Способ измерения показателя преломления газовых сред

Предлагаемое изобретение относится к оптическим измерениям. Способ измерения показателя преломления газовых сред основан на измерении частоты одночастотного перестраиваемого лазера, настроенного на максимум выбранной моды высокостабильного интерферометра Фабри-Перо, когда межзеркальное пространство заполнено газовой средой и когда оно вакуумировано. Значение показателя преломления газовой среды определяют отношением измеренных частот в вакууме и в присутствии газовой среды. Технический результат заключается в повышении точности определения показателя преломления газовых сред. 1 ил.

 

Предлагаемое изобретение относится к области «Прикладная оптика» и направлено на разработку способа измерения показателя преломления газовых сред с целью повышения точности измерения.

Известно множество способов измерения показателя преломления газовых сред. В зависимости от точности измерения выбирают тот или иной способ. Широкий класс задач в термодинамике и теплофизике, связанных с необходимостью экспериментального определения температурных полей вокруг нагретых тел, успешно решается интерферометрическими методами, не внося при этом возмущений в исследуемый объект [Скоков И.В. Многолучевые интерферометры в измерительной технике. М.: Машиностроение, 1989, с.181]. Измерение показателя преломления, например, оптических элементов, призм и т.д. осуществляется с непосредственным использованием закона преломления, т.е. реализуется метод измерения угла отклонения световых лучей [Иоффе Б.В. Рефрактометрические методы химии. Л.: Химия, 1974, 400 с.]. Для определения неоднородностей в прозрачных объектах и измерения градиента показателя преломления используется теневой метод.

Применяемые способы измерения показателя преломления газовой среды в вышеперечисленных работах не дают необходимой точности. Относительная погрешность измерения, составляющая ~(10-7-10-8), недостаточна для проведения ряд прецизионных научных исследований. Это в первую очередь касается физической оптики, спектроскопии и аналитической химии (получение новых веществ с заданными параметрами), термодинамики и теплофизики (исследование температурных полей) и т.д.

Известен способ измерения абсолютного значения показателя преломления газовых сред, являющийся прототипом предлагаемого изобретения. [Скоков И.В. «Многолучевые интерферометры», М., Машиностроение, 1969, 248 с.]. Определение абсолютного значения показателя преломления газовых сред осуществляется по изменению длины волны излучения в максимуме полосы пропускания интерферометра Фабри-Перо в условиях, когда давление газовой среды, находящаяся между зеркалами интерферометра Фабри-Перо меняется от атмосферного значения до вакуумного. Количественное значение изменение длины волны Δλ в этих условиях определяется по величине изменения диаметра i-го интерференционного кольца интерферометра Фабри-Перо, который также зависит от давления газовой среды т.е.

Δ λ = λ ( d i 1 2 d i 2 2 ) / 8 f 2 , ( 1 )

где λ - длина волны излучения;

di1, di2 - начальное и конечное значение диаметра i-го интерференционного кольца интерферометра Фабри-Перо;

f - фокусное расстояние регистрирующего объектива.

Таким образом показатель преломления газовых сред будет определятся выражением

n = λ λ m Δλ , ( 2 )

где m - число интерференционных колец, прошедших, например, через неподвижную диафрагму, за которой установлен фотоэлектрический приемник, при изменении давления газовой среды в интерферометре Фабри-Перо.

Из (2) видно, что при известном значении длины волны излучения λ принцип измерения показателя преломления газовых сред сводится к отсчету числа m и определению изменения длины волны Δλ при изменении давления газовой среды в межзеркальном пространстве интерферометра Фабри-Перо. Точность вычисления Δλ, а, следовательно, точность измерения показателя преломления газовых сред определяется точностью измерения диаметров i-го интерференционного кольца интерферометра Фабри-Перо, которая сравнительно низкая.

Таким образом, указанный способ из-за низкой точности не позволяет проводить прецизионные измерения показателя преломления, например, в разреженных газовых средах.

Задачей предлагаемого изобретения является повышение точности измерения показателя преломления газовых сред.

Способ измерения показателя преломления газовых сред, основанный на измерении значения максимума выбранной полосы пропускания интерферометра Фабри-Перо определяют частотным методом путем измерения частоты одночастотного перестраиваемого лазера, настроенного на максимум этой полосы, когда интерферометр Фабри-Перо вакуумирован, и когда максимум этой интерференционной полосы смещен в следствие наличия исследуемой газовой среды в межзеркальном пространстве интерферометра Фабри-Перо, а значение показателя преломления газовой среды определяют отношением этих измеренных частот.

На чертеже приведена структурная схема измерителя показателя преломления газовых сред, реализующая заявленный способ.

