Устройство для слива топливного компонента из бака изделия



Устройство для слива топливного компонента из бака изделия
Устройство для слива топливного компонента из бака изделия
Устройство для слива топливного компонента из бака изделия
Устройство для слива топливного компонента из бака изделия

 


Владельцы патента RU 2495264:

Открытое акционерное общество "Конструкторское бюро химавтоматики" (RU)

Изобретение может быть использовано в конструкциях хвостовых блоков для слива топливного компонента из бака изделия через вентиль слива, расположенный на донной тепловой защите двигателя. Устройство для слива топливного компонента из бака изделия содержит трубопровод, вентиль слива, проходник, смонтированные на теплозащите двигателя, заглушку, закрепленную на резьбе проходника, контровочную проволоку. Между опорным шестигранником проходника и теплозащитой установлена жесткая стопорная шайба с четырьмя лапами, две из которых входят в отверстия на теплозащите, а две охватывают грани опорного шестигранника проходника. В лапах шайбы, входящих в отверстия теплозащиты, выполнены отверстия, за которые произведена контровка проволокой контргайки и заглушки. Технический результат заключается в повышении надежности фиксации проходника с вентилем слива от проворота относительно донной тепловой защиты. 4 ил.

 

Изобретение относится к ракетно-космической технике и может быть использовано в конструкциях хвостовых блоков для слива топливного компонента из бака изделия через вентиль слива, расположенный на донной тепловой защите двигателя.

Известно устройство для слива топливного компонента из бака третьей ступени ракеты-носителя «Союз-2» (см. фиг.1, прототип), содержащее трубопровод 1, одним концом закрепленный на штуцере 2, расположенном: до мембраны 3 клапана пуска 4, а другим соединенный со штуцером 5 входа вентиля слива 6. Вентиль слива 6 штуцером 7 на выходе из него топливного компонента установлен на проходнике 8, проходящем через отверстие в донной теплозащите 9 и закрепленном на ней при помощи контргайки 10. Для предотвращения засорения и несанкционированного слива топливного компонента в случае негерметичности вентиля слива 6 резьбовая часть 11 (см. фиг.2) проходника 8 заглушена заглушкой 12. Самопроизвольное отвинчивание контргайки 10 достигается кернением в трех точках резьбы проходника 8.

Заглушка 12 для исключения утери соединена при помощи лески 13 с шайбой 14, установленной между теплозащитой 9 и контргайкой 10. Самопроизвольное отвинчивание заглушки 12 от проходника 8 устраняется закреплением ее контровочной проволокой 15 в отверстии контргайки 10.

Недостатком известного технического решения является ненадежность фиксации устройства от проворота вокруг оси проходника из-за недостаточной надежности контровки контргайки 10 при помощи кернения и вследствие этого контровки заглушки 12 за неподвижную контргайку 10. Незначительное отвинчивание контргайки вокруг резьбы создает возможность для проворота проходника вместе с вентилем слива 6 вокруг оси «Р» конструкции при непреднамеренном воздействии усилия работающего слесаря-сборщика двигателя. Возможности проворота конструкции способствует наличие на теплозащите зеркально полированной поверхности, что снижает коэффициент трения контактирующих деталей. Проворот вентиля слива 6 приводит к созданию изгибающего момента, воздействующего на наконечник 16 трубопровода 1 и создающего напряжения в сварном шве вследствие напряженного состояния способно вызвать его негерметичность. Поэтому вторым недостатком устройства-прототипа является ненадежность места соединения трубопровода с вентилем слива.

Задачей предложенного технического решения является повышение надежности фиксации конструкции проходника с вентлем слива от проворота относительно донной тепловой защиты, контровки заглушки и контргайки, соединения трубопровода с вентилем слива.

Поставленная задача достигается тем, что в устройстве для слива топливного компонента из бака изделия, содержащем трубопровод, вентиль слива, проходник, смонтированные на теплозащите двигателя, заглушку, закрепленную на резьбе проходника, копировочную проволоку между опорным: шестигранником проходника и теплозащитой установлена жесткая: стопорная шайба с четырьмя лапами, две из которых входят в отверстия на теплозащите, а две охватывают грани опорного шестигранника проходника, при этом в лапах, входящих в отверстия теплозащиты выполнены отверстая, за которые произведена контровка проволокой контргайки и заглушки.

