Устройство прецизионного перемещения полноразмерного керна в датчике ямр

Предложено устройство прецизионного перемещения полноразмерного керна в датчике ЯМР. Устройство содержит подающий и приемный конвейерные модули. Контейнер керна вместе с капроновым буксировочным тросиком, объединяющим подающий и приемный конвейерные модули, образует замкнутый контур. Техническими результатами являются упрощение конструкции, повышение надежности и уменьшение веса устройства. 3 з.п. ф-лы, 10 ил.

 

Предполагаемое изобретение относится к области физики, геофизики и геологии и может быть использовано в установке ЯМР для непрерывного анализа структуры и состава флюидов полноразмерного керна.

Известно устройство [1] (фиг.9, 10 Приложения 1) для перемещения керна (3), содержащее ленточный конвейер, около которого расположен магнит (5) с датчиком ЯМР (6). Лента конвейера (2) приводится в движение роликами (1). Керны (3), уложенные на ленту конвейера, по очереди проходят через рабочий объем датчика ЯМР (6) перпендикулярно седлообразному профилю магнитного поля. ЯМР эксперимент по контролю пористости выполняется на той части керна, которая расположена внутри рабочего объема датчика ЯМР. Керн может иметь диаметр от 2 до 3.5 дюймов (от 5.08 до 8.89 см).

Устройство [1] обладает следующими недостатками.

1. Отсутствуют приспособления, фиксирующие поперечное положение керна на ленте транспортера.

2. Отсутствуют приспособления, контролирующие движение керна через рабочий объем.

Наиболее близким по существу заявляемого изобретения прототипом, является устройство привода контейнера керна в автоматическом ЯМР анализаторе [2], упрощенное изображение взаимодействующих узлов которого показано на фиг.8.

Прототип и заявляемое устройство имеют общие признаки:

1. Привод и того и другого устройства состоит из двух частей - части, которая является смежной входной стороне и части смежной выходной стороне ВЧ блока ЯМР.

2. Оба устройства имеют приспособления, контролирующие положение контейнера керна вдоль его траектории движения.

3. В обоих устройствах для размещения керна используется контейнер из непроводящего немагнитного материала.

Элемент сцепления контейнера керна (14) (фиг.2), который позволяет его перемещать, это проточка (выемка), сделанная по всей длине вдоль нижней стороны контейнера. Элемент сцепления контейнера может быть зубчатым и входить в зацепление с зубчатым колесом двигателя (24) или наоборот, гладким и входить в контакт с роликом двигателя (24) посредством трения. Контейнер керна и ролик двигателя (24) саморасцепляются, когда контейнер переместится на расстояние большее длины элемента сцепления контейнера. Устройство привода содержит несколько шаговых двигателей с роликами (зубчатыми колесами), расположенных на некотором расстоянии один от другого вдоль несущей рамы. Для удерживания контейнера при его движении в центре рабочей зоны блока ЯМР служат боковые ролики (18), закрепленные в кронштейнах (20). Блок ЯМР, магнит и вся арматура прототипа установлены на общем основании, выполненным в форме рамы. По команде процессора устройство привода вводит контейнер с керном в блок ЯМР анализа с входной стороны, устанавливая последовательные участки керна в заданное положение в рабочем объеме блока ЯМР. Это положение контролируется сенсорными или оптическими датчиками. Блок ЯМР принимает заданное количество ЯМР откликов от последовательных участков керна.

Недостатками прототипа [2] являются:

1. Сложность и, следовательно, ненадежность конструкции устройства привода, которая может не выдержать полноразмерный керн весом до 30 кГ;

2. Отсутствие регулировки положения контейнера в рабочей зоне блока ЯМР по вертикали и горизонтали делает невозможным расположение керна в зоне наиболее однородного магнитного поля при изменении его диаметра, увеличивая погрешность анализа.

3. Большое количество шаговых двигателей, работа которых неустойчива при наличии внешнего магнитного поля (поля рассеяния магнита).

Заявленное техническое решение иллюстрируется следующими материалами.

На Фиг.1 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (внешний вид установки «ЯМР-керн»).

На Фиг.2 представлено элемент сцепления контейнера керна (который позволяет его перемещать УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (станина магнита Хальбаха).

На Фиг.3 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (ролик троса).

На Фиг.4 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (подающий модуль).

На Фиг.5 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ

ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР(подающий модуль).

На Фиг.6 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР(приемный модуль).

