Способ определения эффективного проходного сечения форсунок и топливопроводов высокого давления



 


Владельцы патента RU 2495277:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенская государственная сельскохозяйственная академия" (RU)

Изобретение относится к двигателестроению, в частности к испытательной аппаратуре двигателей внутреннего сгорания. Технический результат: повышение точности определения эффективного проходного сечения форсунок и топливопроводов высокого давления. Способ определения эффективного проходного сечения форсунок и топливопроводов высокого давления заключается в прохождении топлива через испытываемую форсунку (или топливопровод) под давлением за контролируемое время. Начальное давление воздуха обеспечивают зарядкой гидропневмоаккумулятора путем сжатия воздуха при подаче в него топлива. При разрядке гидропневмоаккумулятора под действием давления сжатого воздуха топливо проходит через испытываемую форсунку (топливопровод) за время падения давления воздуха в гидропневмоаккумуляторе от заданного начального до заданного конечного.

 

Изобретение относится к области двигателестроения и может быть преимущественно использовано в испытаниях топливной аппаратуры дизельных двигателей.

Известен способ определения эффективного проходного сечения форсунок и топливопроводов высокого давления [Патент №2030625 РФ. Способ определения внутреннего объема топливопровода и устройство для его осуществления / Б.П. Удалов, А.П. Уханов. - №4891277; Заяв. 17.11.1990; Опубл. 10.03.1995, Бюл. №7], заключающийся на вытеснении топливом воздуха из канала испытываемого топливопровода (или форсунки) в мерную емкость, предварительно заполненную топливом. При этом объем (количество) топлива, проходящего через топливопровод, будет соответствовать объему (количеству) воздуха, вытесненного из испытываемого топливопровода (или форсунки) за определенное время под постоянным статическим давлением.

Недостатком данного способа является низкая точность определения эффективного проходного сечения форсунок и топливопроводов высокого давления из-за сложности обеспечения постоянного давления в процессе испытания.

Наиболее близким по технической сущности является способ определения эффективного проходного сечения форсунок и топливопроводов высокого давления [Уханов А., Черняков А. Подбор эталонных форсунок и топливопроводов // Сельский механизатор. - 2004. - №2. - С.12-13], заключающийся в прохождении рекомендуемого массового количества топлива через испытываемую форсунку (или топливопровод) под постоянным давлением за контролируемое время.

Недостатком данного способа является низкая точность определения эффективного проходного сечения форсунок и топливопроводов высокого давления из-за сложности обеспечения постоянного давления в процессе испытания.

Предлагаемое изобретение направлено на устранение указанного недостатка и от его применения получен следующий технический результат: повышение точности определения эффективного проходного сечения форсунок и топливопроводов высокого давления.

Указанный технический результат достигается за счет применения способа определения эффективного проходного сечения форсунок и топливопроводов высокого давления, заключающегося в прохождении топлива через испытываемую форсунку (или топливопровод) под давлением за контролируемое время, причем начальное давление воздуха обеспечивают зарядкой гидропневмоаккумулятора путем сжатия воздуха при подаче в него топлива, при разрядке гидропневмоаккумулятора под действием давления сжатого воздуха топливо проходит через испытываемую форсунку (топливо-провод) за время падения давления воздуха в гидропневмоаккумуляторе от заданного начального до заданного конечного, при этом эффективное проходное сечение (µf) рассчитывают в следующей последовательности:

- определяют массу воздуха (m) в гидропневмоаккумуляторе

m=ρв·V, кг,

где ρв - плотность воздуха, кг/м3; V - объем гидропневмоаккумулятора, м3.

- определяют объем сжатого воздуха (V1) в гидропневмоаккумуляторе

V 1 = m R T P 1 ,  м 3 ,

где R - универсальная газовая постоянная воздуха, Дж/кг·К;

Т - температура сжатого воздуха в гидропневмоаккумуляторе, К;

Р1 - начальное давление воздуха в гидропневмоаккумуляторе, П а = Н м 2 = к г м с 2 .

- определяют эффективное проходное сечение

μ f = V 1 ( P 1 P 2 ) 2 ρ т P 1 t 10 3 ,  мм 2 ,

где µ - коэффициент расхода;

f - площадь поперечного канала форсунки (топливопровода), м2;

ρт - плотность топлива, проливаемого через форсунку (топливопровод) при данной температуре, кг/м3;

Р2 - конечное давление воздуха в гидропневмоаккумуляторе, П а = Н м 2 = к г м с 2 ;

t - время падения давления воздуха в гидропневмоаккумуляторе от заданного начального до заданного конечного, с.

