Способ контроля качества материала образца методом акустической эмиссии



Способ контроля качества материала образца методом акустической эмиссии

 


Владельцы патента RU 2494389:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный горный университет" (МГГУ) (RU)

Использование: для контроля качества материала образца методом акустической эмиссии. Сущность: способ заключается в том, что выполняют термическое с возрастающей температурой воздействие на образец и регистрацию возникающих в нем сигналов акустической эмиссии, при этом термическому воздействию подвергают серию однотипных из одного материала образцов до температуры 90°C и для каждого из них определяют среднее значение активности акустической эмиссии в диапазоне 30÷90°C, каждый из серии образцов подвергают одноосному механическому нагружению, по результатам которого определяют его предел прочности при сжатии, строят тарировочную кривую, описывающую взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов, по которой определяют прочность материала вновь испытываемых образцов того же типа, по их средней активности термоакустической эмиссии, в диапазоне от 30°C до 90°C. Технический результат: обеспечение возможности определения предела прочности материала образцов скальных горных пород без их разрушения. 1 ил.

 

Изобретение относится к неразрушающему контролю качества материалов и может быть использовано для определения предела прочности при одноосном сжатии скальных геоматериалов на образцах.

Известен способ контроля качества материала образцов методом акустической эмиссии, заключающийся в том, что принимают акустическим преобразователем деформационные шумы, сопровождающие трещинообразование в материале, регистрируют импульсные электрические сигналы на выходе преобразователя путем их разделения на группы с близкими по величине амплитудами, и производят считывание количества импульсов в каждой из групп [1].

Недостатком этого способа является его низкая надежность из-за искажения картины распределения амплитуд сигналов акустической эмиссии, обусловленного различным затуханием сигналов, возникающих на различных расстояниях от приемного преобразователя.

Наиболее близким по технологической сущности к предлагаемому изобретению является способ контроля материала образцов методом акустической эмиссии, включающий термическое с возрастающей температурой воздействие на образец и регистрацию возникающих в нем сигналов акустической эмиссии [2].

Недостатком известного способа является невозможность с его помощью определить предел прочности материала образца.

В настоящей заявке решается задача определения предела прочности материала образцов скальных горных пород, без их разрушения.

Для решения поставленной задачи в способе контроля материала образцов методом акустической эмиссии, включающем термическое с возрастающей температурой воздействие на образец и регистрацию возникающих в нем сигналов акустической эмиссии, термическому воздействию подвергают серию однотипных выполненных из одного материала образцов до температуры 90°C и для каждого из них определяют среднее значение активности акустической эмиссии в диапазоне 30÷90°C, далее эти образцы подвергаются одноосному механическому нагружению, по результатам которого определяют их предел прочности, строят тарировочную кривую, описывающую взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов, по которой определяют предел прочности материала вновь испытываемых образцов того же типа по их средней активности термоакустической эмиссии в диапазоне 30÷90°C.

Предлагаемый способ базируется на следующих физических предпосылках и установленных авторами экспериментально закономерностях акустической эмиссии в образцах скальных геоматериалов, имеющих различный предел прочности, при их нагревании.

Известно, что при нагревании образцов скальных геоматериалов, таких, например, как гранит, значимая для регистрации акустическая эмиссия возникает при температурах не ниже 30°C, причем вплоть до 90°C ее активность возрастает пропорционально нарастанию термонапряжений, т.е. температуре, без каких-либо явных аномалий. В то же время нагревание до 90°C не приводит к значимому изменению предела прочности скальных геоматериалов, что позволяет рассматривать соответствующий термоакустоэмиссионный контроль как неразрушающий.

