Сканирующий зондовый микроскоп



Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп
Сканирующий зондовый микроскоп

 


Владельцы патента RU 2494406:

Закрытое акционерное общество "Нанотехнология МДТ" (RU)

Изобретение относится к нанотехнологии и сканирующей зондовой микроскопии, а более конкретно к устройствам, позволяющим получать информацию о топографической структуре образца, локальной жесткости, трении, а также об оптических свойствах поверхности в режиме близкопольного оптического микроскопа. Сканирующий зондовый микроскоп включает платформу с блоком предварительного сближения, пьезосканер, на котором установлен кварцевый резонатор, расположенный с возможностью взаимодействия с зондом. Кварцевый резонатор содержит два плеча разной длины и расположен под углом, не равным 90° к поверхности образца, а зонд закреплен на длинном плече. Технический результат - повышение надежности устройства и долговечности зондов, расширение его функциональных возможностей. 9 ил.

 

Изобретение относится к нанотехнологии и сканирующей зондовой микроскопии, а более конкретно к устройствам, позволяющим получать информацию о топографической структуре образца, локальной жесткости, трении, а также об оптических свойствах поверхности в режиме близкопольного оптического микроскопа.

Известен сканирующий зондовый микроскоп (СЗМ) [1], в котором используют кварцевый резонатор в виде камертона с приклеенной к нему иглой либо оптическим волокном, закрепленным в держателе. Механическое возбуждение кварцевого резонатора происходит при помощи пьезопластины, а детектирование электромеханического отклика - по электрическим характеристикам, снимаемых с разъемов кварцевого резонатора. Рабочей резонансной частотой приведенного устройства является основная мода колебаний. Зонд в виде иглы или оптического волокна расположен по нормали к исследуемой поверхности. Это устройство выбрано в качестве прототипа предложенного решения.

Недостатком данного устройства является расположение зонда по нормали к поверхности образца, при этом рабочий конец зонда совершает колебания параллельно этой поверхности, а силы взаимодействия между зондом и образцом имеют очень узкий рабочий диапазон, при превышении которого происходит необратимая деформация зонда. Кроме этого недостатком данного устройства является ограничение доступа к рабочей области контакта зонд-образец для размещения и подвода других устройств.

Технический результат предложенного решения заключается в повышении надежности устройства и долговечности зондов, а также расширении его функциональных возможностей.

Указанный технический результат достигается тем, что в сканирующем зондовом микроскопе, включающем платформу с блоком предварительного сближения, пьезосканер, на котором установлен кварцевый резонатор с зондом, расположенный с возможностью взаимодействия с образцом, зонд расположен под углом, не равным 90°, к плоскости образца.

Возможны варианты, в которых кварцевый резонатор содержит два плеча в виде удлиненных элементов, а зонд закреплен на одном из них под углом к их продольной оси, или с возможностью изгиба, или представляет собой изогнутый элемент.

Возможен также вариант, в котором кварцевый резонатор содержит по крайней мере одно плечо в виде удлиненного элемента и расположен под углом, не равным 90°, к поверхности образца, а зонд закреплен на одном из них параллельно его продольной оси.

Возможен также вариант, в котором кварцевый резонатор содержит два плеча разной длины и расположен под углом, не равным 90°, к поверхности образца, а зонд закреплен на одном из них параллельно его продольной оси.

Существует вариант, в котором зонд выполнен в виде первого световода, а устройство снабжено вторым вспомогательным световодом, установленным на пьезосканере посредством установочного устройства.

Существует также вариант, в котором вспомогательный световод установлен на платформе посредством микроподвижки.

На фиг.1 изображен сканирующий зондовый микроскоп в общем виде.

На фиг.2, фиг.3, фиг.4 изображены различные варианты закрепления зондов на кварцевом резонаторе.

На фиг.5, фиг.6 представлены различные варианты выполнения кварцевых резонаторов.

На фиг.7, фиг.8 представлены различные варианты выполнения СЗМ со вспомогательными зондами.

На фиг.9 изображена оптическая схема соединения элементов СЗМ.

