Способ модификации электрохимических катализаторов на углеродном носителе


 

C25B9/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2495158:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.

 

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых в различных электрохимических системах, и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом.

Известно, что эффективность работы и стоимость электрохимических систем, используемых в различных электрохимических установках, во многом зависит от особенностей применяемых электрокатализаторов. Широкое распространение в различных электрохимических системах, например, в электролизерах и топливных элементах с твердополимерным электролитом, получили электрокатализаторы на углеродном носителе (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.8-19). К числу таких катализаторов, изготовленных по различным технологиям, относятся платина, а также металлы платиновой группы. В качестве углеродного носителя используются различные углеродные материалы, обладающие высокой дисперсностью, электропроводностью, термо- и коррозионно-устойчивостью. К ним относятся различные виды сажи, мезоуглеродные микрошарики, фуллерены, углеродные нанотрубки, нановолокна и тп. (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.9-11). Целесообразность и эффективность применения тех или иных катализаторов определяется конкретными особенностями эксплуатации электрохимических систем, в которых они используются. Например, причиной использования именно платины или ее сплавов с другими благородными металлами в низкотемпературных электролизерах и топливных элементах с твердополимерным электролитом является то, что протонообменная мембрана имеет ярко выраженные кислотные свойства, а такие металлы, как никель, хром, кобальт и т.п., в чистом виде оказываются химически нестойкими. В то же время, при использовании топливных элементов, работающих на воздухе и водороде, бинарные системы на основе Pd могут оказаться более перспективными, чем катализаторы на основе Pt (International Scientific Journal for Alternative Energy and Ecology ISJAEE 2(46) (2007) p.118-123).

Одним из возможных путей снижения стоимости электрокатализаторов на углеродном носителе является разработка и применение многокомпонентных электрокатализаторов, которые в перспективе могут обеспечить снижение использования платины (или металлов платиновой группы) без снижения активности катализатора и уменьшения ресурса его работы. Например, одним из направлений является создание на углеродном носителе бинарных наноразмерных электрокаталитических систем на основе платины и так называемых базовых металлов: Fe, Co, Ni, Cr, а также введение добавок тугоплавких металлов (например, Mo) или замена (полная или частичная) Pt на Pd, Ru или Ir (СИ. Козлов, В.И. Фатеев Водородная энергетика: современное состояние, проблемы, перспективы. М. ООО «Газпром ВНИИГАЗ», 2009, с.338-339).

Известны различные методы синтеза многокомпонентных катализаторов на углеродной основе для различных электрохимических систем.

Известен способ химической модификации иридиевого катализатора на углеродной основе (Vulcan XC-72R) селеном с различным соотношением IrxSey (Gang Liu, Huamin Zhang. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction J. Phys. Chem. С 2008, 112, 2058-2065). Для осуществления способа был применен метод полиольного синтеза с использованием H6IrCl6 и Na2SeO3 в качестве прекурсоров с нагревом в микроволновой печи, добавлением в процессе синтеза порошка углеродного носителя, с последующей отмывкой полученного продукта в дистиллированной воде, длительной сушкой (при 60°C в течение 8 часов) и окончательной термообработкой в атмосфере водорода (при 400°C в течение 1 часа). К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также сложность предварительного прогнозирования структуры и свойств полученного катализатора при необходимости изменения его стехиометрического состава. Кроме того, в случае появления необходимости легирования иридия иными элементами, возникает необходимость существенной коррекции элементов рассматриваемого способа.