При нагревании в указанной выше низкотемпературной области относительно однородных образцов, не содержащих макродефекты, в них возникает некоторое число событий акустической эмиссии за счет термонапряжений по границам микродефектов и зерен включений. Из-за малой частоты возникновения таких событий термоакустической эмиссии можно говорить о достаточной взаимной близости ее усредненных по некоторой температурной области значений для всей группы образцов. В тоже время затухание сигналов термоакустической эмиссии в результате диссипативных потерь и рассеяния на микродефектах велико и тем больше, чем больше в материале образца указанных дефектов. Другими словами конкретное зарегистрированное значение средней акустической эмиссии определяется именно затуханием ее сигналов, т.е. числом микродефектов с увеличением числа которых прочность геоматериала образца уменьшается. Таким образом между искомой прочностью и усредненной в диапазоне нагрева активностью акустической эмиссии существует высоко коррелированная взаимосвязь. Это позволяет с помощью полученных тарировочных зависимостей определять предел прочности скальных геоматериалов по характерной для них средней активности термоакустической эмиссии.

Отмеченные закономерности были подтверждены при проведении авторами экспериментальных исследований на образцах таких геоматериалов как мрамор, гранит, диабаз и других.

Способ контроля качества материала образца методом акустической эмиссии иллюстрируется фиг.1, где приведена тарировочная кривая, описывающая взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов, по которой определяют прочность материала вновь испытываемых образцов того же типа, по их средней активности термоакустической эмиссии, в диапазоне от 30°C до 90°C.

Способ контроля качества материала образца методом акустической эмиссии реализуют следующим образом.

Предварительно с помощью ультразвукового и визуально-измерительного контроля исключают из исследуемой серии образцов геоматериала, те из них, которые содержат макродефекты (т.е. осуществляют операцию цензурирования выборки). На каждом из оставшихся в серии после ее цензурирования образцов подготавливают плоскую поверхность для контакта с кварцевым волноводом диаметром 10 мм, через который осуществляют прием сигналов акустической эмиссии, возникающих при нагревании образца геоматериала. Последовательно каждый из образцов серии помещают в трубчатую печь, например Nabertherm RT 50/250/11 с контроллером типа P320, и проводят его нагрев от 30°C до 90°C, со скоростью примерно 1,5 град./мин. Регистрируют активность возникающей в результате нагревания образцов акустической эмиссии с помощью, например, акустико-эмиссионной измерительной системы A-Line 32D. Затем вычислят среднюю активность акустической эмиссии в диапазоне 30-90°C для каждого из образцов. Далее эти образцы подвергают одноосному механическому нагружению с помощью пресса, например ИП 6011-500-1, по результатам которого определяют предел прочности при одноосном сжатии каждого конкретного образца серии. Строят тарировочную кривую описывающую взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов. Далее по этой кривой определяют прочность материала вновь испытываемых образцов того же типа, по их средней активности термоакустической эмиссии, в диапазоне 30÷90°C.

На фиг.1 приведена, в качестве примера, экспериментально полученная тарировочная кривая, описывающая взаимосвязь между средней активностью акустической эмиссии в диапазоне 30÷90°C и пределом прочности материала образцов гранита Капустинского месторождения. Указанная кривая может быть записана как:

σ с ж = a 1 + a 2 N Σ + a 3 N Σ 2 + a 4 N Σ 3 + a 5 e N Σ , г д е ( 1 )

a n - структурно зависимые коэффициенты получаемые экспериментально, в рассматриваемом случае:

a 1=-2383,4; a 2=92,2; a 3=-1.17; a 4=0,005; a 6=-26,49

σсж - предел прочности материала, МПа;

NΣ - средняя активность ТАЭ в диапазоне 30÷90°C, имп.