На Фиг.7 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (контейнер керна).

На Фиг.8 представлено УСТРОЙСТВО ПРЕЦИЗИОННОГО ПЕРЕМЕЩЕНИЯ ПОЛНОРАЗМЕРНОГО КЕРНА В ДАТЧИКЕ ЯМР (принцип действия транспортирующего устройства).

На Фиг.9. Упрощенное изображение взаимодействующих узлов прототипа № US 5525904 (A) «Determination of rock core characteristics» (МПК G01N 24/08; G01R 33/20; G01R 33/383; G01R 33/44; G01V 3/32; G01N 24/00; G01R 33/38; G01V 3/18.

На Фиг.10. Упрощенное изображение взаимодействующих узлов прототипа № US 5525904 (A) «Determination of rock core characteristics» (МПК G01N 24/08; G01R 33/20; G01R 33/383; G01R 33/44; G01V 3/32; G01N 24/00; G01R 33/38; G01V 3/18.

Целью предполагаемого изобретения является;

- упрощение конструкции,

- повышение надежности,

- уменьшение веса,

- удешевление устройства прецизионного перемещения керна в датчике ЯМР.

Поставленная цель достигается тем, что перемещение контейнера керна осуществляется по независимым опорным двухконусным роликам подающего и приемного конвейерных модулей посредством буксировочного непроводящего немагнитного тросика, концы которого закреплены в буксировочных кронштейнах торцевых крышек контейнера, образуя замкнутый контур.

Заявляемое изобретение использовано в установке «ЯМР-керн», предназначенной для непрерывного анализа структуры и состава флюидов полноразмерного керна. Суть заявляемого изобретения поясняется фиг.1, на которой показан внешний вид установки «ЯМР-керн». Установка состоит из следующих элементов.

1. Магнит Хальбаха.

2. Блок ЯМР.

3. Станина магнита Хальбаха с кронштейнами крепления конвейерных модулей и опорными роликами троса

4. Подающий конвейерный модуль.

5. Приемный конвейерный модуль.

6. Контейнер керна.

7. Буксировочный трос.

К составу заявляемого изобретения относятся позиции с (3) по (7). Рассмотрим их подробнее.

Станина магнита Хальбаха с кронштейнами крепления конвейерных модулей и опорными роликами показана на фиг.2. Станина имеет сварную конструкцию из стандартного дюралюминиевого профиля равнополочного швеллерного сечения (ГОСТ 13623-90) и неравнополочного уголкового сечения (ГОСТ 13738-91). На торцевой панели (8) станины на болтах (9) установлен кронштейн (10), для крепления приемного конвейерного модуля (5). На торцевой панели (11) - кронштейн (12) для крепления подающего конвейерного модуля (4). Кронштейны выполнены того же дюралюминиевого профиля неравнополочного уголкового сечения (ГОСТ 13738-91). Посадочные отверстия в кронштейнах (11) и (12) на два миллиметра больше диаметра болтов (9). Это дает возможность регулировки положения кронштейна относительно станины по вертикали и горизонтали. Параллельность же прилегающих плоскостей кронштейнов и панелей станины достигается установкой регулировочных шайб разной толщины, непоказанных на рисунке. Указанные регулировки обеспечивают соосность конвейерных модулей и блока ЯМР. В нижней части панелей (8) и (11) установлены ролики троса (13) и (14), фиг.3. Через эти ролики и отверстия (15) буксировочный трос (7) проходит от приемного (5) к подающему (4) конвейерным модулям.

Подающий конвейерный модуль (4) (фиг.4) представляет собой несущий корпус (16), выполненный из дюралюминиевого профиля равнополочного швеллерного сечения ГОСТ 13623-90. В выемках (17) стенок корпуса (16) в подшипниках качения (24) (фиг.5) установлены пассивные опорные двухконусные ролики (18). В непосредственной близости от места крепления модуля к кронштейну станины (12) установлен ролик троса (19) (фиг.3), с которого буксировочный трос попадает на ролик троса (14) станины. В стенках корпуса (16) установлены оптические датчики (20) положения контейнера керна. Корпус модуля (16) установлен на двух винтовых опорах, каждая из которых состоит из основания (21), выдвижного винта (22), и регулировочной гайки-барашка (23) для ручной юстировки соосности модуля и блока ЯМР.