Сканирующий зондовый микроскоп в общем виде состоит из платформы 1, на которой закреплены XYZ пьезосканер 2, обеспечивающий сканирование в плоскости XY и точное перемещение зонда 3 по Z-направлению, а также устройства 4 грубого подвода по Z-направлению, выполненного, например, на основе шагового двигателя, сопряженного с винтовым толкателем осевого перемещения. Кроме этого в СЗМ входит держатель кварцевого резонатора 5, состыкованный с XYZ пьезосканером 2. К держателю кварцевого резонатора 5 подсоединен кварцевый резонатор 6, а также может быть присоединена пьезопластина 7. Платформа 1 установлена на основании 8, содержащем держатель 9 образца 10. Генератор 11, блок управления сканирования 12 и усилитель напряжения входного сигнала 13 подключены соответственно к возбуждающей пьезопластине 6, XYZ пьезосканеру 2 и кварцевому резонатору 6. Держатель кварцевого резонатора 5 может представлять собой монтажную плату, на которой сделаны дорожки для монтажа. На монтажной плате при помощи пайки монтируют кварцевый резонатор и возбуждающую пьезопластину. В этом случае монтажная плата, кварцевый резонатор и возбуждающая пьезопластина являются сменным блоком. Они составляют единое целое и при замене кварцевого резонатора монтажную плату вставляют в разъем и вынимают из него. Описанные модули на чертежах не показаны, т.к. подробно представлены в прототипе [1]. Зонд 3, который может представлять собой либо заостренное оптическое волокно, либо заостренную иглу, в том числе и металлическую, может крепиться к одному плечу кварцевого резонатора 6 и быть расположенным под углом γ к поверхности образца 10, изменяющимся в диапазоне от 30 до 90 град. Подробно все элементы сканирующего зондового микроскопа описаны в [2, 3].

На Фиг.2 зонд 14, представляющий собой прямое заостренное волокно или прямую заостренную иглу, закреплен на кварцевом резонаторе 15 с двумя равными плечами в двух точках 16 и 17, например, с помощью клея, обеспечивающим точечную фиксацию, причем одна точка фиксации находится на базе кварцевого резонатора, а другая на его плече, на дальнем от базы конце, причем прямая, соединяющая две точки фиксации 16 и 17, составляет угол β к направлению продольной оси кварцевого резонатора O1-O1. Наиболее предпочтительное значение этого угла может быть в диапазоне 0-10 град. В качестве клея можно использовать эпоксидную смолу.

На Фиг.3 зонд 18, представляющий собой изначально прямое гибкое заостренное волокно или иглу, закреплен на плече 19 кварцевого резонатора 15 в двух точках 20, 21, например, с помощью клея, обеспечивающего точечную фиксацию. Причем одна точка фиксации 20 находится на базе кварцевого резонатора 15, а другая 21 на его плече 19, на дальнем от базы конце. При этом в первой точке 20 на базе резонатора 15 зонд 18 фиксируется вплотную к резонатору, а во второй точке 21 зонд 18 фиксируется к резонатору с помощью дополнительного промежуточного элемента 22, обеспечивая изгиб зонда 18 и наклон его заостренного конца на угол γ к направлению продольной оси кварцевого резонатора O1-O1. Наиболее предпочтительное значение этого угла может быть в диапазоне 0-15 град.

На Фиг.4 зонд 23, представляющий собой волокно или иглу с изначально изогнутым заостренным кончиком, закреплен на плече 19 кварцевого резонатора 15 в двух точках 24, 25, например, с помощью клея, обеспечивающего точечную фиксацию. Причем одна точка фиксации 24 находится на базе кварцевого резонатора 15, а другая 25 на его плече, на дальнем от базы конце. При этом изначальный изгиб 26 кончика волокна или иглы приходится на незакрепленный конец зонда 23, обеспечивая наклон его заостренного конца на угол δ к направлению продольной оси кварцевого резонатора O1-O1. Наиболее предпочтительное значение этого угла может быть в диапазоне 0-15 град.

На Фиг.5 зонд 27, представляющий собой прямое заостренное волокно или прямую заостренную иглу, закреплен на кварцевом резонаторе 28 с одним плечом 29 в двух точках 30, например, с помощью клея. Одна точка находится на базе кварцевого резонатора, а другая на его плече 29, на дальнем от базы конце. Причем сам резонатор 28 закреплен на своем держателе 31 таким образом, что его зонд 27 наклонен на угол s по отношению к поверхности образца. Наиболее предпочтительное значение этого угла может быть в диапазоне 45-90 град.

