Способ геоэлектроразведки

Изобретение относится к электроразведочным исследованиям - зондирование методом переходных процессов, входящих в область импульсных индуктивных методов электроразведки. Технический результат: повышение информативности сигнала в процессе выделения слабоконтрастных особенностей строения разреза при снижении трудозатрат на проведение измерений. Сущность: способ основан на измерениях ЭДС переходных процессов в незаземленных совмещенных квадратных контурах разных размеров, определяемых в зависимости от глубины исследования с последующим определением индукционных и поляризационных параметров исследуемого разреза горных пород. Совмещенные контуры выбирают двух размеров: L1 - большего размера и L2 - меньшего размера, и измерения осуществляют в микромиллисекундном интервале времени, одинаковом для каждого размера контуров. Результаты измерений ЭДС с контура большего размера пересчитывают к контуру меньшего размера. Значения ЭДС, полученные в результате пересчета, сравнивают с измеренными значениями ЭДС, полученными с контура меньшего размера. При совпадении указанных сигналов делают вывод об отсутствии индукционно вызванной поляризации. При отсутствии совпадения указанных сигналов делают вывод о наличии вызванной поляризации. 1 ил.

 

Изобретение относится к электроразведочным исследованиям - зондирование методом переходных процессов, входящих в область импульсных индуктивных методов электроразведки, применяемых при решении различных задач геоэлектрики: инженерных, структурных, экологических, поисковых, в том числе нефтегазопоисковых и разведочных задач.

Известен способ геоэлектроразведки, в котором осуществляется количественное разделение эффектов электромагнитной индукции и вызванной поляризации (Пат. РФ №2399931, приор. 23.10.2008, опубл. 20.09.2010). В этом способе измеряют процесс становления поля над поляризующейся средой дипольно-осевой установкой при пропускании импульсов тока. Формируют несколько функций так, что они по-разному зависят от полей электромагнитной индукции и вызванной поляризации. Одну из этих функций формируют так, чтобы повысить соотношение электромагнитной индукции и вызванной поляризации по сравнению с DU(t)=ΔU(t)/ΔU0, где ΔU0 - разность потенциалов ΔU, измеренная во время пропускания тока. Вторую из функций формируют так, чтобы понизить указанное соотношение по сравнению с DU(t). Третью из функций формируют как комбинацию временных и пространственных производных поля становления. Осуществляют инверсию одновременно для всех функций, включая DU(t), полученных в одной точке записи. Получают геоэлектрическую модель разреза среды. В полученной модели обнуляют поляризуемость для всех слоев и путем решения прямой задачи рассчитывают поле электромагнитной индукции. В той же модели обнуляют волновые числа и путем решения прямой задачи рассчитывают поле гальванической составляющей вызванной поляризации IP. Оценивают изменение гальванической составляющей по площади и осуществляют ее геологическую интерпретацию.

Этот способ характеризуется возможностью формирования в процессе измерений функций, по-разному зависящих от полей электромагнитной индукции и вызванной поляризации, и в процессе инверсии этих функций получают геоэлектрическую модель среды. При этом поле вызванной поляризации вызывается гальваническим способом, что делает практически невозможным проведение измерений в зимнее время.

Недостатком предложенного способа является возможность выделения эффектов вызванной поляризации только на поздних стадиях становления поля, то есть в миллисекундном-секундном диапазоне. Этот диапазон не соответствует электродинамическим процессам над нефтяными залежами в осадочных породах, которые оканчиваются в миллисекундном диапазоне времени. С другой стороны регистрируемая вызванная поляризация является в самой поздней стадии эффектом от суммарной поляризации всех вызванных поляризаций от залежей на всех этажах. Поэтому по таким измерениям нельзя определить поляризацию залежей на каждом вышележащем стратиграфическом этаже.