Приемный конвейерный модуль (5), внешний вид которого показан на фиг.6, отличается от подающего модуля (4) тем, что имеет пять пассивных опорных двухконусных роликов (18) и один ведущий опорный двухконусный ролик (26). Ведущий двухконусный ролик соединен с редуктором электродвигателя (27) зубчатой передачей (28).

Контейнер керна (6) из непроводящего и немагнитного материала, часть которого, обращенная к приемному модулю, показана на фиг.7, состоит из основания (29), верхней крышки (30) и торцевой крышки (31) с буксировочным кронштейном (32).

Фиг.8 поясняет принцип действия транспортирующего устройства, который состоит в следующем. Как уже говорилось, контейнер керна (6) перемещается через рабочий объем датчика ЯМР при помощи буксировочного тросика (7), приводимого в движение ведущим роликом (26). Одним концом тросик закреплен в буксировочном кронштейне (32) на торцевой крышке контейнера (31) со стороны приемного конвейерного модуля (5), а другим концом - в буксировочном кронштейне на торцевой крышке контейнера со стороны подающего конвейерного модуля (4) Со стороны приемного модуля тросик проходит сверху над пассивными опорными двухконусными роликами (18), охватывает ведущий двухконусный ролик (26), делая один оборот вокруг него, и, затем, снизу возвращается к ролику троса приемного конвейера (25). Далее через ролик троса станины (13) и отверстия в элементах конструкции станины (15) (фиг.2) тросик попадает на второй ролик троса станины (14) и, затем, через ролик троса (19) проходит снизу пассивных двухконусных роликов подающего конвейера и через последний двухконусный пассивный ролик (18) сверху возвращается к контейнеру керна (6). Тросик в упруго натянутом состоянии закрепляется в буксировочном кронштейне торцевой крышки контейнера со стороны подающего конвейера, что позволяет контейнеру одинаково хорошо перемещаться как в прямом, так и в обратном направлении. Благодаря тому, что буксировочные кронштейны, к которым крепятся концы тросика, находятся в нижней части торцевых крышек, контейнер (6) в процессе движения не проворачивается вокруг своей продольной оси. В боковые стенки корпуса подающего конвейерного модуля (4) встроены оптические датчики (20), которые находятся на расстоянии 150 мм друг от друга, соответствующем размеру активной зоны датчика ЯМР. Наличие датчиков позволяет смещать контейнер керна в автоматическом режиме строго на одинаковое расстояние.

В качестве основного положительного эффекта использования предполагаемого изобретения следует отметить простоту и легкость его эксплуатации. Данный эффект возникает вследствие особенности конструкции устройства, заключающейся в том, что и подающий и приемный конвейеры выполнены в виде отдельных модулей роллингового типа (фиг.4 и фиг.6). Конструкция модулей предельно проста и практически одинакова. Как уже говорилось, различие состоит лишь в том, что у приемного конвейера - пять пассивных двухконусных роликов и один двухконусный ролик ведущий. Конвейерные модули, закрепленные на станине магнита, объединены буксировочным непроводящим немагнитным тросиком в функционально полный механизм. Контейнер керна приводится в движение лишь одним электродвигателем, редуктор которого вращает один ведущий двухконусный ролик, с обернутым вокруг него для надежного сцепления буксировочным тросиком.

Второй положительный эффект - отсутствие поперечного перемещения возникает из-за применения двухконусных роликов (фиг.5) в качестве опорных и направляющих контейнер керна элементов. Это исключает поперечное перемещение контейнера и позволяет центрировать его в зазоре магнита. В результате отпадает необходимость в боковых удерживающих роликах [2], что существенно упрощает и облегчает конструкцию каждого из модулей.

Третий положительный эффект - отсутствие проворачивания контейнера керна вокруг продольной оси. Данный эффект возникает вследствие творческого решения предложенного авторами, а именно - удачного расположения буксировочных кронштейнов, к которым крепится буксировочный тросик, в нижней части торцевых крышек контейнера. Это создает момент сил, стабилизирующий осевое положение контейнера.