Устройство содержит: 1, 2 - фотоприемники; 3 - частотомер; 4 - оптический стандарт частоты; 5 - одночастотный перестраиваемый лазер; 6 - интерферометр Фабри-Перо со специальными зеркалами и вакуумной системой; 7 - автоподстройка частоты; 8, 9 - поворотные зеркала.

Интерферометр Фабри-Перо 6 по оптическому каналу связан с одночастотным перестраиваемым лазером 5, оптическим стандартом частоты 4 и фотоприемником 2, автоподстройка частоты 7 обладает кабельной связью с фотоприемником 2 и одночастотным перестраиваемым лазером 5, одночастотный перестраиваемый лазер 5 и оптический стандарт частоты 4 по оптическому излучению при помощи поворотных зеркал 8 и 9 связаны с фотоприемником 1, который имеет кабельное соединение с частотомером 3.

Предложенный способ осуществляется следующим образом. Для измерения показателя преломления газовой среды пространство между зеркалами интерферометра Фабри-Перо 6 вначале вакуумируется. Излучение одночастотного перестраиваемого лазера 5 поступает на вход интерферометра Фабри-Перо 6 и его частота νпл настраивается и стабилизируется при помощи автоподстройки частоты 7 по максимуму полосы пропускания такой моды k интерферометра Фабри-Перо 6, частота которой νk расположена наиболее близко к частоте излучения νосч оптического стандарта 4. Для простоты расчета эту настройку осуществляем (хотя это не принципиально) таким образом, чтобы νплk∠νосч. Это условие контролируется регистрацией частотомером 3 разностной частоты Δ1 между излучениями одночастотного перестраиваемого лазера 5 и оптического стандарта частоты 4, выделяемая фотоприемником 1, при пространственном совмещении этих излучений при помощи поворотных зеркал 8 и 9. Для этого случая частота максимума полосы пропускания вакуумированного интерферометра Фабри-Перо для моды k определяется

ν k = ν п л = ν о с ч Δ 1 , ( 3 )

где Δ1 - величина отстройки частоты, соответствующей для моды k относительно частоты оптического стандарта 4.

При замене вакуума исследуемой газовой средой в межзеркальном пространстве интерферометра Фабри-Перо 6 его оптическая длина увеличивается и максимум полосы пропускания для моды k сместится относительно частоты νk (в область низких частот на величину

Δ ν = K Δ i + ( Δ 2 Δ 1 ) , ( 4 )

где K - количество смещенных интерференционных полос, регистрируемых фотоприемником 2, при замене вакуума в межзеркальном пространстве интерферометра Фабри-Перо 6 исследуемой газовой средой;

Δ2 - разностная частота, выделенная фотоприемником 1 и измеренная частотомером 3, между частотой одночастотного перестраиваемого лазера 5, частота которого настроена на максимум полосы пропускания продольной k+K моды интерферометра Фабри-Перо 6, расположенная наиболее близко к частоте νосч и частотой оптического стандарта 4 в присутствии газовой среды; Δi - межмодовая частота интерферометра Фабри-Перо 6, заполненного газовой средой.

Количество смещенных интерференционных полос К интерферометра Фабри-Перо 6 определяется по числу максимумов сигналов, регистрируемых фотоприемником 2 в процессе замены в межзеркальном пространстве интерферометра Фабри-Перо 6 вакуума исследуемой газовой средой. При этом предварительно необходимо стабилизировать частоту одночастотного перестраиваемого лазера 5 частотно-фазовым методом по излучению оптического стандарта частоты 4, выполнив частотные условия (3).

Область дисперсии интерферометра Фабри-Перо 6 Δi можно определить с высокой точностью, измеряя разностную частоту ΔF между двумя далеко разнесенными максимумами полос пропускания интерферометра Фабри-Перо 6, составляющей несколько терагерц при известном количестве интерференционных полос на этом частотном интервале. Регистрация таких частот осуществляется фотоприемным устройством на основе диода Шоттки [Багаев С.Н., Божков В.Г, и др. «Квантовая электроника», 25(6), с.558-562, 1998 г.}. Кроме того, высокая точность измерения Δi зависит от точности настройки частоты одночастотного перестраиваемого лазера 5 на центр полосы пропускания интерферометра Фабри-Перо 6. При использовании зеркал в интерферометре Фабри-Перо 6 с малыми потерями и коэффицинетом отражения - 0,99999 достигается точность настройки на центр выбранной полосы пропускания интерферометра Фабри-Перо 6 ~1 Гц и относительная погрешность измерения Δi~(10-12-10-13) [Diddmax J.C., Udem Nh., Degguist J.C., и др. Science, 293, 825 (2001)].

Таким образом, при известных значениях νk и Δν (см. формулы (3) и (4)) определяется показатель преломления газовой среды

n = ν k ν k Δ ν = ν о с ч Δ 1 ( ν о с ч Δ 1 ) [ K Δ i + ( Δ 2 Δ 1 ) ] . ( 5 )

В заключение отметим, что регистрация предложенным частотным методом максимума полосы пропускания выбранной моды интерферометра Фабри-Перо 6 позволяет получать относительную точность измерения показателя преломления ~(1012÷1013), что на 3-4 порядка выше предложенного в прототипе.

