Способ локального подвода энергии к потоку воздуха, обтекающего объект

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к способам улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Способ локального подвода энергии к потоку воздуха, обтекающего объект, включает использование реакции горения топлива, например, водорода или углеводородного газа и электрического разряда для ускорения реакции горения. Потоки водородосодержащего топлива и воздуха в зону воспламенения подают раздельно, объединяют их в зоне воспламенения, предварительно - до зоны воспламенения - водородосодержащее топливо пропускают через зону электрического тлеющего разряда, в котором соотношение между напряженностью электрического поля Е и давлением газа Р устанавливают равным:

E P = ( 130 170 ) В с м т о р р , а расстояние от зоны разряда до локального места выделения энергии горения регулируют, исходя из скорости рекомбинации радикалов водорода (H) и скорости потока водородосодержащего топлива. Изобретение позволяет осуществить возгорание углеводородного топлива (водорода) при температурах, близких к комнатной, и давлениях ниже атмосферного, увеличить скорость сгорания углеводородного топлива, что важно для двигателей типа ГПВРД. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области аэродинамики и к энергетическим установкам различных объектов, например, транспортных средств, и может быть использовано для улучшения аэродинамического качества объектов путем подвода энергии к их внешней поверхности.

Известен способ подвода энергии к потоку за счет горения углеводородного топлива (пропана), например, [А.П. Ершов, О.С. Сурконт, И.Б. Тимофеев и другие. «Параметры электрических разрядов для воспламенения сверхзвуковых потоков пропан - воздушной смеси». III Международный симпозиум «Термохимические процессы в плазменной аэродинамике», Санкт-Петербург, 28-31 августа 2003 года, с.67].

По этому способу углеводородное топливо вводится в заданную зону горения сверхзвукового потока вместе с потоком воздуха, а воспламенение топлива осуществляется в газоразрядной секции с помощью поперечного электродного разряда. Этому способу присущи следующие недостатки:

- на электродах, установленных в потоке, возникают ударные волны, нарушающие однородность и тормозящие поток;

- при поддержании разряда основная часть его энергии уходит на возбуждение колебательных уровней азота и кислорода, на нагрев газа, что существенно снижает эффективность электроразряда для процессов образования радикалов водорода H, играющих существенную роль в возгорании водородсодержащей смеси и скорости горения.

Известен способ подвода энергии к потоку воздуха за счет горения пропана, эжектируемого в поток из отверстий на модели, взятый за прототип [работа V. Skvortsov, Yu. Kuznetsov, V. Litvinov, et al. Investigation of aerodynamic Effects at the Electric Discharge Creation on the Models of Different aerodynamic Effects at the Electric Discharge Creation on the Models of Different Geometry. The second Workshop on Magneto - Plasma - Aerodynamics in Aerospace Applications. M., 5 April, 2000, p.102].

В этой работе поджиг пропана осуществляют с помощью электрического разряда, а впрыск углеводородного топлива осуществляют через пластину-электрод, установленную в потоке. Недостатками способа является то, что процессы горения развиваются только в пограничном слое пластины, из которой эжектируется топливо, а также большие затраты электроэнергии на электрический пробой и поддержание электрического разряда в потоке воздуха, движущегося со сверхзвуковой скоростью. Кроме того, при организации разряда в смеси воздуха, водорода и углеводородных топлив трудно подобрать напряжение горения разряда, соответствующее образованию максимальной концентрации радикалов водорода.

Задачей и техническим результатом заявляемого изобретения являются повышение эффективности воздействия электрического разряда на поджиг топлива при смешении его с окислителем (воздухом) при низкой статической температуре смеси, а также ускорение реакции горения.

Решение поставленной задачи и технический результат достигаются тем, что в способе локального подвода энергии к потоку воздуха, обтекающего объект, включающем использование реакции горения топлива, например, водорода или углеводородного газа и электрического разряда для ускорения реакции горения, потоки водородосодержащего топлива и воздуха в зону воспламенения подают раздельно, объединяют их в зоне воспламенения, предварительно - до зоны воспламенения - водородосодержащее топливо пропускают через зону электрического тлеющего разряда, в котором соотношение между напряженностью электрического поля Е и давлением газа Р устанавливают равным

E P = ( 130 170 ) В с м т о р р ,

а расстояние от зоны разряда до локального места выделения энергии горения регулируют, исходя из скорости рекомбинации радикалов водорода (H) и скорости потока водородосодержащего топлива.