Таким образом, предельная простота конструкции, достигаемая в том числе использованием стандартных деталей, малый вес, обусловленный использованием дюралюминия и надежность устройства прецизионного перемещения контейнера керна, позволяют сделать вывод о том, что цель предполагаемого изобретения достигнута. Совокупность упомянутых положительных качеств предполагаемого изобретения, делает возможным его серийное промышленное производство. Легкость монтажа устройства позволяет использовать его в мобильном варианте ЯМР анализатора - ЯМР анализаторе полноразмерного керна.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Патент США № US 5525904 (A) «Determination of rock core characteristics» (МПК G01N 24/08; G01R 33/20; G01R 33/383; G01R 33/44; G01V 3/32; G01N 24/00; G01R 33/38; G01V 3/18, заявитель: OXFORD INSTR LTD [GB], авторы: HANLEY PETER [GB], опубл. 1996-06-11).

2. Патент США № US 4885540 (A) «Automated nuclear magnetic resonance analysis» (МПК G01R 33/44; G01V 3/32, заявитель: АМОСО CORP [US], авторы: SNODDY MICHAEL L [US] и др., опубл. 1989-12-05).

1. Устройство прецизионного перемещения полноразмерного керна в датчике ЯМР, содержащее подающий и приемный конвейерные модули, отличающееся тем, что контейнер керна вместе с капроновым буксировочным тросиком, объединяющим подающий и приемный конвейерные модули, образует замкнутый контур.

2. Устройство по п.1, отличающееся тем, что подающий и приемный конвейерные модули вместе со станиной магнита Хальбаха образуют жесткую конструкцию, которая обеспечивает соосность блока ЯМР и контейнера керна.

3. Устройство по п.1, отличающееся тем, что подающий конвейерный модуль представляет собой роллинг с шестью пассивными сдвоенными двухконусными роликами в подшипниках качения, размещенными в выемках корпуса в виде стандартного дюралюминиевого профиля равнополочного швеллерного сечения.

4. Устройство по п.1, отличающееся тем, что приемный конвейерный модуль представляет собой роллинг с пятью пассивными двухконусными роликами и одним ведущим двухконусным роликом в подшипниках качения, размещенными в выемках корпуса в виде стандартного дюралюминиевого профиля равнополочного швеллерного сечения.



 

Похожие патенты:

Использование: для детектирования трехчастотного ядерного квадрупольного резонанса. Сущность: заключается в том, что осуществляют облучение образца на частоте υ- первым радиочастотным импульсом, вторым радиочастотным импульсом на частоте υ0, импульсы прикладываются на частотах соответствующих ЯКР переходов, регистрация сигнала осуществляется на третьей частоте ЯКР υ+, при этом все катушки датчика взаимно ортогональны, причем применяется многоимпульсная последовательность, состоящая из составных (композитных) импульсов, в которой каждый импульс представляет собой комбинацию из трех импульсов - первый импульс прикладывается на частоте υ-, второй импульс прикладывается на частоте υ0, затем прикладывается третий импульс на частоте υ-, при этом первые N циклов многоимпульсной последовательности содержат композитный импульс, в котором второй импульс имеет фазу 0°, вторые N циклов многоимпульсной последовательности содержат композитный импульс, в котором второй импульс имеет фазу 180°, регистрация сигнала происходит на частоте υ+, далее происходит когерентное накопление полученных сигналов в каждой последовательности и последующим вычитанием из сигналов, накопленных после первых N импульсов, сигналов накопленных после вторых N импульсов.

Изобретение относится к области применения ядерного квадрупольного резонанса (ЯКР) для исследования и анализа веществ и может использоваться в исследовательских целях, в медицине, в установках таможенного досмотра багажа и осмотра входящей корреспонденции в почтовых учреждениях (письма, бандероли, посылки) без их вскрытия.
Изобретение относится к области термометрии и может быть использовано для дистанционного измерения локальной температуры внутри вещества или живого организма. .

Изобретение относится к способам неразрушающего контроля пиловочных бревен и может быть использовано при проведении исследования внутренней структуры пиловочных бревен методом магнитно-резонансной томографии, результаты которого могут быть использованы в процессах лесопиления, гидротермической обработки, сушки, фанерном производстве, при сортировке пиловочных бревен, фанерных кряжей и т.д.

Изобретение относится к области техники, связанной с магнитным резонансом. .

Изобретение относится к технической экспертизе по определению давности события создания различного вида объектов из целлюлозосодержащего материала или объектов, содержащих на поверхности фрагменты, выполненные из целлюлозосодержащего материала, и имеющих на поверхности целлюлозосодержащего материала, по меньшей мере, один открытый участок, не имеющий покрытия, и, по меньшей мере, один участок покрытый, а также к способам определения давности события нанесения покрытия на указанный объект или на указанный фрагмент.

