Способ контроля провиса провода линии электропередачи



Способ контроля провиса провода линии электропередачи
Способ контроля провиса провода линии электропередачи

 


Владельцы патента RU 2494511:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") (RU)

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком температуры измерение провиса и отклонение провода по горизонтали поперек линии электропередачи. Осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на ультразвуковые приемопередатчики и по времени распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости. Техническим результатом является повышение точности определения провиса. 2 ил., 1 табл.

 

Изобретение относится к электроэнергетике и может быть использовано для контроля провиса провода высоковольтных воздушных линий электропередачи и для измерения температуры проводов линии.

Известны бесконтактные датчики гололеда [авт.св. СССР 1035708, МКИ Н02G 07/16, 1983]. Устройство содержит индукционный датчик магнитного поля (создаваемого током, текущим по проводам), располагаемый под проводами линии, и передающее устройство. Недостатком данного устройства является необходимость в высокой чувствительности элементов, регистрирующих магнитное поле, и зависимость от таких параметров, как величина тока в проводах, высота пролета, температура провода.

Наиболее близким к изобретению, принятым за прототип, является сигнализатор массы гололедных отложений и окончания плавки гололеда (Патент РФ №RU 2220485, МПК Н02G 7/16, 03.06.2002). Отличием способа является то, что сигнализатор содержит передающее устройство, чувствительный элемент с жестко закрепленной в точке монтажа провода к гирлянде изоляторов осью вращения друг относительно друга двух его частей, каждая из которых снабжена штангой, жестко прикрепленной концом к проводу узлами крепления, датчик температуры провода, источник питания, соединительные провода, при помощи которых чувствительный элемент, датчик температуры и передающее устройство подключены к источнику питания. Сигнализатор работает следующим образом. При отсутствии гололедных отложений угол ос между штангами является исходным. При появлении гололедных отложений на проводах угол α уменьшается (за счет увеличения провиса провода). По изменению угла α и по измеренному значению температуры провода расчетным путем определяют массу гололедных отложений на проводах.

Недостатком данного сигнализатора является то, что изменение угла α между штангами при изменении длины провода весьма мало, что требует большой точности измерения угла, и это приводит к малой надежности работы данного сигнализатора. Например: при длине пролета 230 м на воздушной ЛЭП 110 кВ, и при изменении провиса провода на 1 м (расчетная величина для провода АС-120 и гололеда толщиной 1,5 см), изменение угла α между штангами будет равно: Δα~arctg(1/115)~0,5 градуса.

Задачей изобретения является повышение точности определения провиса провода за счет того, что в предлагаемом способе непосредственно измеряется сама величина провиса провода (расстояние по вертикали от низшей точки провода до точки подвеса провода).

Технический результат достигается тем, что в способе контроля провиса провода линии электропередачи, включающем размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства, при этом посредством подвесного датчика измеряют и передают в контрольное устройство измеренные значения температуры провода, а посредством контрольного устройства осуществляют передачу измеренных данных, согласно заявляемому изобретению, посредством контрольного устройства совместно с подвесным датчиком температуры, осуществляют, при помощи первого и второго ультразвуковых приемопередатчиков, расположенных в контрольном устройстве и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонения провода по горизонтали поперек линии электропередачи, для чего при помощи подвесного датчика температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на первый и второй ультразвуковые приемопередатчики, и по временам распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости, поперечной линии электропередачи, при этом для определения скорости звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому.

Необходимость измерения провиса провода обусловлена тем, что провис провода является чувствительным параметром, который зависит от температуры провода, ветровой и гололедной нагрузок на провода ЛЭП.

При высокой температуре окружающей среды (летом), и при высокой токовой нагрузке на линию электропередачи, провода сильно нагреваются и, за счет температурного расширения металла проводов растягиваются, что приводит к большому провису проводов. Большой провис проводов уменьшает расстояние от провода до земли, что может приводить к пробою изоляционного промежутка (например: на проезжающий под линией электропередачи транспорт).

В зимнее время, гололедные отложения на линиях электропередачи приводят к дополнительной весовой нагрузке на провода линии, что растягивает провода линии и увеличивает провис провода, что может привести к обрыву проводов. Соответственно по измеренным значениям провиса провода и температуры провода - можно оценить величину гололедной нагрузки на провода линии, толщину гололедных отложений. Кроме этого, большой провис провода уменьшает расстояние провода до земли, что увеличивает угрозу пробоя изоляционного промежутка провод - земля.

При наличии сильного ветра, дующего поперек линии электропередачи, на провода действует дополнительная растягивающая сила (ветровая нагрузка), что растягивает провода линии и увеличивает провис провода, и это может создавать угрозу разрыва провода.