Устройство для слива топливного компонента из бака изделия приведено на фиг.3 и 4.

Основными элементами устройства являются:

1 - трубопровод (от входа в двигатель до вентиля слива);

2 - штуцер входа вентиля слива;

3 - вентиль слива;

4 - штуцер выхода вентиля слива;

5 - проходник;

6 - теплозащита двигателя;

7 - контргайка;

8 - заглушка;

9 - опорный шестигранник;

10 - стопорная шайба;

11, 12 - лапы стопорной шайбы;

13 - отверстия под контровку;

14 - контровочная проволока;

15 - шток вентиля слива;

16 - пломбы;

17 - наконечник трубопровода;

Р - ось проходника;

С - сварной шов трубопровода.

На фиг.3 представлена схема устройства для слива топливного компонента из бака изделия, которое содержит трубопровод 1, соединенный со штуцером 2 входа вентиля слива 3. Вентиль слива 3 штуцером 4 на выходе из него топливного компонента установлен на проходнике 5, закрепленном на теплозащите 6 при помощи контргайки 7.

Резьбовой конец проходника 5 заглушен заглушкой 8. Между опорным шестигранником 9 проходника 5 и теплозащитой 6 размещена фрезерованная жесткая стопорная шайба 10, конструктивно выполненная с четырьмя лапами 11, 12 и представленная на фиг, 4.

Две лапы 11 входят в отверстия, выполненные в теплозащите 6, и являются упорами от проворота стопорной шайбы 1.0 относительно неподвижной теплозащиты 6. Две другие лапы 12 стопорной шайбы охватывают грани опорного шестигранника 9 проходника 5 и надежно исключают его проворот вокруг оси «Р» конструкции. Стопорная шайба изготовлена из прутка механической обработкой (точением и фрезерованием), что придает ей необходимую жесткость. Для придания прочности материалу шайба подвергается термической обработке. В лепестках двух лап 11, взаимодействующих с теплозащитой, выполнены контровочные отверстия 13. После затяжки контргайки 7 и заглушки 8 моментным ключом, производится их контровка проволокой 14 за неподвижные лепестки лап 11 стопорной шайбы с последующим опломбированием пломбами 16.

Устройство работает следующим образом.

При воздействии непреднамеренных усилий со стороны слесаря-сборщика двигателя на вентиль слива 3 (при вращении штока 15 или заглушки 8 для слива без поддерживающего ключа, при неосторожном наступании ногой или другими частями тела слесаря сборщика, при выполнении монтажных работ на двигателе или каких-то других воздействиях) момент вращения через проходник и его опорный шестигранник передается на стопорную шайбу 10 через лапы 12.

Стопорная шайба стремится провернуться вокруг оси «Р» вместе со всем устройством, однако этому создается противодействие от двух лап 11, взаимодействующих в отверстиях 16 с неподвижной защитой 6 двигателя. Благодаря данному обстоятельству вентиль слива 3 не может провернуться вокруг штуцера 4 на выходе, и тем самым изгибающий момент на сварной шов «С» трубопровода 1 исключается, а надежность конструкции соединения трубопровода 1 с вентилем сброса 6 повышается.

Таким образом предложенное техническое решение позволит повысить надежность работы устройства за счет надежной фиксации его от проворота относительно неподвижной конструкции двигателя - теплозащиты, надежной контровки подвижных частей устройства (контровки и заглушки) за неподвижную конструкцию (лапы стопорной шайбы) и обеспечения условий работы соединения трубопровода с вентилем слива без передачи изгибающих усилий на наконечник 17.

Положительным моментом предложенного технического решения является отсутствие необходимости кернения резьбы проходника и контргайки, так как контровка их осуществлена за неподвижную конструкцию.

При переборке двигателя после контрольных испытаний для демонтажа указанных деталей нет необходимости высверливать места кернений.