Наиболее близким к предлагаемому способу является способ электроразведки по авт. св. 1125579 (приор. 10.02.1983, опубл. 23.11.1984). Способ основан на измерениях ЭДС переходных процессов в незаземленных контурах и предусматривает повторение измерений при заданных размерах незаземленных контуров, по результатам измерений определяют параметры электропроводности и поляризуемости горных пород. Для повышения точности определения исследуемых свойств, первое измерение проводят с незаземленным контуром, размер которого выбирают в пределах от 0,1 до 1,0 требуемой глубины исследования, определяют наличие или отсутствие изменений знака производной сигнала, затем при смене знака производной повторяют измерения, увеличивая каждый раз размер незаземленного контура в 2-5 раза до тех пор, пока при очередном размере незаземленного контура смены знака производной не будет, а при отсутствии смены знака производной при первоначальном размере незаземленного L контура производят повторные измерения с уменьшением размеров незаземленного контура каждый раз в 1,5-2 раза до тех пор, пока на переходном процессе не будет зафиксирована смена знака производной.

Недостатками данной методики являются большие трудозатраты, связанные с тем, что для выявления поляризационных процессов требуется проводить измерения с несколькими размерами установок, уменьшающимися в 1,5-2 раза до тех пор, пока на переходном процессе не будет зафиксирована смена знака производной сигнала. При этом нет необходимости добиваться смены знака производной, достаточно установить наличие немонотонности в спаде первой производной сигнала и последующих производных.

Техническая задача, решаемая посредством предлагаемого изобретения, заключается в повышении информативности сигнала в процессе выделения слабоконтрастных особенностей строения разреза при снижении трудозатрат на проведение измерений.

Указанная задача решается тем, что в способе геоэлектроразведки, основанном на измерениях ЭДС переходных процессов в незаземленных совмещенных квадратных контурах (приемно-генераторных петлях) разных размеров, определяемых в зависимости от глубины исследования, последующее определение индукционных параметров исследуемого разреза (удельной электропроводности, продольной проводимости и мощности слоя горных пород) и поляризационных параметров, в отличие от прототипа, совмещенные контуры выбирают двух размеров: L1 - большего размера и L2 - меньшего размера, и измерения осуществляют в микро-милиссекундном интервале времени, одинаковом для каждого размера контуров. Результаты измерений ЭДС с контура большего размера пересчитывают к контуру меньшего размера по формуле:

Z L2 = Z L1 F ( L 1 L 2 k 1 ) F ( k 1 ) ( 1 )

где ZL1 - сигнал ЭДС контура большего размера, B/A,

ZL2 - сигнал ЭДС контура меньшего размера, B/A,

L1 - сторона контура большего размера, м,

L2 - сторона контура меньшего размера, м,

k - безразмерный параметр, изменяющийся от 0 до бесконечности.

Значения ЭДС, полученные по формуле (1), сравнивают с измеренными значениями ЭДС, полученными с контура меньшего размера, при совпадении указанных сигналов делают вывод об отсутствии индукционно вызванной поляризации, а при отсутствии совпадения указанных сигналов делают вывод о наличии этой поляризации.

На фигуре показаны результаты приведения измеренных сигналов ЭДС к одному размеру контуров над плоскослоистым нефтеносным разрезом:

1 - приведенные значения ЭДС с большей петли L1 контура к меньшей петле L2,

2 - измеренные значения с петли L2.

Способ осуществляют следующим образом.

В генераторную петлю посылают питающий ток в импульсном режиме, который создает первичное электромагнитное поле и после выключения тока в паузах между импульсами измеряют вторичные электромагнитные поля, принимаемые приемной петлей в очень малые микро-миллисекундные интервалы времени. Интервал времени выбирают от 2 мкс до 500 мс. Совмещенные петли перемещают по профилю и в каждом пункте регистрируют переходный процесс - зависимость ЭДС от времени при различных временах задержек измерительной аппаратуры. При дальнейших расчетах величину ЭДС нормируют на величину питающего тока в генераторном контуре.

