Многоступенчатый пластинчатый насос



Многоступенчатый пластинчатый насос
Многоступенчатый пластинчатый насос
Многоступенчатый пластинчатый насос
Многоступенчатый пластинчатый насос
Многоступенчатый пластинчатый насос

 


Владельцы патента RU 2495282:

Закрытое акционерное общество "Новомет-Пермь" (RU)

Изобретение относится к области машиностроения, а именно к многоступенчатым объемным насосам пластинчатого типа, которые могут быть использованы для подъема жидкости из нефтяных скважин. Многоступенчатый пластинчатый насос включает последовательно размещенные на общем валу ступени. Каждая ступень насоса содержит ротор 5, установленный с возможностью осевого перемещения на валу, статор 4, рабочие камеры между ротором 5 и статором 4, разделительные пластины 6, перемещающиеся в пазах, расположенных в диаметральной плоскости, нижнюю крышку 16 с входными окнами 21 и верхнюю крышку 17 с выходными окнами 22. Ротор 5 изготовлен в форме кулачка. Статор 4 сформирован из двух концентричных втулок и донышка 11 с образованием кольцевого зазора. Пазы 13 и 14 выполнены во внутренней втулке и донышке 11. Разделительные пластины 6 связаны синхронизирующим элементом 7, Входные и выходные окна 21 и 22 в крышках 16 и 17 ступени расположены напротив ее рабочих камер по разные стороны от разделительных пластин 6. Торцы крышек соседних ступеней состыкованы с образованием кольцевой полости, которая сообщена с кольцевым зазором предыдущей ступени. Изобретение направлено на повышение надежности насоса, упрощение конструкции и снижение ее себестоимости при перекачке жидкостей с высоким содержанием абразивных частиц. 7 з.п. ф-лы, 5 ил.

 

Изобретение относится к области машиностроения, а именно к многоступенчатым объемным насосам пластинчатого типа, которые могут использоваться для подъема жидкости из нефтяных скважин.

Известен пластинчатый насос, содержащий корпус-статор с радиальными пазами, в которых с возможностью возвратно-поступательного перемещения диаметрально размещены разделительные пластины, и кулачок-ротор, концентрично установленный в полости корпуса-статора с возможностью взаимодействия с пластинами и образованием рабочих камер, попеременно сообщаемых с всасывающими и нагнетательными отверстиями, при этом насос снабжен дополнительным корпусом, охватывающим корпус-статор с образованием кольцевого нагнетательного зазора, в котором размещено пружинное кольцо с возможностью взаимодействия с пластинами [Патент на полезную модель №1273 РФ, F04C 2/28, опубл. 16.09.1999]. Наличие пружинного кольца в таком насосе предотвращает заклинивание пластин при попадании во время работы абразивных частиц в зазор между пазами статора и пластинами. При работе в абразивной среде происходит равномерный износ торцов пластин связанный с тем, что пластины совершают только линейное перемещение.

Однако конструкция этого насоса консольная, поэтому не имеет возможности ступенчатого исполнения.

Наиболее близким по технической сущности и достигаемому эффекту к изобретению является многоступенчатый пластинчатый насос, включающий последовательно размещенные на общем валу ступени, содержащие ротор, установленный с возможностью осевого перемещения на валу, статор, рабочие камеры между ротором и статором, разделительные пластины, перемещающиеся в пазах, расположенных в диаметральной плоскости, нижнюю крышку с входными окнами и верхнюю крышку с выходными окнами. Внутренняя поверхность статора образована двумя парами симметрично расположенных дуг разных радиусов и плавными переходными участками от дуг большего радиуса к дугам меньшего радиуса. Каждая ступень снабжена предохранительным клапаном для сброса избытка давления и уплотнением. Крышки закреплены на статоре с размещением, по меньшей мере, двух окон напротив плавных переходных участков внутренней поверхности статора [Патент №2395720 РФ, F04C 2/344, опубл. 27.07.2010].

Данный насос имеет следующие недостатки при работе в абразивной среде:

1. Зазоры между пазами ротора и пластинами могут забиваться абразивными частицами, вследствие чего возможно заклинивание пластин, особенно при малых наружных диаметрах насоса, когда центробежных сил может не хватать для вывода пластин из ротора.

2. Повышенный износ торцов пластин, связанный с тем, что пластины помимо линейного перемещения совершают еще и радиальное движение совместно с ротором, к тому же за счет контакта с верхней или нижней крышкой пластины наклоняются в пазах ротора в пределах зазора паза.

3. Высокая стоимость насоса за счет необходимости выполнения пластин, статора, ротора и крышек из твердого сплава.

Задачей изобретения является повышение надежности насоса, упрощение конструкции и снижение ее себестоимости при перекачке жидкостей с высоким содержанием абразивных частиц.