Кроме того, при больших расходах водородосодержащего топлива, его поток перед пропуском через зону электрического тлеющего разряда делят на несколько потоков с помощью решетки сопл, установленной на входе в устройство, а в сверхзвуковых камерах сгорания сопла размещают на топливных пилонах.

Оптимальные значения соотношения E/P разряда для получения максимального значения концентрации радикалов водорода (H) известно из литературы, например, [Г. Месси и Е. Бархоп. Электронные и ионные столкновения. И.Л., Москва, 1958 год, с.603].

Схема и график, поясняющие способ, приведены на фигурах.

На фигуре 1 приведена схема устройства по реализации предлагаемого способа с единичным тлеющим разрядом и с использованием в качестве топлива газообразного водорода.

На фигуре 2 приведены зависимости теплового потока Q, полученного при горении водорода, и прироста температуры газа ΔT от давления.

На фигуре 3 приведена схема устройства по реализации предлагаемого способа для больших расходов водородосодержащих смесей,

На фиг.4 показано размещение сопл на топливных пилонах с сечением A элемента сопла.

Устройство с единичным тлеющим разрядом, представленное на фигуре 1, содержит рабочую камеру 1 аэродинамической трубы, в которой размещены элементы устройства, используемого для ускорения горения водорода: электроразрядная трубка 6 с электродами 7, 9 и источник питания 10, сетка 8 для перемешивания топлива с воздухом, далее установлена камера смешения 11, которая состыкована с измерителем (калориметром) 4 тепла, выделяющегося при горении. На выходе из измерителя 4 тепла установлен газовый эжектор, которым заканчивается канал 5 выхлопа газа. Устройство оборудовано измерителями расхода газа 3, измерителями давления 2, через ВА показан вход атмосферного воздуха в рабочую часть, H2 - поступление газообразного водорода, ВД - поступление воздуха высокого давления в эжектор.

Т - измеритель температуры газа.

Работа устройства по реализации способа в варианте с одним соплом осуществляется следующим образом.

Воздух ВА из атмосферы подают в камеру смешения 11 за счет перепада давления, создаваемого эжекторной системой 5. Расход воздуха измеряют расходомером 3. Водород H2 из баллонов подают в электроразрядную трубку 6, давление в которой измеряют манометром 2. Зажигают электрический разряд в разрядной трубке 6, подавая напряжение на электроды 7, 9. Измеряют напряжение V на разрядном промежутке и определяют напряженность электрического поля Е. Регулируют V и P таким образом, чтобы отношение E/P было равно

E P = ( 130 170 ) В с м т о р р .

При воспламенении водорода в смеси с кислородом воздуха продукты горения направляют в канал калориметра 4. Измеряют изменение давления 2 в рабочей камере калориметра 4 и изменение температуры потока на выходе из калориметра Т.

Приведем пример параметров потока, электроразряда, энерговыделения в одном из экспериментов.

Реализован тлеющий разряд с параметрами: напряжение U=5 вB, ток I=10-2 А. Давление водорода в камере 2·104 Па, расход водорода 0,02 г/с. Отношение E P 160 В с м т о р р .

Тепловой поток, выделяющийся при сгорании водорода, измеряют калориметром, работающим на принципе газового термометра. Мощность, передаваемая стенкам калориметра от потока, равна

W = C m d T w d t ,

где C, m - теплоемкость и масса калориметра,

Tw - температура внешней поверхности тепловоспринимающего цилиндра калориметра.

Полная мощность, выделяющаяся при горении, равна:

Q=W+G·Cp·ΔT,

где Cp, G - теплоемкость и расход газовой смеси,

ΔT - изменение температуры газа на выходе из калориметра.

Вклад энергии в нагрев от электрического разряда оценен. Он пренебрежимо мал по сравнению с выделением тепла от горения водорода.

Опыты показали, что при реализации горения топлива по предлагаемому способу возгорание водорода происходило при температуре потока T≈300 К и давлении Р≈0,7·105 Па.