Для определения значений предела прочности трех ранее не исследованных образов Капустинского гранита, т.е. не входивших в выборку, на основе которой была получена зависимость описываемая формулой (1), эти образцы были нагреты в диапазоне 30÷90°C. В ходе этого нагрева регистрировали среднее значение активности акустической эмиссии, которая составила для первого образца - 35,4 имп., для второго - 37,6 имп. и для третьего - 34,7 имп. Используя зависимость на фиг.1 были получены значения предела прочности этих образцов составившие, соответственно: 76,4 МПа, 83,8 МПа и 74,3 МПа. Для проверки полученных значений предела прочности эти образы были испытаны на прессе ИП 6011-500-1. В результате были получены следующие значения: 79,2 МПа - для первого образца, 80,9 МПа - для второго образца и 77,5 МПа - для третьего образца. Исходя из этого относительная погрешность определения предела прочности для первого из образцов составила 3,5%, для второго - 3,6% и для третьего - 4,1%. Помимо этого по зависимости на фиг.1 и, соответственно, по формуле (1) были определены значения предела прочности контрольной серии из 36 образцов гранита Капустинского месторождения. Каждое из этих значений отличалось от полученного в результате механических испытаний не более чем на 6,8%, а усредненная по всей серии относительная погрешность составила 5,2%.

Таким образом предложенный способ контроля качества материала образца методом акустической эмиссии позволяет определять предел прочности этого материала при одноосном сжатии по полученной предварительно тарировочной зависимости между средней активностью акустической эмиссии в диапазоне 30÷90°C и пределом прочности материала. При этом наличие соответствующей тарировочной зависимости позволяет определять прочность испытываемых образцов без их механического нагружения и разрушения, т.е. обеспечивают неразрушающий характер проведения соответствующего контроля.

Источники информации, принятые во внимании при составлении заявки:

1 Авторское свидетельство СССР №464813, кл. G01N 29/14, 1975.

2 Авторское свидетельство СССР №905777, кл. G01N 29/14, 1982.

Способ контроля материала образцов методом акустической эмиссии, включающий термическое с возрастающей температурой воздействие на образец и регистрацию возникающих в нем сигналов акустической эмиссии, отличающийся тем, что термическому воздействию подвергают серию однотипных из одного материала образцов до температуры 90°C и для каждого из них определяют среднее значение активности акустической эмиссии в диапазоне 30÷90°C, каждый из серии образцов подвергают одноосному механическому нагружению, по результатам которого определяют его предел прочности при сжатии, строят тарировочную кривую, описывающую взаимосвязь между средней активностью акустической эмиссии и пределом прочности материала для всей серии испытанных образцов, по которой определяют прочность материала вновь испытываемых образцов того же типа, по их средней активности термоакустической эмиссии, в диапазоне от 30°C до 90°C.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля и предназначено для выявления трещиновидных дефектов в образцах скальных геоматериалов. .
Изобретение относится к исследованию деформаций и напряжений и может быть использовано для исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений.

Изобретение относится к машиностроению, преимущественно к термической обработке металлов, и может использоваться при контроле параметров сталей акустическими методами.

Изобретение относится к области контроля технологических процессов, связанных с импрегнированием материалов, в частности пропитка материала жидким реагентом, например в области электротехники (пропитка электродвигателей).

Изобретение относится к акустико-эмиссионному (АЭ) методу неразрушающего контроля и диагностики и может быть использовано для определения степени опасности развивающихся дефектов, снижающих прочность изделия типа сосуда, аппарата, трубопровода, подъемной машины, мостовой конструкции.

Изобретение относится к области неразрушающего контроля и предназначено для выявления трещиновидных дефектов в скальных геоматериалах. .

Изобретение относится к средствам неразрушающего контроля строительных материалов, в частности к средствам неразрушающего контроля, основанным на анализе сигналов акустической эмиссии.
Изобретение относится к средствам неразрушающего контроля строительных материалов, в частности, к средствам неразрушающего контроля, основанного на анализе сигналов акустической эмиссии.

Изобретение относится к диагностике поверхности катания колесных пар подвижного состава железнодорожного транспорта и метрополитена. .