Рассмотрим провис провода при различных условиях (Крюков К.П., Новгородцев Б.П. «Конструкции и механический расчет линий электропередачи»).

Таблица 1.
Величина провиса провода при различных условиях (провод АС-120, подвешенный на воздушной ЛЭП 110 кВ с пролетом 230 м)
Температура, °C Гололед, см (толщина стенки) Провис провода, м
+40 - 7,2
-5 - 6
-5 1,5 7,3
-40 - 5

Из таблицы 1 видно, что величина провиса провода изменяется в широких пределах: от 5 до 7,2 метра. Это связано с двумя причинами.

Во-первых, для линий электропередачи высокого напряжения длина пролета (расстояние между ближайшими опорами) довольно велика (сотни метров). При большой длине пролета, температурные изменения длины провода приводят к большому изменению провиса провода.

Во-вторых, сталеалюминевые провода, применяемые на данных ЛЭП, имеют величину модуля упругости порядка 8000 кгс/мм2, что значительно меньше модуля упругости для стали, которая составляет величину 20000 кгс/мм. В результате, сталеалюминевые провода достаточно сильно растягиваются при появлении дополнительной весовой нагрузки на провод (при ветре и при гололеде).

Сущность изобретения поясняется чертежами, где на фиг 1 изображена линия электропередачи с располагаемым контрольным устройством и подвесным датчиком температуры на контролируемом проводе, а на фиг.2 показан вид А на фиг.1 (вид вдоль линии электропередачи, боковой ветер справа налево).

Цифрами на чертежах обозначены:

1 - провод линии электропередачи,

2 - опора линии электропередачи,

3 - провис провода линии электропередачи, (расстояние L1 от самой нижней точки провода до линии, соединяющей точки подвеса провода),

4 - подвесной датчик температуры,

5 - контрольное устройство,

6 - расстояние L2 от контрольного устройства до подвесного датчика,

7 - первый ультразвуковой приемопередатчик,

8 - второй ультразвуковой приемопередатчик,

9 - расстояние от подвесного датчика до первого ультразвукового приемопередатчика,

10 - расстояние от подвесного датчика до второго ультразвукового приемопередатчика,

11 - истинное значение провиса провода линии электропередачи,

12 - отклонение провода по горизонтали поперек линии электропередачи.

Способ контроля провиса провода линии электропередачи включает размещение на проводе 1 подвесного датчика 4 температуры, а под проводом 1 - контрольного устройства 5. Посредством подвесного датчика 4 измеряют и передают в контрольное устройство 5 измеренные значения температуры провода 1, а посредством контрольного устройства 5 осуществляют передачу измеренных данных.

Отличием предлагаемого способа контроля провиса провода линии электропередачи является то, что посредством контрольного устройства 5 совместно с подвесным датчиком 4 температуры, осуществляют, при помощи первого 7 и второго 8 ультразвуковых приемопередатчиков, расположенных в контрольном устройстве 5 и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонения провода 1 по горизонтали поперек линии электропередачи.

Для измерения провиса и отклонения провода 1 по горизонтали поперек линии электропередачи при помощи подвесного датчика 4 температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства 5 осуществляют излучение ультразвукового импульса, а затем принимают ультразвуковой импульс на первый 7 и второй 8 ультразвуковые приемопередатчики.

По временам распространения ультразвукового импульса от подвесного датчика 4 температуры до первого 7 и второго 8 ультразвуковых приемопередатчиков вычисляют положение провода 1 в плоскости, поперечной линии электропередачи.

Для определения скорости С звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому, например, от первого 7 к второму 8.

Пример конкретного осуществления способа контроля провиса провода линии электропередачи.

Провод 1 (фиг.1) линии электропередачи подвешен на опорах 2 с провисом 3 (расстояние L1 от самой нижней точки провода до линии, соединяющей точки подвеса провода). Для измерения температуры и провиса провода, в нижней точке провода 1 закреплен подвесной датчик 4, который измеряет температуру провода 1 и передает измеренное значение температуры в контрольное устройство 5.

Подвесной датчик 4 температуры и контрольное устройство 5 совместно измеряют расстояние 6 (расстояние L2) от контрольного устройства 5 до подвесного датчика 4.

Для измерения расстояния 6, по команде контрольного устройства 5, подвесной датчик 4 излучает ультразвуковой импульс. По времени t1, между командой контрольного устройства 5 и временем t2 приема ультразвукового импульса контрольным устройством 5, вычисляется расстояние 6 (расстояние L2): L2=C*(t2-t1), где С - скорость звука в воздухе.