На Фиг.6 зонд 27, представляющий собой прямое заостренное волокно или прямую заостренную иглу, закреплен на одном плече кварцевого резонатора 32 в двух точках 30, например, с помощью клея, при этом плечи 33, 34 имеют разную длину. Одна точка находится на базе кварцевого резонатора, а другая на его длинном плече 34, на дальнем от базы конце. Причем резонатор закреплен на своем держателе 31 таким образом, что зонд 27 наклонен на угол η по отношению к поверхности образца 10. Наиболее предпочтительное значение этого угла может быть в диапазоне 45-90 град.

На Фиг.7 зонд 35, представляющий собой прямое заостренное волокно -преимущественно световод, закреплен на одном плече кварцевого резонатора 32 с двумя не равными плечами 33, 34 в двух точках 30, например, с помощью клея, обеспечивающим точечную фиксацию, причем одна точка фиксации находится на боковом торце базы кварцевого резонатора, а другая на его более длинном плече, на дальнем от базы конце. Причем резонатор закреплен на своем держателе 36 таким образом, что его зонд 35 наклонен на угол η по отношению к поверхности образца 10. Наиболее предпочтительное значение этого угла может быть в диапазоне 45-90 град. Первый вспомогательный зонд 37, представляющий собой прямое заостренное волокно, закреплен на держателе 36 посредством установочного устройства 38. В качестве устройства 38 может быть использован кронштейн, на котором посредства клея (эпоксидной смолы) закреплен зонд 37. Точное его положение относительно зонда 35 может быть обеспечено фиксацией кончика зонда 37 в процессе полимеризации клея.

На Фиг.8 зонд 39, представляющий собой прямое заостренное волокно - световод или прямую заостренную иглу, закреплен на одном плече кварцевого резонатора 32 с двумя не равными плечами. Сам резонатор 32 закреплен на своем держателе 31 таким образом, что его продольная ось наклонена на угол η по отношению к поверхности образца 10. Наиболее предпочтительное значение этого угла может быть в диапазоне 30-60 град. Второй вспомогательный зонд 40, представляющий собой прямое заостренное волокно, закреплен на платформе сканирующей головки 41 посредством микроподвижки 42, обеспечивающей трехкоординатное перемещение второго зонда 40 относительно зонда 39. Причем только зонд 39 механически зафиксирован по отношению к трехкоординатному пьезосканеру 2, обеспечивая сканирование поверхности образца 10 при неподвижном втором зонде 40.

В одном из применений (Фиг.9) зонд 3 в виде оптического волокна сопряжен посредством трехкоординатной подвижки 43 с первым объективом 44 и лазером 45. Держатель образца 46 с образцом 10 установлен на двухкоординатном столе 47. Образец 10 оптически сопряжен посредством второго объектива 48 и полупрозрачного зеркала 49 с видеомодулем 50 и фотоумножителем 51. Элементы 48 и 49 могут быть элементами инвертированного оптического микроскопа Olympus 1X-71.

Сканирующий зондовый микроскоп работает следующим образом. Генератор 11 (Фиг.1) подает напряжение на пьезопластину 7 на частоте резонанса кварцевого резонатора 6, механические колебания через держатель 5 возбуждают механический резонанс на кварцевом резонаторе 6, который вырабатывает электрический отклик, подаваемый на усилитель-преобразователь 13. При этом прикрепленный к кварцевому резонатору 6 зонд 3 совершает колебательные движения, причем амплитуда колебаний рабочего конца зонда непосредственно возле поверхности исследуемого образца 10 составляет единицы нанометров. При приближении с помощью шагового двигателя 4 зонда 3 к образцу 10 возникают силы механического взаимодействия между зондом 3 и образцом 10, которые приводят к уменьшению амплитуды колебаний кончика зонда 3, и, соответственно, и амплитуды колебаний кварцевого резонатора 6 и амплитуды электрического сигнала, снимаемого с кварцевого резонатора 6. Система обратной связи поддерживает постоянный уровень амплитуды электрического сигнала, снимаемого с кварцевого резонатора 6, а следовательно, и амплитуды кончика зонда 3 и силы взаимодействия между зондом 3 и образцом 6, путем перемещения зонда 3 по направлению нормали к поверхности образца 10 с помощью блока управления 12 и Z обкладки трехкоординатного сканера 2. В случае, когда кончик зонда 3 направлен не по нормали к поверхности образца 10, колебания кончика зонда 3 не параллельны поверхности образца 10. При этом для той же амплитуды колебаний заметно уменьшается сила взаимодействия зонд-образец, что уменьшает вероятность повреждения зонда 3 и/или поверхности образца 10. Также при этом увеличивается рабочий диапазон используемых в обратной связи величин сил взаимодействия зонд-образец. При работе с двумя зондами (фиг.7, фиг.8) сигнал, отраженный от объекта 10 может поступать в видеомодуль 48 и фотоумножитель 49 непосредственно через световоды 36 и 40 (не показано). Подробно работу сканирующих зондовых микроскопов аналогичного применения см. в [1. 2. 3].