Например, если V1=202·10-6 м3, t=7c,

P 1 = 5  МПа = 5 10 6 к г м с 2 ,

P 2 = 1  МПа = 1 10 6 к г м с 2 ,

ρт=830 кг/м3, то для форсунки

μ f = 202 10 6 ( 5 1 ) 10 6 2 830 5 10 6 7 10 3 = 0,29  мм 2 .

Способ определения эффективного проходного сечения форсунок и топливопроводов высокого давления, заключающийся в прохождении топлива через испытываемую форсунку (или топливопровод) под давлением за контролируемое время, отличающийся тем, что начальное давление воздуха обеспечивают зарядкой гидропневмоаккумулятора путем сжатия воздуха при подаче в него топлива, при разрядке гидропневмоаккумулятора под действием давления сжатого воздуха топливо проходит через испытываемую форсунку (топливопровод) за время падения давления воздуха в гидропневмоаккумуляторе от заданного начального до заданного конечного, при этом эффективное проходное сечение (µf) рассчитывают в следующей последовательности:
определяют массу воздуха (m) в в гидропневмоаккумуляторе
m=ρв·V, кг,
где ρв - плотность воздуха, кг/м3;
V - объем гидропневмоаккумулятора, м3,
определяют объем сжатого воздуха (V1) в гидропневмоаккумуляторе
V 1 = m R T P 1 ,  м 3 ,
где R - универсальная газовая постоянная воздуха, Дж/кг·К;
Т - температура сжатого воздуха в гидропневмоаккумуляторе, К;
P1 - начальное давление воздуха в гидропневмоаккумуляторе, П а = Н м 2 = к г м с 2 ,
определяют эффективное проходное сечение
μ f = V 1 ( P 1 P 2 ) 2 ρ т P 1 t 10 3 ,  мм 2 ,
где µ - коэффициент расхода;
f - площадь поперечного канала форсунки (топливопровода), м2;
ρт - плотность топлива, проливаемого через форсунку (топливопровод), кг/м3;
P2 - конечное давление воздуха в гидропневмоаккумуляторе, П а = Н м 2 = к г м с 2 ;
t - время падения давления с начального до конечного значения, с.



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности к испытаниям топливной аппаратуры двигателей внутреннего сгорания. .

Изобретение относится к области транспорта и может быть использовано для контроля блока управления двигателем внутреннего сгорания. .

Изобретение относится к двигателестроению и может быть использовано для определения технического состояния системы топливоподачи двигателей с впрыском легкого топлива.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании электробензонасосов системы топливоподачи автомобиля. .

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании датчиков массового расхода воздуха автомобилей, оборудованных микропроцессорной системой управления двигателем внутреннего сгорания.

Изобретение относится к двигателестроению, в частности к стендам для испытания и регулировки форсунок, и может быть использовано на дизелестроительных предприятиях, сервисных центрах и станциях технического обслуживания.

Изобретение относится к двигателестроению, в частности к средствам испытания топливной аппаратуры двигателей внутреннего сгорания. .

Изобретение относится к области технической диагностики и может быть использовано для бесстендового диагностирования топливной аппаратуры высокого давления, используемой в дизельных двигателях, а именно для проверки плунжерных пар и нагнетательных клапанов топливного насоса высокого давления (ТНВД).

Изобретение относится к двигателестроению, в частности к области технической диагностики дизельной топливной аппаратуры. .

Изобретение относится к двигателестроению, в частности к технической диагностике дизельной топливной аппаратуры. .