Известен способ изготовления бинарных электрокатализаторов на основе палладия на углеродном носителе для водородных топливных элементов с твердополимерным электролитом (С.А. Григорьев, Е.К. Лютикова, Е.Г. Притуленко, Д.П. Самсонов, В.Н.Фатеев «Разработка и исследования наноструктурных анодных электрокатализатов на основе палладия для водородных топливных элементов с твердополимерным электролитом» Электрохимия, 2006, том 42, №11, с.1393-1396). При этом синтез катализаторов проводился без и с предварительной сорбцией палладия на углеродный носитель Vulcan ХС-72. Для синтеза электрокатализатора Pt0,5Pd0,5/ Vulcan ХС-72 к 0,1М растворов H2PtCl6 и PdCl2 добавляется суспензия углеродного носителя и 2-пропанаола. Затем смесь диспергируют в течение 10 минут и доводят pH до 8 (раствором Na2CO3). После этого полученная смесь добавляется в этиленгликоль при поддержании температуры 70°C. Добавляется формальдегид и поливинилпиролидон, препятствующий агломерации частиц. Затем полученная суспензия выдерживается в течение 1,5 час. при температуре 90-105°C. Смесь выдерживается 12 час, а затем проводится отмывка катализатора (4-5 раз) в бидистиллированной воде. К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также неэффективный расход платины (На активность катализатора основное влияние оказывают свойства поверхности частиц катализатора, платина же при данном способе химического синтеза бинарного катализатора находится не только в активном поверхностном слое, но во всем объеме частиц катализатора). При модификации поверхностного слоя на предварительно высаженный палладий наблюдалось агрегирование частиц, существенно ухудшающее эксплуатационные свойства катализатора.

Известен способ получения модифицированного электрохимического катализатора на углеродной основе, принятый за прототип (A. Caillard, С. Coutanceau, P. Brault, J. Mathias, J.-M. L'Eger. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66-73). При этом модифицируют поверхностный слой предварительно полученного катализатора (в данном случае - платины), высаженного на углеродную пленку. Модифицируемый катализатор также как и саму модификацию производят методом плазменного напыления. Плазменное напыление проводят при низком давлении, в вакуумной установке, снабженной системой вакуумирования, устройством подачи инертного газа, и регулируемым источником потока атомов (в данном случае - плазменной системой распыления мишеней, выполненных из платины - основного элемента катализатора и рубидия - модифицирующего элемента), а также держателем углеродной подложки с катализатором. При этом пленку углеродного носителя закрепляют в держателе, вакуумируют рабочую камеру, создают остаточное низкое давление инертного газа, величина которого определяется рабочими параметрами источника потока напыляемых атомов, активируют источник напыляемых атомов материала катализатора и производят напыление катализатора на углеродный носитель (В данном конкретном случае - возбуждают плазму, распыляют материал мишени и напыляют катализатор на углеродный носитель). Затем активируют источник потока атомов или атомарных ионов модифицирующего материала и производят обработку поверхности полученного катализатора. Способ позволяет производить модификацию поверхностного слоя предварительно полученного катализатора на углеродной основе. При этом возможно широкое варьирование структуры и свойств поверхностного слоя получаемого модифицированного катализатора при малом расходе модифицирующего материала. Недостатком данного способа является ограниченность области его эффективного использования. В частности, способ малоэффективен в случае необходимости проведения модификации катализаторов предварительно высаженных на высокодисперсные углеродные материалы, такие как сажа, нанотрубки, нановолокна и т.п., обладающие высоко развитой поверхностью (при этом катализаторы могут быть предварительно получены как физическими, так и химическими методами синтеза). Способ обеспечивает проведение модификации поверхностного слоя частиц предварительно синтезированного катализатора на мелкодисперсном углеродном носителе, расположенных только по направлению потока модифицирующих атомов. Другие частицы катализатора остаются недоступными.

Техническим результатом, на который направлено изобретение, является обеспечение возможности эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Для достижения указанного технического результата предложен способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.

При этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Отличительной особенностью изобретения является то, что для размещения катализатора, предварительно синтезированного на мелкодисперсном углеродном носителе используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Кроме того, при этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Использование в предложенном способе модификации электрохимических катализаторов на углеродном носителе установленной в держателе пористой подложки с открытой пористостью, пневматически связанной с устройством автономной подачи газа, при плавном увеличении потока инертного газа, пропускаемого через поры подложки приводит к возникновению псевдокипящего слоя в объеме расположенных на подложке частиц высокодисперсного углеродного носителя с предварительно синтезированными на них частицами катализатора. При этом, благодаря малым размерам и весу частиц высокодисперсного углеродного носителя с нанесенными на них частицами катализатора, а также разделению восходящих газовых потоков порами подложки, происходит интенсивное перемешивание углеродных частиц с приданием им дополнительного крутящего момента. В результате этого практически все модифицируемые частицы катализатора оказываются доступными для облучения потоком подающих модифицирующих атомов или атомарных ионов. Таким образом, обеспечивается возможность эффективной модификации поверхностных слоев широкого класса катализаторов, предварительно полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