Регистрируемый сигнал ЭДС является суммарным процессом от чисто индукционного процесса спада, связанного с электродинамическими процессами в среде и поляризационного процесса, вызванного вторичными индукционными токами. Для выявления поляризационных процессов в исследуемом процессе спада ЭДС достаточно провести измерения совмещенными контурами двух размеров - L1, L2. Размеры контуров определяются требуемой глубиной исследования. Основными необходимыми условиями для измерений являются: использование одного временного диапазона при измерениях с разными размерами совмещенных контуров, измерения с контуром большего размера L1 выполняются в пределах меньшего контура L2.

При использовании такой технологии измерений процесс спада ЭДС можно разделить на индукционную и поляризационную составляющие. Результаты измерений ЭДС с контура большего размера приводят, т.е. пересчитывают к контуру меньшего размера по аналитической формуле

Z L2 = Z L1 F ( L 1 L 2 k ) F ( k ) , ( 1 )

где ZL1 - сигнал ЭДС контура большего размера, B/A,

ZL2 - сигнал ЭДС контура меньшего размера, B/A,

L1 - сторона контура большего размера, м,

L2 - сторона контура меньшего размера, м.

Формула (1) получена из условий:

k 1 ( t ) = 2 L 1 [ h ( t ) + t μ S ] и k 2 = 2 L 2 ( h ( t ) + t μ S )

L 2 k 2 2 = h + t μS и L 1 k 1 2 = h + t μS

Z L1 = F ( k 1 ) S и Z L2 = F ( k 2 ) S

Z L2 = Z L1 F ( k 2 ) F ( k 1 )

где t - время регистрации в секундах (c) от момента выключения тока в квадратном контуре,

h(t) - расстояние от поверхности до проводящей плоскости, м;

S - продольная проводимость плоскости, эквивалентная разрезу по сигналу в момент времени t, расположенная на глубине h(t), См;

µ=4·π·10-7 - магнитная проницаемость вакуума, Гн/м.

Безразмерный параметр к определяют из уравнения:

ϕ ( t ) = ϕ ( k ) ( 2 ) ,

где ϕ ( t ) = μL Z' ( t ) Z 2 ( t ) , ϕ ( k ) = 2 F' ( k ) F 2 ( k ) ,

Z'(t)-производная по времени сигнала Z(t), B/(A·c);

F'(k) - производная функции F(k) по параметру k, безразмерная величина;

Z2(t) - величина Z(t) в квадрате (B/A)2;

F2(k) - безразмерная величина F(k) в квадрате;

µ=4·π·10-7 - магнитная проницаемость вакуума, Гн/м.

F(k) рассчитывается по формуле:

F ( k ) = 4k π ( 1 k + 1 k 2 + 1 + 1 + k 2 k 2 2 + k 2 k 2 + 1 ) ( 3 )

Значения ЭДС, полученные по формуле (1), сравнивают с измеренными значениями ЭДС, полученными с приемной петли меньшего размера. При отсутствии индукционно вызванной поляризации, поскольку геоэлектрика для любых размеров контуров одинакова, то приведенные и измеренные сигналы будут совпадать, а при наличии поляризации - будут различаться. Таким образом определяют наличие влияния вызванной поляризации на индукционные переходные процессы.

Пример выполнения измерений представлен на прилагаемой фигуре, где 1 - приведенные значения сигнала Z(t) с установкой L=1000 м; 2 - измеренные значения сигнала с установкой L=500 м.

На фигуре видно, что в зоне времени от 32 до 106 мкс и в диапазоне от 154 до 5632 мкс наблюдаются несовпадения двух сигналов, что свидетельствует о влиянии вызванной поляризации в определенных интервалах. В остальных временных диапазонах сигналы (приведенный и измеренный) совпадают, что свидетельствует о том, что в них отсутствует влияние вызванной поляризации.

Таким образом, устанавливается наличие влияния вызванной поляризации в интервале регистрации электродинамических процессов (микро-миллисекундный интервал времени), связанной, в том числе, с нефтенасыщением.