Указанный технический результат достигается тем, что в многоступенчатом пластинчатом насосе, включающем последовательно размещенные на общем валу ступени, содержащие ротор, установленный с возможностью осевого перемещения на валу, статор, рабочие камеры между ротором и статором, разделительные пластины, перемещающиеся в пазах, расположенных в диаметральной плоскости, нижнюю крышку с входными окнами и верхнюю крышку с выходными окнами, согласно изобретению, что ротор изготовлен в форме кулачка, статор сформирован из двух концентричных втулок и донышка с образованием кольцевого зазора, пазы выполнены во внутренней втулке и донышке, разделительные пластины связаны синхронизирующим элементом, а входные и выходные окна в крышках ступени расположены напротив ее рабочих камер по разные стороны от разделительных пластин, при этом торцы крышек соседних ступеней состыкованы с образованием кольцевой полости, которая сообщена с кольцевым зазором предыдущей ступени.

В качестве синхронизирующего элемента может быть использовано металлическое или эластичное кольцо, а также установлены пружины у каждой разделительной пластины.

Для компенсации радиальных нагрузок в каждой последующей ступени ротор может быть повернут на 180° вокруг своей геометрической оси, а статоры размещены последовательно без поворотов. Для полной компенсации радиальных нагрузок при таком размещении роторов и статоров необходимо минимум 2 ступени.

Радиальные нагрузки могут быть компенсированы также и в том случае, если статоры соседних ступеней развернуты относительно друг друга на 90°, а роторы размещены последовательно на валу без поворотов. При такой компоновке ступеней для полной компенсации радиальных нагрузок потребуется как минимум 4 ступени.

Для увеличения износостойкости между ступенями или между рядом ступеней могут быть дополнительно установлены радиальные подшипники, тем самым компенсируются радиальные нагрузки и обеспечивается постоянный зазор между роторами и статорами.

Увеличению износостойкости также способствует дополнительная установка между ступенями или между рядом ступеней осевых подшипников, компенсирующих радиальные нагрузки, создаваемые ступенями, и осевую нагрузку, действующую на вал, но при этом осевой зазор между роторами и осевым подшипником должен отсутствовать. Тем самым обеспечивается постоянный зазор между статорами и торцевыми крышками.

Сущность изобретения поясняется чертежами, где на фиг.1 представлен заявляемый многоступенчатый пластинчатый насос с развернутыми на 180° роторами, 3/4 разрез: на фиг.2 - разнесенный вид ступени насоса: на фиг.3 - ступень насоса со стороны выхода без верхней крышки: на фиг.4 - то же, с пружинами в качестве синхронизирующего элемента; на фиг.5 - изометрия 3/4 разреза заявляемого пластинчатого насоса с промежуточным и осевым подшипниками.

Многоступенчатый пластинчатый насос (фиг.1) состоит из ступеней 1, последовательно расположенных на общем валу 2. Для увеличения износостойкости между ступенями 1 или между рядом ступеней могут быть дополнительно установлены радиальные подшипники 3, компенсирующие радиальные нагрузки и прогиб вала 2.

Каждая ступень 1 насоса содержит статор 4, ротор 5, диаметрально расположенные разделительные пластины 6, связанные между собой синхронизирующим элементом 7 например, металлическим (фиг.2) или эластичным (фиг.3) кольцом. В качестве синхронизирующего элемента могут быть установлены пружины 8 у каждой разделительной пластины (фиг.4). Статор 4 статор сформирован из двух концентричных втулок 9 и 10, расположенных на донышке 11 и образующих между собой кольцевой зазор 12, в котором размещен синхронизирующий элемент 7. Во внутренней втулке 9 выполнены радиальные пазы 13, переходящие в пазы 14 на донышке 11, в которые вставлены разделительные пластины 6. Ротор 5 выполнен в форме кулачка с профилированной наружной поверхностью 15. С торцов статора 4 неподвижно установлены нижняя 16 и верхняя крышки 17, ограничивающие пластины 6 и ротор 5 от осевого смещения. Фиксация крышек может быть осуществлена, например, с помощью штифта 18, проходящего через отверстия 19 в статоре 4 и 20 в крышках. На нижней крышке 16 расположены входные окна 21, а на верхней крышке 17 - выходные окна 22. Между внутренней втулкой 9, профилированной наружной поверхностью 15 и разделительными пластинами 6 образуются рабочие камеры всасывания 23 и нагнетания 24. Окна размещены в непосредственной близости к разделительным пластинам 6, входные окна 21- напротив рабочих камер всасывания 23, выходные 22 -напротив рабочих камер нагнетания 24 (фиг.4). Крышки 16 и 17 соседних ступеней состыкованы с образованием кольцевой полости 25, которая сообщена с кольцевым зазором 12 предыдущей ступени.