Сгорание топлива при этих условиях происходило полностью на длине калориметра, которая составляет ~ 0,5 м. При этом скорость потока ~ 200 м/с.

Зависимость увеличения теплового потока Q и прироста температуры ΔT газа в зависимости от давления в камере показаны на фиг.2

Из экспериментов видно, что предлагаемый способ эффективен, во-первых, с точки зрения снижения температуры воздуха, при которой происходит возгорание топлива. Так в проведенных экспериментах топливо загоралось при комнатной температуре, в то время как в описанных в литературе опытах при сходных прочих условиях топливо (водород) возгоралось при температуре Т≈900 К, смотрите, например, [А. Ешида, Г. Суй. Сверхзвуковое горение водорода в воздушном потоке. РТК, №4, 1997 год, с.18]. Во-вторых, скорость сгорания топлива возрастает настолько, что размеры, например, двигателя типа ГПВРД становятся вполне реальными. Так при пересчете размера камеры сгорания, использованной в вышеописанном эксперименте, на размер камеры сгорания в ГПВРД, где скорость потока воздуха составляет ~ 103 м/с, получаем размер камеры сгорания двигателя ~ 2,5 м, что без труда реализуемо.

Схема устройства по реализации предлагаемого способа при больших размерах рабочего канала (большие расходы водородосодержащей смеси) представлена на фигуре 3. При таком расходе углеводородного газа зажигание разряда заданного типа (термически неравновесный тлеющий разряд) с заданными параметрами ( E P 160 В с м т о р р ) весьма проблематично, поэтому поток делят на несколько потоков (струй) с помощью решетки сопл, при этом каждое сопло является электроразрядным устройством с электродами, например, один электрод - корпус сопла, другой электрод - стержень, проходящий через критическое сечение сопла; параметры потока газа через каждое сопло выбирают из условия реализации указанного отношения E/P, независимость электропитания разряда в каждом сопле обеспечивается или путем применения независимых источников питания или устройством балластных сопротивлений.

На фигуре 3:

12 - форкамера;

13 - решетка сопл с предионизаторами 14;

15 - камера и решетка для смешения углеводородного газа с воздухом;

16 - зона (камера) сгорания водорода;

17 - электроды.

18 - устройство с балластными сопротивлениями.

В форкамеру 12, подают углеводородный газ, затем его делят на несколько потоков с помощью решетки 13 сопл, установленных на входе в устройство, с укрепленными на них предионизаторами 14. Электрический тлеющий разряд зажигается между электродами 17 и стенкой сопла, являющейся вторым электродом (на фиг. не показано). Далее водородосодержащий газ поступает в камеру смешения 15, а затем смесь водородосодержащего газа с воздухом поступает в камеру сгорания 16. Балластные сопротивления 18 состоят из отдельных элементов соответственно для каждого из разрядов. Корпус сопла служит одним из электродов.

Решетка 13 сопл фиг.3 будет использоваться при дозвуковых скоростях потока на входе в устройство. При сверхзвуковых скоростях в камере сгорания, например в ГПВРД, сопла, которые одновременно являются электроразрядными устройствами, размещают в топливных пилонах, установленных на ее стенках. Смешение топлива и воздуха происходит в струях за топливным пилоном.

Схема размещения сопл на топливном пилоне с сечением А элемента сопла показана на фиг.4, где

19 - пилон,

20 - источник питания,

21 - сопло (электроразрядное устройство),

22, 23 - электроды сопла (электроразрядного устройства),

24 - предионизатор.

Сопла 21 установлены на задней по потоку кромке топливного пилона 19, к каждому подводится электропитание от независимого источника 20 и водородосодержащий газ. Истечение из сопл происходит в донный след за топливным пилоном, где и происходит смешение струй (на фиг.4 обозначены их границы). Число сопл, устанавливаемых на одном топливном пилоне, определяется из конструктивных соображений.