Проведение модификации поверхности частиц катализатора, предварительно высаженных на высокодисперсном углеродном носителе, потоком падающих атомов или атомарных ионов модифицирующего материала требует обеспечения большой плотности модифицирующих частиц, облучающих поверхность частиц модифицируемого катализатора. При этом поток модифицирующих атомов или атомарных ионов помимо частиц катализатора воздействует на поверхностные слои углеродного носителя. Облучение углеродного носителя частицами с большой энергией вызывает нарушение структуры его поверхностных слоев, что при большой плотности потока облучающих частиц приводит к частичной аморфизации углерода и ухудшению его электропроводности. Хорошая электропроводность является одним из основных требований, предъявляемых к носителю электрокатализатора. Ее снижение приводит к ухудшению эксплуатационных характеристик электрокатализатора на углеродном носителе. Ограничение энергии падающих атомов или атомарных ионов модифицирующего материала диапазоном до 70 эВ/атом позволяет существенно уменьшить или полностью исключить возможную аморфизацию поверхностных слоев углеродного носителя (зависящую от конкретных требований к виду и степени проводимой модификации катализатора). При этом возможные нарушения структуры поверхностного слоя углеродного носителя не превышают 2-3 атомных слоев углерода. Таким образом, повышается эффективность модификации поверхностных слоев широкого класса катализаторов на высокодисперсном углеродном носителе (типа сажи, нанотрубок, нановолокон и т.п.) и улучшаются эксплуатационные свойства полученного катализатора.

Способ осуществляется следующим образом. Модификацию электрохимических катализаторов на высокодисперсном углеродном носителе производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, держателем обрабатываемого катализатора с подложкой, выполненной из пористого инертного материала с открытой пористостью (например, из пористого титана, полученного методом порошковой металлургии), а также устройством подачи инертного газа, пневматически связанным с пористой подложкой. На пористой подложке послойно размещают порошок обрабатываемого электрокатализатора на углеродном носителе (Дополнительно, для исключения рассыпания обрабатываемого порошка с модифицируемым катализатором, держатель может быть снабжен выступающим буртиком). Производят откачку вакуумной камеры до значений вакуума, определяемых эксплуатационными характеристиками источника облучения (В качестве такого источника может быть использован, например, источник, выполненный на основе магнетронного, плазменного или лазерного распыления материалов, или иной источник ионов модифицирующего материала). Через пористую подложку пропускают инертный газ, плавно увеличивая подачу газа, до образования устойчивого псевдокипения слоя частиц углеродного носителя с модифицируемым катализатором. Момент возникновения псевдокипящего слоя можно наблюдать визуально через смотровое окно вакуумной камеры. В случае превышения допустимого давления в вакуумной камере производят необходимую дополнительную откачку газа (при помощи штатных средств, обеспечивающих вакуумирование рабочей камеры). Затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Дополнительно, для повышения эффективности модификации путем уменьшения влияния облучения на электропроводные свойства углеродного носителя обработку катализатора производят потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.

