Система улавливания макета подводного аппарата выполнена в виде мешка из ударопоглощающего и ударостойкого материала и закреплена с помощью съёмных кронштейнов на неподвижном основании. Срабатывание исследуемого пускового устройства осуществляется в воздушной среде. Система измерения включает видеокамеру, с возможностью ускоренной съёмки движения макета и подвижных частей пускового устройства в процессе пуска. Достигается возможность эффективно организовывать экспериментальную проверку работоспособности и качества всеглубинных пусковых устройств арбалетного типа для необитаемых подводных аппаратов. 2 ил.

Изобретение относится к области экспериментальной аэродинамики, в частности к устройствам, предназначенным для исследования аэродинамических характеристик летательных аппаратов (ЛА). Способ заключается в том, что АДХ ЛА определяются в гидродинамической трубе (ГТ) при использовании в качестве среды обтекания ЛА воды. Модель ЛА устанавливают в ГТ, закрепляют в верхней державке головную часть модели и в нижней державке хвостовую часть модели, при этом в державках устанавливают тензодатчики замера поперечной и боковой силы, а также замера момента, в ГТ устанавливают датчики замера скорости потока воды. Затем включают двигатель, создающий поток жидкости в трубе, устанавливают необходимую скорость потока воды и замеряют силы поперечную и боковую силы и момента. Верхняя часть ГТ имеет систему наддува до заданного давления, необходимого для моделирования по числу Эйлера в рабочем участке ГТ. Устройство содержит рабочий участок, двигатель, вращающий импеллерный агрегат, создающий скоростной напор среды на модель ЛА, аппаратуру, регулирующую скоростной напор среды, тензодатчики замера поперечной и боковой сил и момента, регистрирующую аппаратуру. Труба обдува выполнена в виде гидродинамической трубы, а в качестве среды обдува применена вода. Технический результат заключается в расширении возможностей по моделированию обтекания модели ЛА потоком, включая старт и движение у поверхности земли, повышение точности измерения сил и моментов, повышение безопасности испытаний. 2 н. и 9 з.п. ф-лы, 2 ил., 1 табл.
Наверх