Измерив расстояние 6 (расстояние L2), контрольное устройство 5 рассчитывает провис 3 (расстояние L1) провода 1 L1=(L-L2), где L - расстояние по вертикали от контрольного устройства 5 до точки подвеса 2 провода 1. Контрольное устройство 5 передает измеренные величины провиса 3 (расстояние L1) и температуру провода 1 в единый центр мониторинга.

Предлагаемый способ решает следующие две проблемы измерения провиса провода.

Во-первых, при наличии бокового (поперек линии электропередачи) ветра, провода отклоняются от вертикали.

Во-вторых, скорость С звука в воздухе зависит от многих параметров (например: температуры, влажности, давления воздуха).

Для решения этих проблем контрольное устройство 5 снабжено первым 7 и вторым 8 ультразвуковыми приемопередатчиками, разнесенными по горизонтали поперек линии электропередачи (фиг.2, вид вдоль линии электропередачи, боковой ветер с права налево). По времени распространения ультразвукового импульса от подвесного датчика 4 до каждого приемопередатчика 7 и 8 вычисляются расстояния 9 и 10 от подвесного датчика 4 до каждого приемопередатчика 7 и 8. По измеренным расстояниям 9 и 10, и по известному расстоянию L3 между приемопередатчиками 7 и 8, вычисляются истинное значение 11 провиса провода и отклонения 12 провода по горизонтали поперек линии электропередачи (решение треугольника по трем сторонам - по измеренным расстояниям 9 и 10, и по известному расстоянию L3).

Для определения скорости С звука передают ультразвуковой импульс от первого 7 ультразвукового приемопередатчика к второму 8 ультразвуковым приемопередатчикам, и по времени t3 прохождения ультразвуковых импульсов между ультразвуковыми приемопередатчиками 7 и 8 вычисляют скорость С звука в данный момент: C=L3/t3. В результате, при расчете истинного значения 11 провиса провода и отклонения 12 провода по горизонтали поперек линии электропередачи используется измеренное значение скорости звука С.

Таким образом, предлагаемый способ контроля провиса проводов линии электропередачи позволяет непрерывно контролировать условия работы линии электропередачи:

- своевременно обнаруживать угрожающий провис провода при высоких температурах воздуха и большой токовой нагрузке на линии,

- контролировать ветровую нагрузку на провода линии электропередачи,

- своевременно обнаруживать появление гололедной нагрузки на провода линии электропередачи,

- контролировать процесс плавки гололеда (температуру провода и уменьшение гололедной нагрузки).

Способ контроля провиса провода линии электропередачи, включающий размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства, при этом посредством подвесного датчика передают в контрольное устройство измеренные значения температуры провода, а посредством контрольного устройства осуществляют передачу измеренных данных, отличающийся тем, что посредством контрольного устройства совместно с подвесным датчиком температуры осуществляют при помощи первого и второго ультразвуковых приемопередатчиков, расположенных в контрольном устройстве и разнесенных по горизонтали поперек линии электропередачи, измерение провиса и отклонение провода по горизонтали поперек линии электропередачи, для чего при помощи подвесного датчика температуры, выполненного с возможностью излучения ультразвукового импульса, по команде контрольного устройства осуществляют излучение ультразвукового импульса, принимают ультразвуковой импульс на первый и второй ультразвуковые приемопередатчики и по временам распространения ультразвукового импульса от подвесного датчика температуры до первого и второго ультразвуковых приемопередатчиков вычисляют положение провода в плоскости, поперечной линии электропередачи, при этом для определения скорости звука в воздухе измеряют время прохождения ультразвуковых импульсов от одного ультразвукового приемопередатчика к другому.



 

Похожие патенты:

Изобретение относится к энергетике, в частности к электрическим кабелям/проводам, включая высоковольтные линии электропередач, закрепленным на опорах, когда решается проблема абсолютно полной защиты кабелей от налипания снега, обледенения и, как следствие, обрыва.

Изобретение относится к электрическим проводам воздушных линий железных дорог, в частности к очистке проводов от снега и льда. .

Изобретение относится к электротехнике, а именно к устройствам для плавки гололеда, осевшего на воздушных линиях электропередач (ВЛЭП). .

Изобретение относится к области электроэнергетики и может быть использовано для механического удаления гололедных отложений с проводов линий электропередач. .

Изобретение относится к электротехнике и может быть использовано для обнаружения гололедных образований на проводах и грозозащитных тросах линий электропередачи (ЛЭП) и определения длины и толщины гололедных отложений.

Изобретение относится к технике борьбы с гололедом на воздушных линиях (ВЛ) электропередачи в распределительных сетях 6-10 кВ. .