Датчик якр // 2476865

Использование: для диагностической визуализации. Сущность: заключается в том, что выполняют комбинированное формирование изображений посредством РЕТ-МР томографии (позитронно-эмиссионная (РЕТ)-магниторезонансная (MP) томография) для создания гибридных или улучшенных изображений, которые объединяют в себе преимущества обоих способов воздействия. В такой комбинированной конфигурации способов воздействия можно использовать контрастное вещество (80), которое включает в себя как РЕТ-метку (82), так и магниторезонансное средство усиления контраста (86). Контрастное вещество (80) также включает в себя систему (84) нацеливания, которая позволяет контрастному веществу (80) накапливаться в области, представляющей интерес. Технический результат: повышение качества диагностической визуализации. 6 н. и 9 з.п. ф-лы, 6 ил.

Предложен способ поиска и обнаружения наркотиков и взрывчатых веществ, находящихся в неметаллической оболочке и в укрывающих средах. Техническим результатом является повышение точности определения местоположения наркотического вещества. В веществе возбуждают магнитный резонанс с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества. Предполагаемое место закладки вещества зондируют плоскополяризованным сигналом. Сигналы, отраженные от наркотического вещества, имеют правую и левую круговую поляризацию. Сигнал с правой круговой поляризацией дифференцируют по времени и перемножают с зондирующим сигналом, формируют производную корреляционной функции и определяют расстояние до вещества. Диаграммы направленности приемных антенн создают равносигнальную зону. Отраженные сигналы с правой и левой круговой поляризацией сравнивают по фазе, формируют управляющее напряжение, зависящее от степени и стороны отклонения направления на вещество от равносигнальной зоны, вращают антенный блок в горизонтальной плоскости, при этом фиксируют азимут на вещество и определяют его местоположение. 3 ил.

Использование: для магниторезонансного обследования объектов. Сущность: заключается в том, что принимают множество групп магниторезонансных сигналов от объекта для различных положений опоры в двумерной области, причем по меньшей мере первое из положений и второе из положений смещены относительно друг друга в первом направлении, и причем по меньшей мере первое из положений и третье из положений смещены относительно друг друга во втором направлении, ортогональном первому направлению. Технический результат: обеспечение возможности высокого качества изображения крупного объекта. 3 н. и 7 з.п. ф-лы, 17 ил.

Использование: для определения содержания твердого жира по данным ЯМР-релаксации. Сущность: заключается в том, что осуществляют помещение исследуемого образца в ампулу для ЯМР измерений, проведение стандартной процедуры темперирования, помещение ампулы в датчик ЯМР-анализатора, поляризацию образца намагничивающим импульсом, при этом при помощи ЯМР-анализатора, работающего в комплексе с персональным компьютером, получают полную кривую спада магнитной индукции, которая записывается на ПК в виде файла, содержащего пары чисел - время и соответствующее значение амплитуды в каждой точке, затем осуществляют автоматизированный подбор параметров математической модели, описываемой соответствующей формулой до наилучшего совпадения с формой полной кривой спада, и рассчитывают содержание твердого жира по определенной формуле. Технический результат: повышение точности измерения содержания твердого жира. 4 ил.

Использование: для определения содержания твердого жира по данным ЯМР-релаксации. Сущность заключается в том, что осуществляют помещение исследуемого образца в ампулу для ЯМР измерений, проведение стандартной процедуры темперирования, помещение ампулы в датчик ЯМР-анализатора, поляризацию образца намагничивающим импульсом, при этом при помощи ЯМР-анализатора, работающего в комплексе с персональным компьютером, получают полную кривую спада магнитной индукции, которая записывается на ПК в виде файла, содержащего пары чисел - время и соответствующее значение амплитуды в каждой точке, затем осуществляют автоматизированный подбор параметров математической модели, описываемой соответствующей формулой до наилучшего совпадения с зарегистрованной полной кривой спада и рассчитывают содержание твердого жира по определенной формуле. Технический результат: упрощение процедуры измерений, исключение использования эталонного вещества. 3 ил.