Изобретение относится к двигателестроению, в частности к ремонтным работам топливной аппаратуры двигателей внутреннего сгорания. Изобретение позволяет снизить расход топлива и дымность выхлопных газов двигателя. Стенд для восстановления и обкатки форсунок дизельных автотракторных двигателей содержит емкость для рабочей жидкости, в которой размещено сливное отверстие, соединенное с топливным насосом высокого давления с помощью патрубка, крышку, на которой имеются, по меньшей мере, четыре гнезда для крепления восстанавливаемых форсунок, которые соединены с топливным насосом высокого давления с помощью топливопроводов, диск со шпильками и гайками для фиксации восстанавливаемых форсунок, датчики давления, установленные в топливопровод, электродвигатель, соединенный с топливным насосом высокого давления, он дополнительно содержит электромагнитный клапан, персональный компьютер, бачок для ремонтно-восстановительного состава, датчик концентрации, нагреватель с датчиком температуры и смеситель. Электромагнитный клапан соединен с персональным компьютером и бачком для ремонтно-восстановительного состава с помощью шланга. В емкость для рабочей жидкости установлен нагреватель с датчиком температуры и датчик концентрации, соединенный с персональным компьютером. На крышке установлен электродвигатель, который соединен со смесителем. 2 ил.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания. Техническим результатом является возможность установления неисправности расходомера воздуха в рабочем диапазоне низких объемов всасываемого воздуха. В устройстве для диагностики неисправности расходомера (11) воздуха расходомер (11) воздуха имеет неисправность, когда коэффициент отклонения, т.е. значение отклонения оцененного объема всасываемого воздуха относительно фактического объема всасываемого воздуха, полученного посредством расходомера (11) воздуха, превышает опорное значение для определения неисправности, определенное на основе частоты вращения двигателя (1) внутреннего сгорания. По мере того как частота вращения двигателя уменьшается, верхний предельный критерий диагностики увеличивается, а нижний предельный критерий диагностики снижается с тем, чтобы сужать область для определения того, что расходомер воздуха имеет неисправность. Следовательно, диагностика неисправностей расходомера (11) воздуха может заранее выполняться во всем диапазоне частот вращения двигателя, т.е. во всем рабочем диапазоне двигателя (1) внутреннего сгорания, тем самым не допуская ухудшения рабочих характеристик выпуска выхлопных газов, которое может возникать вследствие повреждения в расходомере (11) воздуха. 6 з.п. ф-лы, 4 ил.

Изобретение относится к испытаниям топливной аппаратуры двигателей внутреннего сгорания. Изобретение позволяет повысить точность измерения. Прибор для диагностики карбюратора и бензонасоса автомобильного двигателя имеет емкость, снабженную зеркалом и измерительной шкалой, а также фиксатором крепления крышки и емкости к нижней части карбюратора, причем внизу емкости расположен сливной штуцер, соединенный трубкой с дополнительной емкостью, имеющей дренажное отверстие и ступенчатый присоединительный штуцер с калиброванным отверстием, а регистрирующий прибор выполнен в виде отдельного блока управления с расположенными с обеих сторон регистрирующего прибора запорными элементами, отличающийся тем, что емкость выполнена прозрачной и на ее измерительной шкале или на стенке емкости установлены метки, соответствующие уровню бензина для разных типов карбюраторов, кроме того, емкость снабжена держателем трубки дополнительной емкости, соединенной ею со сливным штуцером емкости, причем крышка карбюратора, устанавливаемая на емкость, имеет быстродействующий фиксатор, а на корпусе блока управления с обеих сторон регистрирующего прибора расположены фиксирующие запорные элементы, и он оснащен легкосъемной сливной емкостью, снабженной также фиксирующим запорным элементом. 3 ил.

Изобретение относится к двигателестроению, в частности к устройствам для обкатки и испытания топливных насосов высокого давления дизелей. Устройство для обкатки топливного насоса высокого давления (7), соединенного топливопроводами (8) с форсунками (9), содержащее топливный бак (11) с фильтром (12) и трубопроводами (13), электродвигатель (16) и вал привода (1), связанный с кулачковым валом насоса, отличающееся тем, что передача крутящего момента на кулачковый вал обкатываемого насоса осуществляется через шарнир (4) неравных угловых скоростей, ведущий вал (3) которого соединен с приводным валом (1) стенда, а ведомый (5) - через муфту (6) с кулачковым валом обкатываемого насоса, причем положение ведущего (3) и ведомого (5) валов относительно друг друга в зависимости от технических требований к режиму обкатки меняется за счет перемещения обкатываемого насоса (7) относительно вертикальной оси шарнира (4) в горизонтальной плоскости. Технический результат заключается в повышении качества приработки пар трения механизмов топливного насоса, в упрощении конструкции механизма динамического воздействия на детали насоса и уменьшении продолжительности обкатки. 4 ил., 1 табл.