Способ геоэлектроразведки, основанный на измерениях ЭДС переходных процессов в незаземленных совмещенных квадратных контурах разных размеров, определяемых в зависимости от глубины исследования, и включающий последующее определение индукционных и поляризационных параметров горных пород, отличающийся тем, что совмещенные квадратные контуры выбирают двух размеров: L1 - большего размера и L2 - меньшего размера, и измерения осуществляют в микро-милиссекундном интервале времени, одинаковом для каждого размера контуров, результаты измерений ЭДС с контура большего размера пересчитывают к контуру меньшего размера по формуле
Z L2 = Z L1 F ( L 1 L 2 k ) F ( k ) , ( 1 )
где ZL1 - сигнал ЭДС контура большего размера, B/A;
ZL2 - сигнал ЭДС контура меньшего размера, B/A;
L1 - сторона контура большего размера, м;
L2 - сторона контура меньшего размера, м;
k - безразмерный параметр, изменяющийся от 0 до бесконечности,
далее значения ЭДС, полученные по формуле (1), сравнивают с измеренными значениями ЭДС, полученными с контура меньшего размера, и при совпадении указанных сигналов делают вывод об отсутствии индукционно вызванной поляризации, а при отсутствии совпадения указанных сигналов делают вывод о наличии этой поляризации.



 

Похожие патенты:

Изобретение относится к геологоразведке и может быть использовано для поиска месторождений нефти и газа путем выделения аномальных зон вызванной поляризации. .

Изобретение относится к подводным измерительным системам. .

Изобретение относится к электроизмерительной технике и может быть использовано для измерения составляющих плотности электрического тока в проводящих средах. .

Изобретение относится к области электроразведки, в частности к методам вызванной поляризации (ВП), и может быть использовано для поиска полезных ископаемых в исследуемом геологическом разрезе на основе определения коэффициента вызванной поляризации.

Изобретение относится к области пассивной локации и может быть использовано при измерении параметров электромагнитного поля Земли; при электромагнитном мониторинге землетрясений для определения стадии развития геодинамической обстановки; в геофизической разведке полезных ископаемых и инженерной геологии; при диагностике напряженно-деформированного состояния инженерных и геологических объектов.

Изобретение относится к магнитным системам обнаружения, включающим в себя электромагнитные системы обнаружения. .

Изобретение относится к области геофизических исследований и может быть использовано при изучении геоэлектрического разреза и нахождения аномальных проводящих объектов.

Изобретение относится к геологоразведке методами становления электромагнитного поля. .

Изобретение относится к геофизике и предназначено для поисков залежей углеводородов как на шельфе Мирового океана, так и на суше. .

Изобретение относится к подземной электромагнитной разведке. Сущность: в способе используют создающий наведенный ток генератор 2, который циклически формирует наведенный ток. Повторяют наблюдения магнитного поля во множестве точек измерения на земной поверхности с использованием устройства 1 измерения магнитного поля, которое включает в себя магнито-импедансное устройство, имеющее магнитную аморфную структуру, и стержневую часть сердечника, которая направляет магнитное поле к магнитной аморфной структуре и расположена в продольном направлении относительно магнитной аморфной структуры. Корректируют опорное значение данных наблюдений так, что данные наблюдений попадают в заданный диапазон, на основании значения, получаемого интегрированием данных наблюдений за период времени, в течение которого интегральное значение сигнала магнитного поля, основанного на выходном токе от создающего наведенный ток генератора, равно нулю. Сохраняют данные наблюдения магнитного поля, включающие в себя сигнал магнитного поля, основанный на выходном токе от создающего наведенный ток генератора 2. Вычисляют распределения удельных сопротивлений в нижних слоях грунта на основании данных наблюдений, соответствующих каждой из множества точек измерения. 7 з.п. ф-лы, 14 ил.