Для компенсации радиальных нагрузок ротор 5 каждой последующей ступени 1 устанавливается с поворотом на 180 градусов вокруг своей геометрической оси (фиг.1). В качестве альтернативного варианта решения этой проблемы статоры 4 соседних ступеней 1 можно развернуть относительно друг друга на 90°, а роторы 5 размещать последовательно без поворотов.

Для увеличения износостойкости между ступенями 1 или между рядом ступеней 26 дополнительно установлены упорные подшипники 28 без осевого зазора относительно ротора 5 (фиг.5).

Многоступенчатый пластинчатый насос работает следующим образом.

При вращении вала 2 ротора 5 разделительные пластины 6 скользят по его профилированной поверхности 15 и по обеим сторонам пластин 3 образуются рабочие камеры 23 и 24 переменного объема, поочередно сообщаемые с входными окнами 21 в нижней крышке 16 и выходными окнами 22 верхней крышки 17. При вращении ротора 5 по стрелке, указанной на фиг.2, объем камеры 23 увеличивается и вследствие чего происходит всасывание рабочего тела, а объем камеры 24 уменьшается, вследствие чего рабочее тело выталкивается в кольцевую полость 25 между верхней крышкой 17 и нижней крышкой 16 следующей ступени.

Далее рабочее тело поступает в следующую ступень 1 и частично возвращается в буферную полость, образованную кольцевым зазором 12 в статоре 4 и верхней крышкой 17. При взаимодействии с выступом ротора 5 разделительная пластина 6 перемещается по пазу 14 в донышке 11, утапливается в паз 13 и давит на синхронизирующее кольцо 7, которое прижимает диаметрально расположенную пластину 6 к ротору 5. Благодаря этому вывод пластин осуществляется механическим способом и обеспечивается постоянный контакт пластин 6 с ротором 5, а частицы, попавшие в зазор между пазами статора 13 и пластинами 6, выталкиваются либо истираются пластинами 6, что исключает их заедание.

В буферной полости рабочее тело давит на пластины 6, тем самым прижимая их к профилированной поверхности 15 ротора 5 и разгружая синхронизирующее кольцо 7. Ротор 4 последующей ступени повернут на 90° и процесс выдавливания рабочего тела из предыдущей ступени совпадает с процессом всасывания в последующую ступень, при этом радиальные нагрузки в ступенях частично компенсируются.

Для полной компенсации радиальных нагрузок между ступенями 1 или рядом ступеней 26 установлены промежуточные радиальные подшипники 27.

Таким образом, предлагаемая конструкция имеет высокую надежность за счет того, что пластины постоянно прижимаются к ротору, совершая только линейное перемещение, ротор не касается статора, а ступенчатая сборка обеспечивает гидравлическую разгрузку элементов насоса. Синхронизирующее кольцо исключает заедание пластин при попадании механических примесей в зазор между статором и пластиной. Надежность работы конструкции не зависит от наружного диаметра. Высокая технологичность, ремонтопригодность и низкая себестоимость обеспечивается за счет малого количества деталей и простоты их изготовления. Кроме того, простота формы деталей облегчает возможность упрочнение трущихся поверхностей, например, методами закалки или напыления твердых сплавов и позволяет использовать для их изготовления твердые сплавы, керамику, карбиды кремния или силицированный графит, что, в конечном счете, повышает износостойкость насоса при работе в абразивных средах.

1. Многоступенчатый пластинчатый насос, включающий последовательно размещенные на общем валу ступени, содержащие ротор, установленный с возможностью осевого перемещения на валу, статор, рабочие камеры между ротором и статором, разделительные пластины, перемещающиеся в пазах, расположенных в диаметральной плоскости, нижнюю крышку с входными окнами и верхнюю крышку с выходными окнами, отличающийся тем, что ротор изготовлен в форме кулачка, статор сформирован из двух концентричных втулок и донышка с образованием кольцевого зазора, пазы выполнены во внутренней втулке и донышке, разделительные пластины связаны синхронизирующим элементом, а входные и выходные окна в крышках ступени расположены напротив ее рабочих камер по разные стороны от разделительных пластин, при этом торцы крышек соседних ступеней состыкованы с образованием кольцевой полости, которая сообщена с кольцевым зазором предыдущей ступени.

2. Насос по п.1, отличающийся тем, что в качестве синхронизирующего элемента использовано металлическое кольцо.

3. Насос по п.1, отличающийся тем, что в качестве синхронизирующего элемента использованы эластичные кольца.

4. Насос по п.1, отличающийся тем, что в качестве синхронизирующего элемента установлены пружины.