Расположение зонда под углом к поверхности образца, не равным 90 град. повышает надежность и долговечность зонда, а за счет возможности измерения более широкого круга образцов с развитыми поверхностями расширяет функциональные возможности.

Закрепление зонда на одном из плечей кварцевого резонатора под углом к его продольной оси позволяет устанавливать кварцевый резонатор по продольной оси трехкоординатного сканера в максимально жесткой конструкции, обеспечить жесткость крепления зонда к кварцевому резонатору, и при этом обеспечить существенный наклон кончика зонда к нормали к поверхности.

Использование достаточно гибкого зонда позволяет закрепить зонд на кварцевом резонаторе в основном параллельно его продольной оси с возможностью изгиба кончика зонда, обеспечить жесткость крепления зонда к кварцевому резонатору, и при этом обеспечить наклон кончика зонда к поверхности образца.

Использование изначально изогнутого зонда позволяет закрепить зонд на кварцевом резонаторе в основном параллельно его продольной оси с изгибом кончика зонда, обеспечить жесткость крепления зонда к кварцевому резонатору, и при этом обеспечить существенный наклон кончика зонда к поверхности образца.

Закрепление кварцевого резонатора под углом, не равным 90°, к поверхности образца, позволяет закрепить жесткий прямой зонд параллельно продольной оси кварцевого резонатора.

Закрепление зонда таким образом, чтобы кончик зонда образовывал наклон к поверхности образца, позволяет снабдить устройство вспомогательным зондом.

ЛИТЕРАТУРА

1. Патент RU 2358340, опубл. 10.06.2009.

2. Зондовая микроскопия для биологии и медицины. В.А.Быков и др., Сенсорные системы, т.12, №1, 1998 г., с.99-121.

3. В.Миронов. Основы сканирующей зондовой микроскопии. Техносфера, М., 2004 г., 143 с.

Сканирующий зондовый микроскоп, включающий платформу с блоком предварительного сближения, пьезосканер, на котором установлен кварцевый резонатор, расположенный с возможностью взаимодействия с зондом, отличающийся тем, что кварцевый резонатор содержит два плеча разной длины и расположен под углом, не равным 90° к поверхности образца, а зонд закреплен на длинном плече.



 

Похожие патенты:

Изобретение относится к области приборостроения, преимущественно к измерительной технике. .

Изобретение относится к области приборостроения и может быть использовано в измерительных акустических системах. .

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. .

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа (СЗМ) рельефа, линейных размеров и других характеристик объектов, преимущественно в биологии, с одновременным оптическим наблюдением объекта в проходящем через объект свете.

Изобретение относится к измерительной технике и может быть использовано для контроля и изучения свойств наклонных участков структурных элементов, находящихся на подложке.

Изобретение относится к области электронной микроскопии, а точнее к устройствам, обеспечивающим калибровку предметных столиков растровых электронных микроскопов в широком диапазоне перемещений.

Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности.