Использование: для контроля прочности железобетонного изделия в условиях чистого изгиба. Сущность: заключается в том, что изделие циклически нагружают от нуля с постепенно возрастающей амплитудой до появления сигналов акустической эмиссии перед окончанием разгружения, и по среднему для максимальных нагрузок двух последних циклов судят о максимальной неразрушающей нагрузке изделия, причем при появлении сигналов акустической эмиссии перед окончанием разгружения определяют координаты ее источника (дефекта), амплитуды и нагрузки возникновения этих сигналов, после чего продолжают циклическое нагружение с повышением амплитуды, после каждого разгружения определяют координаты новых источников сигналов акустической эмиссии, амплитуды и нагрузки возникновения сигналов, контролируют изменение амплитуды и нагрузки возникновения сигналов для каждого источника от цикла к циклу, а при их возрастании у одного из источников прекращают нагружения. Технический результат: повышение точности определения максимальной неразрушающей нагрузки для изделий в условиях чистого изгиба. 1 ил.

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений. Способ механического испытания труб включает сплющивание трубного образца между двумя гладкими жесткими параллельными плоскостями с постоянной скоростью, определение степени пластичности и деформации образца сжатием до образования в нем первой трещины. При этом деформацию образца осуществляют с регистрацией закрепленным на образце датчиком акустической эмиссии сигналов акустической эмиссии. Момент образования трещины определяют по резкому увеличению сигнала акустической эмиссии, по которому определяют степень пластичности и запас пластичности образца, как относительное превышение пластичности образца заранее установленного предела. 2 ил.

Использование: для определения координат источника акустической эмиссии. Сущность: заключается в том, что на контролируемом изделии на некотором расстоянии друг от друга устанавливают два преобразователя акустической эмиссии, изделие нагружают, принимают сигналы акустической эмиссии, генерируемые дефектом изделия, регистрируют моды волн Лэмба в виде волнового пакета, после представления которого частотно-временной зависимостью на спектрограммах выделяют энергетические максимумы антисимметричных и симметричных мод, по разнице во времени прихода энергетических максимумов на выбранных частотах определяют расстояния между преобразователем и источником акустической эмиссии, после чего по полученным результатам рассчитывают координаты дефекта изделия. Технический результат: повышение точности определения местоположения источника акустической эмиссии. 6 ил.

Использование: для неразрушающего контроля технического состояния промышленных объектов. Сущность: заключается в том, что преобразователь акустической эмиссии содержит корпус и установленный в нем пьезоэлемент с протектором, а также, по меньшей мере, один пьезотрансформатор, соединенный последовательно с пьезоэлементом. Технический результат: обеспечение возможности формирования амплитудно-частотной характеристики заданной формы и повышение помехоустойчивости при сохранении высокой чувствительности к акустическим колебаниям, вызванным потенциальными дефектами. 1 ил.

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки. Технический результат: обеспечение возможности диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей. 4 ил.

Использование: для выявления шумоподобных источников акустической эмиссии во время диагностирования, мониторинга, оценки состояния и ресурса объектов контроля с применением локационных методов акустической эмиссии. Сущность изобретения заключается в том, что для выделения сигналов акустической эмиссии, принадлежащих одному событию, совместно анализируют подобие кривых спектральной плотности сигналов со сравнением временных функций их проявления. Технический результат: повышение точности определения координат шумоподобных источников акустической эмиссии. 1 з.п. ф-лы, 5 ил.