5. Насос по п.1, отличающийся тем, что между ступенями или между рядом ступеней дополнительно установлены радиальные подшипники.

6. Насос по п.1, отличающийся тем, что между ступенями или между рядом ступеней дополнительно установлены упорные подшипники без осевого зазора относительно ротора.

7. Насос по п.1, отличающийся тем, что в каждой последующей ступени ротор развернут на 180° вокруг своей геометрической оси, а статоры размещены последовательно без поворотов.

8. Насос по п.1, отличающийся тем, что статоры соседних ступеней развернуты относительно друг друга на 90°, а роторы размещены последовательно на валу без поворотов.



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности к устройствам для предотвращения попадания влагосодержащего пара в цилиндры компрессоров, применяемых для повышения давления в трубопроводах по транспортировке природного газа на газоперерабатывающих заводах.

Изобретение относится к области энергетического машиностроения и может быть использовано в конструкциях роторно-лопастных механизмов роторных машин. Роторно-лопастная машина имеет неподвижный корпус 1, в котором выполнено более одной внутренней цилиндрической расточки 2, образующие рабочие камеры машины, с окнами подвода и отвода рабочей среды, сообщенными с напорной и сливной магистралями соответственно.

Изобретение относится к литым роторам, предназначенным для использования в установках или двигателях электровинтового насоса, и методам их формования. В соответствии с одним из вариантов реализации изобретения способ формования ротора 500 предусматривает использование литейной формы с профилированным геликоидным отверстием.

Изобретение относится к насосному колесу для лопастного насоса и лопастному насосу. .

Изобретение относится к гидравлическим насосам и моторам объемного вытеснения. .

Изобретение относится к области машиностроения и может быть использовано для вакуумирования, нагнетания и перекачивания жидкости и газа с одновременным учетом расхода рабочей среды.

Изобретение относится к гидравлическим машинам. .

Изобретение относится к машиностроению и может быть использовано в зубчатых передачах. .

Изобретение относится к нерегулируемым объемным гидравлическим машинам, а именно к гидронасосам и гидромоторам. .

Изобретение относится к области машиностроения, в частности к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла.

Изобретение относится к области машиностроения и касается насосов, применяемых в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. .

Изобретение относится к устройству для деления потока поровну между двумя и более объектами. .

Изобретение относится к области машиностроения и касается насосов, применяемых в маслосистемах теплонапряженных авиационных газотурбинных двигателей для подачи и откачки масла.

Изобретение относится к области машиностроения и касается насосов, применяемых в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. .

Изобретение относится к шестеренным гидромашинам и может быть использовано в гидросистемах различных машин, в том числе и в маслосистемах газотурбинных двигателей (ГТД).

Изобретение относится к области машиностроения и касается конструкции насосов, применяемых в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла.

Изобретение относится к насосам объемного типа, а более конкретно к корпусным многоступенчатым насосам, предназначенным для перекачивания газов, жидкостей и мультифазных смесей, не обладающих смазывающими свойствами, с высоким содержанием механических примесей и/или имеющих высокую вязкость, например, пластовых жидкостей нефтяных месторождений.

Изобретение относится к насосостроению и может быть использовано в системах топливопитания авиационных двигателей. .

Изобретение относится к гидравлическим машинам объемного вытеснения, преимущественно к насосным установкам, в составе которых имеется электропривод, и может быть использовано во всех отраслях промышленности, например в нефтехимической, нефтегазовой, а также в гидротранспортных или других системах, где насосные установки значительную долю времени работают в режиме «пуск-останов» при номинальной (паспортной) неизменной частоте вращения привода.

Изобретение относится к подводному добычному агрегату. Подводный добычной агрегат включает насос 31 и приводное устройство 32, которое герметизировано от окружающей воды и от технологической среды. Насос 31 и приводное устройство 32 объединены в один модуль, снабженный корпусом 3, и расположены в напорном корпусе 2. Напорный корпус 2 наполнен технологической средой и охватывает корпус 3 модуля. Корпус 3 защищен от неподвижного контакта с окружающей водой посредством технологической среды. Внутри напорного корпуса 2 и/или внутри корпуса 3 расположены сепарационные устройства для разделения жидкой фазы и газообразной фазы многофазной смеси. Для дозированной подачи сепарированной жидкой фазы в камеру всасывания 311 предусмотрен рециркуляционный канал от камеры 312 нагнетания насоса 31 или от напорного корпуса 2 к камере 311 всасывания насоса 31. Изобретение направлено на создание подводного добычного агрегата для углеводородов, который надежно работает и предотвращает опасность нанесения вреда окружающей среде вследствие неплотностей, без негативного влияния на работоспособность и надежность. 7 з.п. ф-лы, 1 ил.
Наверх