Изобретение относится к подводу и распределению электрической энергии по проводам и кабелям и воздушных линий, а именно к устройствам для очистки проводов и кабелей от снега и льда.

Изобретение относится к электроэнергетике и может быть использовано при эксплуатации линий электропередачи переменного тока. .

Изобретение относится к электроэнергетике и может быть использовано для механического удаления гололедных отложений с проводов и ограничения колебаний в опасных режимах.

Использование: в области электроэнергетики. Технический результат -повышение эффективности при упрощении конструкции. Устройство содержит установленные на проводе ударные элементы, при этом каждый из них выполнен в виде свободно надетой на провод (1) цилиндрической втулки (2) из крупного ферромагнитного материала типа магнитомягкой резины, имеющей с обоих краев конические раструбы с продольными прорезями (3) по образующим, разделяющим раструбы на отдельные лепестки (4), характеризующиеся собственной частотой изгибных колебаний относительно места их консольного крепления к торцу втулки, примерно совпадающей с частотой переменного тока в проводах. 1 ил.

Изобретение относится к электроэнергетике и может быть использовано для механического удаления гололедных отложений. Распорка выполнена в виде плоского шарнирного многозвенного механизма и включает узел соединения тяг и зажимы для крепления тяг к проводам. Узел соединения представляет собой коробчатый каркас (1), соединенный с каждым из проводов (2, 3) парой шарнирных тяг (4, 5) и (6, 7). Зажимы (8, 9, 10, 11) выполнены в виде двух пар, свободно надетых на провода втулок. Внутри каркаса (1) на гибких связях (12) закреплена эластичная оболочка (13), частично заполненная ферромагнитным сыпучим материалом (14). Техническим результатом является повышение эффективности сброса гололедных отложений с проводов и рассеяния энергии их колебаний. 2 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса мокрого снега и гололедных отложений (1) с проводов (2) включает элемент (3) для импульсного встряхивания проводов, действующий от веса отложений и встроенный в механическую цепь подвески привода к опоре (4) с помощью штыревого изолятора (5), насаженного на изогнутый конец штыря (6). В опоре вырезано прямоугольное окно (7), снабженное пазами (8) с двух сторон, элемент (3) выполнен в виде гибкой упругой прямоугольной пластины, являющейся частью полого цилиндра и представляющей собой нелинейный релейный элемент с двумя устойчивыми состояниями и переходом из одного состояния в другое хлопком при критическом значении внешней нагрузки. Штырь (6) зафиксирован на пластине гайками (11) и соединен с отрезком троса (12), свободно пропущенным сквозь отверстие и снабженным на конце подвешенным грузом (15). 2 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса гололедных отложений (1) с проводов (2) содержит узел импульсного встряхивания проводов, встроенный в механическую цепь подвески провода, состоящую из гирлянды подвесных изоляторов (3), прикрепленную с помощью крюка (4) к горизонтальной траверсе (5) анкерной опоры. Узел для импульсного встряхивания проводов выполнен в виде полости (6) в траверсе с двумя размещенными в ней постоянными магнитами (7) и (8), один из которых навернут на резьбовой конец (9) крюка, а другой неподвижно закреплен в полости с возможностью регулировки своего осевого положения винтом (12). Разрыв магнитов (7) и (8) под действием веса отложений на проводе обеспечивает импульсное встряхивание провода и, соответственно, сброс гололедных образований. 1 ил.

Использование: в области электроэнергетики. Технический результат - повышение эффективности при упрощении конструкции. Устройство для сброса гололедных отложений (1) с проводов (2) включает элемент (3) для импульсного встряхивания проводов, действующий от веса отложений на нем и встроенный в механическую цепь подвески провода к изолятору (4), состоящую из крюка (5), свободно вставленного резьбовой стороной (6) в сквозное отверстие (7) в опоре (8) и зафиксированного гайкой (9), при этом элемент для импульсного встряхивания выполнен в виде сферической хлопающей мембраны с отверстием (10), размещенной между гайкой и опорой и обращенной к опоре своей вогнутой стороной. 1 ил.
Изобретение относится к области электротехники и может быть использовано на высоковольтных подстанциях, требующих плавки гололеда на проводах воздушных линий электропередачи (ВЛ). Управляемую плавку гололеда на ВЛ производят током низкой частоты, формируемым трехфазным автономным инвертором напряжения, а эффективное значение тока плавки задают и поддерживают на требуемом уровне изменением величины напряжения питания инвертора. Плавку производят одновременно на трех проводах ВЛ, подключенных к выходным зажимам трехфазного автономного инвертора напряжения и закороченных на противоположном конце линии. Линия при этом выполняет функции трехфазной нагрузки инвертора с соединением фаз в звезду. Техническим эффектом предложения является увеличение допустимой длины ВЛ по сравнению с управляемой плавкой гололеда переменным током промышленной частоты, упрощение организации, сокращение продолжительности процесса плавки гололеда, уменьшение количества дополнительного коммутационного оборудования.