Устройство для слива топливного компонента из бака изделия, содержащее трубопровод, вентиль слива, проходник, смонтированные на теплозащите двигателя, заглушку, закрепленную на резьбе проходника, контровочную проволоку, отличающееся тем, что между опорным шестигранником проходника и теплозащитой установлена жесткая стопорная шайба с четырьмя лапами, две из которых входят в отверстия на теплозащите, а две охватывают грани опорного шестигранника проходника, при этом в лапах, входящих в отверстия теплозащиты, выполнены отверстия, за которые произведена контровка проволокой контргайки и заглушки.



 

Похожие патенты:

Изобретение относится к устройствам для стопорения крепежных элементов. .

Изобретение относится к машиностроению и может быть использовано для соединения деталей, подвергающихся воздействию динамических и вибрационных нагрузок. .

Изобретение относится к машиностроению. .

Изобретение относится к машиностроению. .

Изобретение относится к стопорению резьбовых соединений и использованию таких резьбовых соединений в системах управления поверхностями управления самолетов. .

Изобретение относится к машиностроению и может быть использовано в различных отраслях машиностроения, использующих резьбовые соединения. .

Изобретение относится к машиностроению и может быть использовано в любой области народного хозяйства и предназначено для стопорения ответственных резьбовых соединений тонкостенных деталей.

Изобретение относится к машиностроению, точнее - к способам и устройствам для стопорения резьбовых соединений при воздействии вибраций и ударных нагрузок. .

Изобретение относится к области машиностроения и предназначено для использования в высокоресурсных резьбовых соединениях, работающих в условиях вибраций. .

Изобретение относится к области регулирования расхода текучей среды, более конкретно к способам и устройствам дозирования и питания топливных форсунок камер сгорания турбомашин.

Изобретение относится к устройствам подачи топлива в камеру сгорания турбомашины. .

Изобретение относится к области двигателестроения, преимущественно авиационного, и может быть использовано в отраслях народного хозяйства, в которых применяются газотурбинные двигатели с дренажной системой.

Изобретение относится к области корабельных энергетических установок, в частности к устройству систем топливопитания и дренажа ГТД. .

Изобретение относится к авиадвигателестроению, в частности к устройствам для дренажа топлива из камер сгорания газотурбинных двигателей. .

Изобретение относится к газотурбинным двигателям, в частности к топливным дренажным системам газотурбинных двигателей. .

Изобретение относится к области газотурбостроения, в частности к топливным дренажным системам для слива дренажного топлива от агрегатов и систем газотурбинных двигателей.

Многоходовой клапан топливной системы газовой турбины содержит снабженное цилиндрическим гнездом клапанное тело, в ограничивающей гнездо стенке которого расположено несколько отверстий для подвода и/или отвода текучих сред, при этом в гнезде предусмотрена установленная подвижно вставка по меньшей мере с одним каналом с двумя другими отверстиям, с помощью которого обеспечивается возможность соединения по потоку друг с другом двух соседних отверстий, в клапанном теле предусмотрены два мостика, которые соединяют друг с другом расположенные в различных плоскостях отверстия. Технический результат изобретения - обеспечение возможности надежного и простого дистанционного управления процессами переключения соответствующих клапанов. 3 н. и 3 з.п. ф-лы, 8 ил.

Изобретения относятся к способу и устройству подачи регулируемого потока топлива в камеру сгорания турбомашины. Топливо под высоким давлением подается с регулируемым расходом в камеру сгорания через клапан с позиционным управлением и останавливающий и повышающий давление отсечной клапан с переменным сужением. Величина, представляющая реальный массовый расход подаваемого топлива, рассчитывается вычислительным блоком на основе информации, представляющей перепад давления (ΔР) между входом и выходом отсечного клапана и проходного сечения отсечного клапана, например, представленное положением Х золотника отсечного клапана. Клапан с позиционным управлением имеет изменяющееся положение, которым вычислительный блок управляет как функцией разницы между рассчитанной величиной, представляющей реальный массовый расход и величиной, представляющей заданный массовый расход. Технический результат изобретений - повышение точности регулирования расхода топлива и упрощение архитектуры узла регулирования и отсечки. 2 н. и 19 з.п. ф-лы, 6 ил.
Наверх