Способ может быть использован для исследования, например, трубопроводов, работающих в экстремальных условиях атомных электростанций, нефте- и газоперерабатывающих заводов. Сущность изобретения заключается в том, что в способе подготовки и измерения поверхности крупногабаритного объекта сканирующим зондовым микроскопом, включающем формирование измерительной поверхности механическим способом и первое исследование измерительной поверхности, дополнительно на крупногабаритном объекте формируют установочную область, на которою устанавливают сканирующий зондовый микроскоп. Технический результат - повышение точности измерений, расширение их функциональных возможностей. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области сканирующей зондовой микроскопии. Способ подвода зонда к образцу для сканирующего зондового микроскопа, предполагающий выполнение этапов, в процессе которых происходит чередование режима работы двигателя подвода с полностью втянутым сканером и режима выдвижения сканера с неработающим двигателем подвода до тех пор, пока на одном из этапов выдвижения сканера острие зонда не окажется вблизи образца. При этом на этапах выдвижения сканера сканером управляет цепь обратной связи, рабочая точка цепи обратной связи на каждом этапе выдвижения сканера постепенно изменяется, начиная с величины входного сигнала цепи обратной связи в момент начала этого этапа, таким образом, чтобы обратная связь, выдвигая сканер, начиная с полностью втянутого состояния, отрабатывала эти изменения до тех пор, пока сканер не окажется полностью выдвинутым или острие зонда не окажется вблизи образца. При этом в качестве зонда используют силовой зондовый датчик с оптической системой регистрации, на протяжении процесса подвода происходит возбуждение колебаний консоли силового зондового датчика, и близость острия зонда к образцу определяется по резкому скачку сигнала фазы колебаний. Технический результат - уменьшение степени разрушительного воздействия на исследуемый образец, повышение точности измерений. 9 з.п. ф-лы, 7 ил.

Многофункциональный сканирующий зондовый микроскоп содержит: основание (1); блок сближения (3), мобильно установленный на основании (1); пьезосканер (4), расположенный на блоке предварительного сближения (3); держатель объекта (5), расположенный на пьезосканере (4); образец (6), содержащий зону измерений (М) и закрепленный с помощью держателя объекта (5) на пьезосканере (4); платформу (9), закрепленную на основании (1) напротив образца (6); анализатор, установленный на платформе (9) и содержащий первую измерительную головку (13), обращенную к образцу (6) и адаптированную для зондирования зоны измерений (М) образца (6). Также микроскоп содержит первую (10) и вторую (11) направляющие, закрепленные на платформе (9). Анализатор содержит вторую измерительную головку (16), обращенную к образцу (б) и адаптированную для зондирования зоны измерений (М) образца (6). Первая (13) и вторая (16) измерительные головки мобильно установлены соответственно на первой (10) и второй (11) направляющих. Технический результат - обеспечение возможности быстрой смены режимов измерения. 14 з.п. ф-лы, 14 ил.

Зонд для сканирующего зондового микроскопа включает размещенный на острие кантилевера зарядовый сенсор в виде одноэлектронного транзистора, выполненного в слое кремния, допированном примесью до состояния вырождения, структуры кремний-на-изоляторе (КНИ) на подложке. Транзистор имеет два подводящих электрода, размещенные под острым углом друг к другу в плоскости подложки, сходящиеся концы которых контактируют с проводящим островом транзистора и выполняют функции истока и стока, и средний электрод заостренной формы, размещенный в зоне схождения подводящих электродов, острие которого направлено в сторону проводящего острова с образованием емкостного зазора с последним, выполняющий функции затвора транзистора. Перемычки в зоне контакта концов подводящих электродов с островом транзистора выполнены резистивными с возможностью образования туннельного перехода, ребро подложки скошено, а остров транзистора, перемычки и примыкающие к скосу оконечные части подводящих и среднего электродов выступают за пределы слоя изолятора. Технический результат состоит в исключении паразитного шумового влияния подвижных зарядов, сосредоточенных в слое изолятора пластины КНИ, увеличение зарядовой чувствительности зондового устройства. 4 з.п. ф-лы, 6 ил.

Тестовая структура состоит из основания, содержащего приповерхностный слой. Приповерхностный слой имеет рельефную ячеистую структуру с плотной упаковкой. Соседние ячейки имеют общую стенку, а каждая ячейка является как минимум пятистенной. Стенки каждой ячейки расположены вертикально, а верхние кромки стенок ячеек имеют вогнутую форму. Тестовая структура содержит острия, имеющие радиус кривизны вершин нанометрового диапазона. Острия выполнены соединением в узловых местах трех верхних кромок стенок различных ячеек. Острия при вершинах выполнены из оксида титана. Приповерхностный слой основания выполнен из титана. Основание может быть выполнено из титана. Основание также может быть выполнено в виде подложки, на которой расположена пленка титана, содержащая приповерхностный слой основания. Технический результат - повышение воспроизводимости в определении радиуса кривизны острия иглы кантилевера. 1 з.п. ф-лы, 2 ил.