Изобретение относится к области электротехники и может найти применение на электрических подстанциях, требующих компенсации реактивной энергии и плавки гололеда на воздушных линиях электропередачи. Техническим эффектом изобретения является минимизация количества выключателей, необходимых для перехода из режима компенсации в режим управляемой плавки гололеда и обратно. Устройство содержит двунаправленные высоковольтные тиристорные вентили (1, 2, 3), последовательно с которыми соединены реактивные элементы (дроссели или конденсаторы) (4, 5, 6). Переключение с режима компенсации реактивной мощности на режим плавки гололеда производится с помощью двух выключателей (7, 8). Для этого точки соединения реактивных элементов (4, 5, 6) и тиристорных вентилей (1, 2, 3) подсоединены к трехфазной питающей сети А, В, С, свободные выводы указанных вентилей (1, 2, 3) через контакты первого выключателя (7) соединены по схеме «треугольник» со свободными выводами реактивных элементов (4, 5, 6), а через контакты второго выключателя (8) - с проводами воздушной линии для плавки гололеда. 2 ил.

Изобретение относится к области электротехники и может найти применение на электрических подстанциях, требующих плавки гололеда на воздушных линиях электропередачи и компенсации реактивной мощности. Техническим эффектом изобретения является упрощение организации и сокращение продолжительности процесса плавки с одновременным уменьшением количества дополнительного коммутационного оборудования. Комбинированная установка содержит два трехфазных мостовых преобразователя на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, конденсаторную батарею на стороне постоянного тока преобразователей, первый трехполюсный выключатель и два последовательно соединенных трехфазных дросселя, параллельно одному из которых подсоединен второй трехполюсный выключатель - на стороне переменного тока. При плавке гололеда первый преобразователь работает в режиме управляемого выпрямителя, а второй в режиме автономного инвертора напряжения, к выходу которого через третий трехполюсный выключатель подсоединены провода воздушной линии, замкнутые на противоположном конце, для одновременной плавки гололеда на них переменным током низкой частоты, при которой индуктивная составляющая сопротивления проводов практически не оказывает влияния на эффективную величину тока плавки. 1 ил.

Изобретение относится к области электротехники и может найти применение на электрических подстанциях, требующих компенсации реактивной мощности и плавки гололеда на воздушных линиях электропередачи. Технический результат - сокращение продолжительности процесса плавки с одновременным уменьшением количества дополнительного коммутационного оборудования. Установка содержит трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, конденсаторную батарею на стороне постоянного тока, первый трехполюсный выключатель и два последовательно соединенных трехфазных дросселя, параллельно одному из которых подсоединен второй трехполюсный выключатель, - на стороне переменного тока. По первому варианту конденсаторная батарея в режиме компенсации реактивной мощности соединена контактами третьего трехполюсного выключателя, разомкнутыми в режиме плавки гололеда, с эмиттерными (коллекторными) выводами вентилей преобразователя, которые в этом режиме посредством четвертого трехполюсного выключателя соединены с проводами воздушной линии для управляемой плавки гололеда переменным током. По второму варианту конденсаторная батарея в режиме компенсации реактивной мощности контактами третьего и четвертого трехполюсных выключателей, разомкнутыми в режиме плавки гололеда, соединена с эмиттерными и коллекторными выводами вентилей преобразователя, которые в этом режиме посредством пятого и шестого трехполюсных выключателей соединены с проводами двух воздушной линии для одновременной управляемой плавки на них гололеда переменным током. 2 н.п. ф-лы, 4 ил.

Использование: в области электроэнергетики для удаления гололедных отложений с проводов. Технический результат заключается в повышении эффективности. Устройство содержит установленные на проводе (1) с зазором витые цилиндрические пружины (2) с аэродинамическими элементами (3) и расположенными асимметрично проводу грузами, концы пружин ввернуты в кольцевые постоянные магниты (4), обращенные друг к другу одноименными полюсами, аэродинамические элементы выполнены в виде легких пластин разных размеров, установленных в средней части пружин и навернутых на них осевыми отверстиями, а асимметричные грузы представляют собой болтовые соединения из болтов (6) и гаек (7), установленных в отверстиях (8) в периферийной части пластин. 1 ил.
Наверх