Предложенный способ локального подвода энергии к потоку воздуха, обтекающего летательный аппарат, или к потоку воздуха в двигателе позволяет:

- осуществить подготовку топлива к сгоранию путем наработки в нем активных радикалов H, пропуская топливо через зону тлеющего электрического разряда с значением E P 160 В с м т о р р ;

- осуществить возгорание водорода или углеводородного топлива при температурах, близких к комнатной, и давлении ниже атмосферного;

- увеличить скорость сгорания топлива в смеси с воздухом, что принципиально важно для разработки двигателей типа ГПВРД.

1. Способ локального подвода энергии к потоку воздуха, обтекающего объект, включающий использование реакции горения топлива, например водорода или углеводородного газа, и электрического разряда для ускорения реакции горения, отличающийся тем, что потоки водородосодержащего топлива и воздуха в зону воспламенения подают раздельно, объединяют их в зоне воспламенения, предварительно - до зоны воспламенения - водородосодержащее топливо пропускают через зону электрического тлеющего разряда, в котором соотношение между напряженностью электрического поля E и давлением газа P устанавливают равным:
E P = ( 130 170 ) В с м Т о р р ,
а расстояние от зоны разряда до локального места выделения энергии горения регулируют, исходя из скорости рекомбинации радикалов водорода (H) и скорости потока водородосодержащего топлива.

2. Способ по п.1, отличающийся тем, что при больших расходах водородосодержащего топлива его поток перед пропуском через зону электрического тлеющего разряда делят на несколько потоков с помощью решетки сопл, установленной на входе в устройство, а в сверхзвуковых камерах сгорания сопла размещают на топливных пилонах.



 

Похожие патенты:

Горелка // 2489649
Изобретение относится к области энергетики, в частности для сжигания газообразного топлива в топках котлов и промышленных печей. .

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности.

Изобретение относится к инжекционным горелочным устройствам, преимущественно к горелкам, предназначенным для поджига газокислородных машинных резаков. .

Горелка // 2446353
Изобретение относится к газовым горелкам. .

Горелка // 2446352
Изобретение относится к газовым горелкам. .

Изобретение относится к нагревательным устройствам и установкам для сжигания газа, которые могут быть использованы в различных областях техники для нагрева деталей, сжигания различных бытовых, промышленных и конверсионных отходов и др.

Горелка // 2406028

Изобретение относится к оголовкам факельной установки для сжигания аварийных выбросов газа и может быть использовано в нефтедобывающей, нефтеперерабатывающей, химической и других отраслях промышленности.

Топка // 2489647
Изобретение относится к области энергетики и может быть использовано на котлах тепловых электростанций при сжигании угольной пыли и природного газа. .

Горелка // 2488041
Изобретение относится к области энергетики и может быть использовано на котлах тепловых электростанций, сжигающих жидкое топливо, в том числе водоугольные суспензии, мазут, дизельное топливо.

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности.

Изобретение относится к области энергетики. .

Изобретение относится к области энергетики. .

Изобретение относится к области энергетики. .

Изобретение относится к области энергетики, в частности к способам интенсификации процессов сжигания горючих смесей, и может быть использовано при сжигании топлива в различных теплоэнергетических установках.

Изобретение относится к обогревающим устройствам с использованием катализа для беспламенного горения и может использоваться для индивидуального обогрева человека.

Изобретение относится к сжиганию в химическом контуре жидких углеводородов. Объектами настоящего изобретения являются устройство и усовершенствованный способ сжигания в химическом контуре, по меньшей мере, одной жидкой углеводородной загрузки, в котором жидкую загрузку распыляют при помощи распыляющего газа для ее введения в зону перемещения металлических оксидов, на входе зоны сжигания, через средства распыления, позволяющие получать капли, мелко диспергированные в распыляющем газе. Производят испарение жидкой загрузки в капли, находящиеся в контакте, по меньшей мере, с частью металлических оксидов в зоне перемещения, при этом рабочие условия в зоне перемещения определяют таким образом, чтобы поверхностная скорость газа после испарения жидкости превышала скорость перемещения частиц металлических металлов. Все эфлюенты, получаемые в зоне перемещения, направляют в зону сжигания, обеспечивающую восстановление металлических оксидов, при этом упомянутая зона сжигания содержит, по меньшей мере, один копящий слой в плотной фазе. Изобретение направлено на улавливание CO2 и на производство энергии. 2 н. и 15 з.п. ф-лы, 4 ил.
Наверх