Предложенный способ модификации электрохимических катализаторов на углеродном носителе был опробован при проведении модификации платиной палладиевого электрокатализатора, предварительно синтезированного методом химического восстановления палладия из хлорида палладия с использованием этиленгликоля и добавлением формальдегида на высокодисперсном углеродном носителе Vulcan ХС-72. Целью проведения модификации являлось изучение возможности повышения эксплуатационных характеристик катализатора при малом расходе платины (~0,1 мг/см2 рабочей поверхности катода) при его использовании в качестве катодного катализатора в электролизерах с твердополимерным электролитом. При этом в качестве пористой подложки использовалась пластинка из пористого титана диаметром 70 мм, толщиной 0,9 мм, с пористостью 28% и средними размерами пор ~10 мкм, изготовленная из порошкообразного титана. Дополнительно, для исключения рассыпания сажи с катализатором подложка из пористого титана была снабжена защитным бортиком. Толщина слоя частиц катализатора на углеродном носителе составляла ~2 мм. Для образования псевдокипящего слоя углеродного носителя с модифицируемым катализатором через пористую подложку продувался аргон. При этом после вакуумирования рабочей камеры плавно увеличивали подачу аргона через пористую подложку. Момент образования псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором наблюдался визуально через смотровое стекло вакуумной камеры. Обработка псевдокипящего слоя углеродного носителя с модифицируемым катализаторов производилась потоком распыленных атомов платины (полученных методом магнетронного распыления) с энергией ~18 эВ/атом. Время обработки составляло 25 минут. Эффективность произведенной модификации палладиевого катализатора платиной проверялась в реальных условиях использования палладиевого и модифицированного Pd/Pt катализаторов на углеродном носителе (Vulcan ХС-72) в качестве катодного катализатора в ячейке электролизера с твердополимерным электролитом (Nation-117) с площадью рабочей поверхности 7 см2 и иридиевым анодным катализатором. Оценка эффективности производилась по выходу водорода при равном напряжении на рабочей ячейке электролизера (1,75 В). Результаты проведенных сравнительных испытаний выявили 20% увеличение выхода водорода после проведения указанной модификации катодного катализатора.

Таким образом, предложенный способ модификации электрохимических катализаторов обеспечивает возможность проведения эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.

1. Способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, отличающийся тем, что для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.

2. Способ по п.1, отличающийся тем, что производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.



 

Похожие патенты:
Изобретение относится к способу разложения лигнина, в котором водный раствор или суспензию лигнина электролизуют на алмазном электроде в кислых условиях и получаемые в качестве продуктов разложения лигнина производные гидроксибензальдегида и/или производные фенола непрерывно удаляют из электрохимической ячейки.
Изобретение предназначено для электрохимической технологии получения разбавленных щелочных растворов перекиси водорода и может быть использовано в сорбционных технологиях водоочистки и водоподготовки.

Группа изобретений относится к синтетической диафрагме для хлор-щелочных электролизеров с улучшенными параметрами энергопотребления и характеристиками разделения газов.

Данное изобретение относится к устройству для электролиза пара и способу ведения электролиза пара, введенного под давлением в анодное пространство (32) электролизера (30), обеспеченного протон-проводящей мембраной (31), изготовленной из материала, позволяющего протонированным частицам внедряться в эту мембрану под паром, причем указанная протон-проводящая мембрана непроницаема для диффузии кислорода О2 и Н2, при котором происходит окисление воды, введенной в паровой форме, происходящее на аноде (32) так, чтобы генерировать протонированные частицы в мембране, которые мигрируют внутри этой самой мембраны и восстанавливаются на поверхности катода (33) в форме реакционно-способных водородных атомов, способных восстанавливать диоксид углерода СО2 и/или моноксид углерода СО.

Группа изобретений относится к энергетике, и может использоваться в автономных энергоустановках. Устройство для электролиза воды содержит электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля параметров процесса, а также систему водоснабжения с запасом реакционной воды, включающую газоотделители водорода и кислорода, и систему охлаждения газоотделителя водорода, входная гидромагистраль которого снабжена датчиком температуры.

Изобретение относится к конструкциям устройств электролиза и может быть использовано для обеззараживания природных и сточных вод в хозяйственно-питьевом водоснабжении; для дезинфекции оборудования, помещений и сооружений в отраслях пищевой промышленности, в медико-санитарных учреждениях, предприятиях общественного питания, санаториях и домах отдыха, детских учреждениях, плавательных бассейнах, для отбеливания; для предотвращения биообрастания в системах водяного обогрева и охлаждения.