Система обнаружения зонда (74) для использования со сканирующим зондовым микроскопом содержит систему обнаружения высоты (88) и систему обнаружения отклонения (28). Когда сканируется поверхность образца, свет, отраженный от зонда (16) микроскопа, разделяется на две составляющие. Первая составляющая (84) анализируется системой обнаружения отклонения (28) и используется в системе обратной связи, которая поддерживает среднее отклонение зонда по существу постоянным во время сканирования. Вторая составляющая (86) анализируется системой обнаружения высоты (88), от которой получается указание высоты зонда над фиксированной контрольной точкой и посредством этого изображение поверхности образца. Технический результат - повышение функциональности, улучшение качества изображения. 7 н.з. и 30 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения состояния поверхности космического аппарата, а также других поверхностей в нанометровом диапазоне. Сканирующий зондовый микроскоп, совмещенный с космическим аппаратом, содержит измерительный блок, включающий зондовый модуль с, по меньшей мере, одним зондом, сканирующее устройство и блок сближения зондового модуля с, по меньшей мере, одной зоной измерения, а также блок управления, имеющий возможность взаимодействия с измерительным блоком. Измерительный блок расположен снаружи космического аппарата, включающего герметичный корпус, и сопряжен с ним посредством соединительного элемента. Зона измерения расположена на наружной поверхности герметичного корпуса. Технический результат изобретения заключается в расширении функциональных возможностей. 10 з. п. ф-лы, 10 ил.

Устройство предназначено для проведения зондовых измерений на объектах, имеющих сложную форму, например на трубах в нефтяной и атомной отраслях промышленности. Сущность изобретения заключается в том, что в сканирующий зондовый микроскоп для исследования крупногабаритных объектов, включающий измерительную головку с пьезосканером и зондом, сопряженными с блоком анализа и управления, модуль сближения, три опорные стойки, установленные на измерительной головке, и привод измерительной головки, включенный в модуль сближения, дополнительно введена платформа, на которой установлен двухкоординатный стол, сопряженный с корпусом, установленным на нем с возможностью вращения, на котором установлен модуль сближения, в котором закреплена измерительная головка с пьезосканером и зондом. Измерительная головка содержит две пружинные опоры, а платформа - модули крепления к объекту. Технический результат - расширение функциональных возможностей устройства. 6 з. п. ф-лы, 2 ил.
Изобретение относится к области медицины, а именно к лабораторной диагностике, и может быть использовано для определения простат-специфического антигена (ПСА) в жидкой среде. Для этого жидкая среда взаимодействует с сенсором, выполненным в виде плоского гибкого кантилевера. При этом, по меньшей мере, одна из плоскостей кантилевера содержит диоксид кремния и способен отражать световое излучение. Одна из плоскостей покрыта бычьим сывороточным альбумином. Другая содержит два слоя, один из которых ковалентно связан с поверхностью кантилевера, а другой содержит химически связанные с предыдущим слоем молекулы антитела, специфически распознающего простат-специфический антиген. Далее определяют изменения изгиба кантилевера путем освещения поверхности кантилевера лучом света и измерения отклонения луча света, отраженного от поверхности кантилевера. При этом в качестве сенсора используют кантилевер, у которого слой, ковалентно связанный с поверхностью кантилевера, выполнен из 3-аминопропилсилатрана. Изобретение обеспечивает проведение качественного и количественного анализа жидких сред на содержание ПСА и повышает чувствительность определения ПСА до 0,1 нанограмм/миллилитр. 5 пр.

Система (29) обнаружения динамического зонда предназначена для использования со сканирующим зондовым микроскопом такого типа, который включает в себя зонд (18), который перемещается периодически к поверхности образца и от поверхности образца. При сканировании поверхности образца интерферометр (88) формирует выходной сигнал высоты, указывающий разность хода между светом, отраженным от зонда (80a, 80b, 80c), и опорным лучом высоты. Устройство обработки сигнала отслеживает сигнал высоты и получает измерение для каждого цикла колебаний, которое указывает на высоту зонда. Система обнаружения может также включать в себя механизм обратной связи, который действует для поддержания среднего значения параметра обратной связи на заданном уровне. Технический результат - увеличение точности и скорости сбора данных изображения. 2 н.з. и 37 з. п. ф-лы, 6 ил.
Наверх