Изобретение относится к емкостному обнаружению проводящих объектов. Сущность: датчик (100) для емкостного обнаружения присутствия проводящих объектов (BOD1) содержит первый сигнальный электрод (10a), второй сигнальный электрод (10b) и структуру (20) базового электрода. Расстояние (s3) между первым сигнальным электродом (10a) и вторым сигнальным электродом (10b) меньше или равно 0,2 ширины (s1) упомянутого первого сигнального электрода (10a). По меньшей мере часть структуры (20) базового электрода находится между первым сигнальным электродом (10a) и вторым сигнальным электродом (10b). Технический результат: повышение чувствительности, увеличение расстояния считывания, нечувствительность к ориентации объекта. 4 н.п. ф-лы, 17 ил.

Изобретение относится к разведке нефтяных месторождений. Сущность: способ предусматривает следующие шаги: выставляют электроды в рабочей области в виде решетки из малых ячеек, все станции для измерения двух компонентов (Ех, Еy) электрического поля записывают синхронно и с одинаковыми настройками временные ряды данных естественного электромагнитного поля. Записанные данные обрабатывают, чтобы устранить помехи и получить очищенные от помех данные. Для краевых и центральной точки к величине для данной точки прибавляют одинаковый компонент с двух смежных точек, чтобы вычислить среднее значение изменяющихся во времени характеристик электрического поля для всех точек наблюдения. Для угловых точек при вычислении среднего значения в качестве смежных берут одноименные компоненты электрического поля для двух точек, расположенных по направлению ячейки, причем компоненты электрического поля, полученные на максимальном удалении, принимают в качестве новых значений электрического поля. В результате обработки данных наблюдения на предшествующих этапах получают новые временные ряды данных, в которых устранены шумы и гальванический эффект, и эти данные обрабатывают известным способом для вычисления кажущихся сопротивлений и фазовых кривых. Технический результат: повышение точности и надежности. 9 з.п. ф-лы, 5 ил.

Заявляемая группа изобретений относится к области разведочной геофизики и предназначена для прогнозирования залежей углеводородов при зондировании морского дна при глубинах моря более 500 м. Предлагается аппаратурный комплекс (АК), содержащий блок измерения сигналов, включающий буксируемую за судном приемную многоэлектродную линию с приемными неполяризующимися электродами, буи для фиксации приемных линий, установленный на судне, приемо-индикатор Global Position System (GPS) и процессор. Причем АК содержит дополнительно телеметрические измерительные модули, способные производить оцифровку сигналов с пар приемных электродов по всем разносам секции, дополнительные приемо-индикаторы Global Position System, установленные на буях. Также предложен способ морской электроразведки, осуществляемый посредством данного аппаратурного комплекса. Сигналы на парах приемных электродов приемной линии измеряют одновременно во временном и частотном диапазонах как во время токовых импульсов , так и во время пауз между ними. Инверсия данных осуществляется также одновременно в частотном и временном диапазонах. Технический результат: повышение точности разведочных данных. 2 н. и 6 з.п. ф-лы, 12 ил.

Изобретение относится к области геофизики и может быть использовано для определения удельной электропроводности грунтов, скальных пород и других тел на и под поверхностью земли. Заявлен способ и система для геофизической разведки, которые включают измерение по нескольким осям в нескольких местах в области разведки компонент магнитного поля низкой частоты, исходящего от встречающихся в природе электромагнитных источников, с использованием первой системы датчиков, измерение по нескольким осям компонент магнитного поля низкой частоты, исходящего от встречающихся в природе электромагнитных источников, с использованием второй системы датчиков и прием информации относительно компонент магнитного поля, измеренных первой системой датчиков и второй системой датчиков. Вычисление параметров из полученной информации, которые не зависят от вращения первой системы датчиков или второй системы датчиков относительно любой ее оси. Технический результат: повышение точности разведочных данных. 3 н. и 20 з.п. ф-лы, 22 ил.