Изобретение относится к методам неразрушающего контроля, а именно к виброакустическим методам, и может найти применение для физического контроля железобетонных опор со стержневой напрягаемой арматурой. Способ заключается в том, что на опору устанавливают акустический датчик, регистрируют акустическую эмиссию (АЭ), сравнивают ее с ранее полученной, по результатам сравнения судят о физическом состоянии опоры. При этом на опору устанавливают акселерометр, акустический датчик и акселерометр устанавливают на границе заделки опоры в фундамент или в грунт, на опоре закрепляют вибратор и подвергают опору нагрузке, изменяющейся по амплитуде и частоте. На первоначальном этапе определяют резонансную частоту опоры, на данной резонансной частоте регистрируют амплитуду колебаний опоры, суммарную энергию АЭ, количество импульсов АЭ, скорость счета импульсов АЭ от возникающих и развивающихся дефектов, образующихся под воздействием колебаний опоры на резонансной частоте за определенный период времени. Затем полученные результаты заносятся в персональный компьютер под номером опоры, на последующих этапах контроля строят графики изменения амплитуды колебаний опоры и параметров АЭ на ранее установленной резонансной частоте. По характеру изменения значений регистрируемых параметров судят о физическом состоянии опоры и фундамента, о жесткости закрепления опоры в фундаменте или грунте и принимают решение об устранении выявленных дефектов, или замене опоры, или усилении крепления оборудования на опоре. Технический результат заключается в возможности оценки и прогнозирования состояния опор, их остаточного ресурса железобетонной опоры, а также оценки надежности крепления оборудования на опорах. 1 ил.

Использование: при акустико-эмиссионной диагностике материалов и конструкций. Сущность изобретения заключается в том, что на контролируемом изделии устанавливают два преобразователя акустической эмиссии, определяют закон затухания звука, принимают сигналы акустической эмиссии, генерируемые дефектом изделия в процессе эксплуатации или нагружения, регистрируют моды волн Лэмба в виде волнового пакета, получают частотно-временную зависимость на спектрограммах, выделяют энергетические максимумы антисимметричных и симметричных мод, по разнице во времени прихода энергетических максимумов на выбранных частотах определяют расстояние между преобразователями и источником акустической эмиссии, затем, используя ранее установленный закон затухания, рассчитывают координаты дефекта изделия. Технический результат: обеспечение возможности определения по данным измерения одного импульса акустической эмиссии координат дефекта, а также обеспечение возможности снижения числа предварительно определяемых параметров, что значительно повышает точность. 6 ил.

Использование: для оперативного определения качества микроструктуры титанового сплава упругого элемента. Сущность изобретения заключается в том, что выполняют более одного нагружения исследуемого упругого элемента нагрузкой до максимальной деформации с регистрацией сигналов акустической эмиссии при каждом нагружении. При этом нагружение исследуемого упругого элемента проводят два раза и кратковременно путем обжатия этого упругого элемента, а сигналы акустической эмиссии регистрируют непрерывно в процессе второго нагружения для определения общего количества импульсов суммарной акустической эмиссии N2. Микроструктуру титанового сплава упругого элемента оценивают по девятибалльной шкале размерности зерна, разделенной на три группы баллов 4-5, 6-7 и 7-8, каждой из которых соответствует отдельный диапазон количества импульсов суммарной акустической эмиссии A1, A2 и A3, и качество микроструктуры по баллам указанной шкалы определяют по следующей зависимости N2≤A1, или N2≤A2, или N2≤A3. Технический результат: сокращение времени и упрощение процесса контроля режимов термообработки тарельчатых пружин. 12 ил., 3 табл.

Использование: для контроля дефектности сляба. Сущность изобретения заключается в том, что выполняют установку датчиков акустической эмиссии на поверхности холодного сляба в порядке, обеспечивающем контроль всего материала сляба, механическое нагружение сляба за счет использования собственного веса сляба до напряжений от 20 до 80% предела текучести материала сляба, выдержку под нагрузкой не менее 1 мин, регистрацию сигналов акустической эмиссии и их обработку, определение координат источников акустической эмиссии и определение возможности дальнейшего использования сляба в производстве горячекатаной полосы путем сравнения диагностического параметра WАЭ с допустимым значением диагностического параметра [WАЭ] и при WАЭ>[WАЭ] сляб считают непригодным для дальнейшей прокатки. Технический результат: повышение оперативности и точности контроля. 1 ил.
Наверх