Изобретение относится к двигателестроению, в частности может использоваться для диагностирования плунжерных пар топливных насосов высокого давления (ТНВД) дизелей. Предложен способ диагностики плунжерной пары ТНВД дизеля, заключающийся в цикловой подаче топлива из надплунжерного пространства плунжерной пары ТНВД под давлением в открытую емкость устройства для диагностики плунжерной пары до полного ее заполнения. Измеряют плотность топлива, вязкость топлива и действительный объем топлива при полном заполнении емкости, измерение давления подаваемого топлива осуществляют в режиме реального времени. По полученным измерениям получают зависимость давления подаваемого топлива от времени полного заполнения открытой емкости, по которой определяют расчетный объем топлива при полном заполнении открытой емкости, после чего определяют разность Vут расчетного объема топлива и действительного объема топлива, поступившего в открытую емкость, по величине которой судят о величине износа плунжерной пары. Технический результат заключается в повышении эффективности определения степени износа плунжерной пары ТНВД. 1 ил., 1 табл.

Изобретение может быть использовано в системах испытания топливной аппаратуры дизельных двигателей. Устройство для определения пропускной способности форсунок и топливопроводов высокого давления содержит топливный бак (1), электронасос (2), нагнетательный (3) и сливной (4) топливопроводы. Также устройство содержит манометр (5), испытываемую форсунку (6) (или топливопровод высокого давления). При этом устройство имеет секундомер (7), гидропневмоаккумулятор (8) и обратный клапан (9). Обратный клапан (9) размещен между электронасосом (2) и гидропневмоаккумулятором (8) таким образом, что обеспечивает движение топливу в направлении от электронасоса (2) через нагнетательный топливопровод (3) в гидропневмоаккумулятор (8) и от гидропневмоаккумулятора (8) через сливной топливопровод (4) к испытуемой форсунке (6) (или топливопроводу высокого давления). 1 ил.

Изобретение относится к двигателестроению, в частности к устройствам для испытания и регулировки форсунок. Предложен стенд для испытания и регулировки форсунок, содержащий устройство противодавления (8), позволяющее создавать переменное противодавление впрыску топлива, меняющееся аналогично давлению газов в цилиндре двигателя в процессе впрыска, отличающийся тем, что устройство противодавления состоит из двух плунжеров (10, 11), регулировочных обойм (12, 13) с пружинами противодавления (14, 15) и перепускного клапана (19). Технический результат заключается в удешевлении и упрощении конструкции стенда. 2 ил.

Изобретение относится к диагностическим стендам для испытания и регулировки топливной аппаратуры дизельных двигателей внутреннего сгорания. Предложен способ испытания и регулировки дизельной топливной аппаратуры, позволяющий определить параметры работы форсунок, например давление начала впрыска топлива, с учетом противодавления впрыску топлива, равному давлению газов в цилиндре двигателя, что, в свою очередь, повышает точность измерения цикловой подачи топлива. Технический результат заключается в повышении качества регулировки дизельной топливной аппаратуры и повышении уровня автоматизации стенда. 1 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен способ диагностики топливной форсунки, в котором для уравновешивания крутящих моментов, производимых цилиндром двигателя, производят регулирование количества впрыскиваемого топлива или начало/конец синхронизации впрыска топлива в указанный цилиндр. В предложенном способе определяют уменьшение эффективности регулировки впрыска топлива или начала/конца синхронизации впрыска топлива при уравновешивании произведенных цилиндром крутящих моментов, когда минимальное количество топлива, впрыскиваемое в цилиндр или начало/конец синхронизации впрыска топлива, необходимые для уравновешивания крутящего момента цилиндра, находятся за пределами предопределенного диапазона. Предложенный способ диагностики топливной форсунки различает типы уменьшения эффективности работы форсунки. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии. По окончании испытания фиксируют цвет поверхности донышка инжектора, который сравнивают с цветовой шкалой, а склонность испытываемого бензина к образованию отложений оценивают в баллах, при этом каждые сутки после нерабочего состояния инжектора дополнительно оценивают герметичность его запорной иглы, при разгерметизации которой бензин считают некондиционным. Технический результат - сокращение продолжительности и повышение точности результатов испытаний. 1 табл., 2 ил.
Наверх