Изобретение относится к конструкциям устройств электролиза и может быть использовано для обеззараживания природных и сточных вод в хозяйственно-питьевом водоснабжении; для дезинфекции оборудования, помещений и сооружений в отраслях пищевой промышленности, в медико-санитарных учреждениях, предприятиях общественного питания, санаториях и домах отдыха, детских учреждениях, плавательных бассейнах, для отбеливания; для предотвращения биообрастания в системах водяного обогрева и охлаждения.

Изобретение относится к металлургии и может быть использовано для получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, используемого в сталеплавильном и литейном производствах.

Изобретение относится к неорганической фуллереноподобной наночастице формулы A1-x-Bx-халькогенид, где В встроен в решетку A1-x-халькогенида, А представляет собой металл или сплав металлов, выбранных из Мо и W, В является металлом, выбранным из V, Nb, Та, Mn и Re, а х≤0,3; при условии, что х не равен нулю и А≠В.
Изобретение относится к способу получения корундовой нанопленки. Способ состоит в осаждении нанослоя алюминия на пленочную основу, или барабан, или диск (далее «основа») из материала с пониженной адгезией, последующее окисление этого нанослоя до корунда, и снятие корундовой нанопленки с основы.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное.
Изобретение относится к медицине, в частности к хирургии, ожогово-лучевой терапии. Повязка включает вискозную ткань, которая на первой стадии производства углеродной ткани подвергнута ионизирующему облучению пучком быстрых электронов в токе пучка электронов 1-3 µa и энергии 0,5-0,7 МеВ при транспортировке через камеру облучения ускорителя электронов со скоростью 1-4 м/мин, а полученная углеродная ткань характеризуется плотностью 1,3-1,4 г/см3; поверхностная плотность 2,5-3,5 м2/г; содержание углерода 99,6-99,9 мас.%; содержание золы 0,1-0,4 мас.%; поглощение хлоргексидина 0,6-0,7 г/г при непрерывных сроках нахождения на поверхности раны 4 суток.

Изобретение относится к металлургии и литейному производству, в частности к получению чугуна с высоким содержанием углерода. Способ включает выплавку исходного расплава чугуна в печи, инжекционный ввод науглероживателя и выпуск расплава металла, при этом выплавку исходного расплава чугуна в электродуговых, индукционных печах или в газовых вагранках с копильником осуществляют перегрев расплава при температуре выше температуры ликвидуса на 10…400°С и используют науглероживатель с расположенными на его поверхности наноструктурированными частицами графита с размером 0,00001…0,01 мкм и в количестве 0,0001-0,01%, обеспечивающем образование заданной концентрации центров зарождения графитной фазы.
Изобретение относится к изготовлению керамических изделий из материала на основе частично стабилизированного диоксида циркония: сверхострых и износостойких высокопрочных режущих инструментов для хирургии, травматологии, ортопедии и протезирования, безызносных пар трения для подшипников, мелющих тел, поршней тормозных дисков, фильер, вальцов, сопел, пружин и др.
Изобретение относится к области порошковых технологий, цветной металлургии. Способ получения наноразмерных порошков нитрида алюминия с размерами частиц 10-150 нм и удельной поверхностью 30-170 м2/г, включающий подачу порошка глинозема потоком плазмообразующего газа азота в реактор газоразрядной плазмы при температуре в реакторе 4000-7000°C, охлаждение продуктов термического разложения охлаждающим инертным газом и конденсацию полученного порошка нитрида алюминия в водоохлаждаемой приемной камере, в котором порошок глинозема - пыль, уловленная в электрофильтрах печей кальцинации гидроксида алюминия при производстве глинозема.

Изобретение относится к области нанотехнологии и может быть использовано для получения атомно-тонких монокристаллических пленок различных слоистых материалов. Технический результат - упрощение технологии изготовления атомно-тонких монокристаллических пленок.

Изобретение относится к способу получения полимерных нанокомпозитов, которые могут быть использованы в разработке и создании новых видов полимерных материалов и покрытий.

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов.
Наверх