Изобретение относится к области морской электроразведки и может быть использовано при поисках углеводородов. Сущность: электрод состоит из запрессованных в диэлектрический стакан (3) твердых графитовых стержней (1). Графитовые стержни (1) покрыты деполяризатором (4) и отделены от внешней среды полимерной проницаемой мембраной (6). При этом в качестве деполяризатора (4) применяют фракцию графитового порошка с грануляцией от 1 мкм до 10 мкм. Технический результат: повышение точности информации о геофизических характеристиках исследуемой среды. 1 з.п. ф-лы, 2 ил.

Предложен cпособ контроля вариаций магнитного поля Земли. В способе измеряют напряженность магнитного поля, создают регулируемое компенсирующее магнитное поле, противоположное по направлению к измеряемому, запоминают величину компенсирующего поля при полной компенсации в установочный момент времени. При последующих измерениях вычитают из измеряемого поля запомненную величину и разницу интерпретируют как вариацию магнитного поля. В способе дополнительно создают стабильное градиентное магнитное поле, измеряют величину градиента в установочный момент времени и при последующих измерениях, корректируют передаточную характеристику измерительного устройства по результатам изменения градиента магнитного поля в сравнении с величиной, полученной в установочный момент времени. Техническим результатом является повышения объективности контроля магнитного поля Земли. 2 ил.

Предложен способ магнитной навигации по геомагнитным разрезам. В способе навигация осуществляется не путем сопоставлений наблюденного поля с эталонным, а по корреляции по этим полям построенных геомагнитных разрезов. Аномалии, которые созданы объектами, лежащими выше уровня поверхности земли или дна моря, считаются помехой и не участвуют в процессе навигации. Также исключаются аномалии, которые располагаются глубже заданного уровня, как не имеющие четкой формы. Техническим результатом является повышение надежности навигации.

Изобретение относится к области геофизики и может быть использовано для прогнозирования скрытых рудных полезных ископаемых, связанных с гранитоидами. Сущность: для перспективных рудоносных участков на базе данных по физическим свойствам пород, слагающих модельный разрез, и материалов мелкомасштабных гравиразведочных и магниторазведочных съемок осуществляют построение «нулевой» глубинной модели. «Нулевую» глубинную модель выполняют в виде глубинных разрезов, на которых всем выявленным телам присваивают соответствующие интервалы изменений плотностных и магнитных характеристик. Затем путем решения серии обратных задач осуществляют в интерактивном режиме подбор глубинной модели. В процессе подбора глубинной модели меняют как форму отдельных тел модели, так и их физические параметры (плотность и намагниченность) до практически полного совпадения расчетных гравитационного и магнитного полей с наблюденными. Полученное неоднородное распределение плотности пород и намагниченности интерпретируют, используя эталонные генетические модели рудно-магматических систем, с построением геолого-геофизических разрезов. На геолого-геофизических разрезах по резкой смене или по смещению изолиний полей плотности и намагниченности выделяют крупные разломы и области низкоплотных немагнитных пород как остаточные очаги котектических гранитов (источников флюидов, рудного вещества и энергии), а отходящие от них апофизы оконтуривают как прогнозируемые зоны рудоотложения. Технический результат: прогнозирование с высокой степенью достоверности скрытого оруденения, связанного с гранитоидами. 8 ил.
Изобретение относится к области магниторазведки и может быть использовано при поиске месторождений углеводородов в молодых осадочных бассейнах. Сущность: проводят аэромагнитную, а также наземную магнитную или гидромагнитную съемки нефтегазоносной площади. Выявляют аномалии локальной составляющей остаточного магнитного поля. Выделяют замкнутые отрицательные аномалии. Оценивают конфигурацию и плотность изолиний отрицательных замкнутых аномалий локальной составляющей остаточного магнитного поля. Определяют углы линий наклона аномального магнитного поля по профилям, проходящим через замкнутые изолинии отрицательной составляющей локального магнитного поля. Технический результат: повышение эффективности поиска месторождений углеводородов.
Наверх