Способ измерения показателя преломления газовых сред, основанный на измерении значения максимума выбранной полосы пропускания интерферометра Фабри-Перо, отличающийся тем, что значение указанного максимума полосы пропускания определяют частотным методом путем измерения частоты одночастотного перестраиваемого лазера, настроенного на максимум этой полосы, когда интерферометр Фабри-Перо вакуумирован, и когда максимум этой интерференционной полосы смещен вследствие наличия исследуемой газовой среды в межзеркальном пространстве интерферометра Фабри-Перо, а значение показателя преломления газовой среды определяют отношением этих измеренных частот.



 

Похожие патенты:

Изобретение относится к оптике и может быть использовано для измерения показателя преломления твердых веществ. .

Изобретение относится к физике атмосферы и может быть использовано при определении структурной характеристики показателя преломления, параметра Штреля и радиуса Фрида.

Изобретение относится к измерительной технике и предназначено для бесконтактного определения времени жизни неравновесных носителей заряда в тонких полупроводниковых пластинках.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости.

Изобретение относится к аналитическому приборостроению и может быть использовано в жидкостной хроматографии. .

Изобретение относится к области детектирования аналитов в среде. .

Изобретение относится к измерительной технике, а именно к измерению показателя преломления жидкостей, газов, стекол и других прозрачных сред. .

Изобретение относится к системам анализа цифровых изображений, в частности к системам представления в цифровых изображениях заслоняемых объектов. .

Изобретение относится к оптико-электронному приборостроению, а именно к способам и средствам измерения показателя преломления жидких и пастообразных веществ, использующим метод предельного угла, и может быть применено при создании средств измерения как оптически прозрачных, так и оптически непрозрачных жидкостей, паст, гелей, мелкодисперсных порошков и т.п.

Изобретение относится к оптике, к оптическим устройствам, основанным на использовании явлений интерференции световых потоков, например, использовании резонаторов Фабри-Перо, применяемых в научных исследованиях и технике для спектрального анализа и монохроматизации света.

Изобретение относится к измерительной технике. .

Изобретение относится к оптике, к оптическим устройствам, основанным на использовании явлений интерференции световых потоков, например, резонаторов Фабри-Перо, применяемых в научных исследованиях и технике для спектрального анализа и монохроматизации света.

Изобретение относится к области оптического приборостроения и может быть использовано при построении приборов для спектральной фильтрации оптических изображений, например, перестраиваемых по длине волны оптических фильтров, тепловизоров, работающих в заданных узких спектральных диапазонах.

Изобретение относится к области астрофизических измерений и может быть использовано для мониторинга одного из важнейших параметров солнечного изображения, а именно функции потемнения к лимбу.

Изобретение относится к области оптического приборостроения и может быть использовано для изучения микронеоднородностей в прозрачных средах. .

Изобретение относится к оптическому приборостроению, в частности к интерференционным приборам, предназначенным для сканирования спектра при спектральном анализе оптического излучения с высокой точностью и хорошей разрешающей способностью, его можно использовать в качестве сканирующего и перестраиваемого интерферометра Фабри-Перо, а также для селекции продольных мод излучения лазеров.

Светофильтр содержит плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности. В первом варианте светофильтр содержит также оптическую призму ввода излучения, закрепленную плоской гранью на тонкопленочном покрытии вблизи конца пластины. Показатели преломления призмы и пленки больше показателя преломления пластины. Во втором варианте конец пластины скошен под острым углом к поверхности тонкопленочного покрытия. Излучение вводится в пленку через скошенный конец пластины. Показатель преломления пленки больше показателя преломления пластины. Введенное в пленку излучение распространяется в ней под углом к поверхности пленки, граничащей с пластиной, меньшим угла полного внутреннего отражения, но большим угла полного внутреннего отражения второй поверхности пленки. Удаленный от места ввода излучения конец пластины может быть выполнен в виде цилиндрической или сферической линзы. Технический результат - создание светофильтра, обладающего высоким разрешением и большой областью дисперсии. 2 н. и 4 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к оптическим измерениям. Способ измерения показателя преломления газовых сред основан на измерении частоты одночастотного перестраиваемого лазера, настроенного на максимум выбранной моды высокостабильного интерферометра Фабри-Перо, когда межзеркальное пространство заполнено газовой средой и когда оно вакуумировано. Значение показателя преломления газовой среды определяют отношением измеренных частот в вакууме и в присутствии газовой среды. Технический результат заключается в повышении точности определения показателя преломления газовых сред. 1 ил.

Наверх