Изобретение относится к области нефтегазовой геологии и может быть использовано при поиске углеводородов. Сущность: выполняют съемку рельефа акватории. По результатам съемки выявляют затопленные речные долины, пересекающие континентальный шельф. Зондируют донные осадки акустическими импульсами. Восстанавливают слои грунта и донных отложений до глубин 2-4 км. Анализируют структурно-денудационные формы рельефа и выделяют терригенные отложения. При выявлении предпосылок существования нефтегазовых участков выполняют зондирование грунта когерентным импульсным протонным спиновым эхом. Выполняют томографическое восстановление изображения исследуемого геологического разреза грунта на уровне призматических кристаллов. Дополнительно устанавливают не менее двух донных сейсмических станций для регистрации и анализа микросейсмических волн. С помощью пенетрометров, размещенных на указанных сейсмических станциях, определяют коэффициенты сопротивления и трения грунта, по которым определяют его прочностные характеристики. После этого отбирают пробы горных пород и растительности вдоль водотоков. Пробы горных пород разделяют на две фракции - более 0,1 мм и менее 0,1 мм. Первую фракцию анализируют на содержание Si, Al, Ti, Y, a вторую - на содержание Hg. Пробы растительности анализируют на содержание Ba, Cu, Pb, Zn, Ag. Результаты анализа фракции более 0,1 мм и проб растительности пересчитывают на соответствующие аддитивные показатели нормированных концентраций. Строят карты распределения указанных аддитивных показателей и Hg. Отождествляют объекты, характеризующиеся распределением аномальных значений аддитивных показателей и Hg в ряду Si, Al, Ti, Y-Ba, Cu, Pb, Zn, Ag-Hg-Ba, Cu, Pb, Zn, Ag-Si, Al, Ti, Y, с нефтегазоперспективными участками. Анализируют водную толщу на содержание метана. Определяют координаты газового образования. При выявлении разливов транспортируемого жидкого продукта с образованием нефтяного пятна процессы растекания и переноса нефти рассчитывают с учетом гидродинамических параметров водной среды. При зондировании грунта путем воздействия когерентным импульсным протонным спиновым эхом дополнительно зондируют гидросферу, при этом исследуемую среду подвергают одновременному воздействию СВЧ-излучения и переменного магнитного поля в области частот ядерно-магнитного резонанса, при этом СВЧ-излучение и постоянное магнитное поле поддерживаются в условиях резонанса, при этом измеряют уменьшение интенсивности одного сверхтонкого перехода при одновременном насыщении за счет большой мощности соответствующей СВЧ-частоты второго сверхтонкого перехода, дополнительно электронный парамагнитный резонанс подвергают оптическому детектированию, при этом спиновое состояние радикальной пары (синглетное или триплетное) изменяют вынужденным путем, вызывая спиновые переходы партнеров пары под действием резонансного микроволнового поля во внешнем магнитом поле, спектр электронного магнитного резонанса при этом регистрируется путем изменения выхода продуктов из радикальной пары аналитическим методом. Технический результат: расширение функциональных возможностей способа, повышение достоверности выявления перспективных нефтегазовых участков. 1 ил.

Использование: для измерения характеристик вещества методом ЯМР. Сущность: заключается в том, что для определения параметров самодиффузии исследуемого образца используют цикл импульсной последовательности, состоящий из заданного количества градиентных импульсов, длительность, форма, амплитуда и интервалы между которыми постоянны, и двух радиочастотных импульсов - 90-градусного и 180-градусного с интервалом т между ними, подаваемых в промежутках между третьим с конца и предпоследним градиентным импульсом и между предпоследним и последним градиентным импульсом соответственно. Амплитуда сигнала эха измеряется в момент его максимума - через время т после 180-градусного импульса или получается усреднением по интервалу времени вокруг этого момента. Для получения диффузионного спада циклы измерения повторяются с изменением одного из параметров цикла - амплитуды градиента, длительности градиентных импульсов или интервала между градиентными импульсами. Период повторения определяется временем релаксации образца. Положительный эффект достигается за счет установления квазистационарного состояния в серии градиентных импульсов, в результате чего последняя пара импульсов, входящая в измерительный цикл последовательности, становится близкой к эквивалентности. Технический результат: повышение точности получения диффузионного спада и определения коэффициента самодиффузии, расширение диапазона его измерения. 8 ил.

Использование: для оперативного контроля качества нефти и нефтепродуктов. Сущность изобретения заключается в том, что выполняют возбуждение в образце, помещенном в постоянное магнитное поле, сигналов спин-эхо протонного магнитного резонанса (ПМР) сериями радиочастотных импульсов, регистрируют амплитуды спин-эхо в эталонном и измеряемом образцах, причем в качестве эталонных образцов берут компоненты исследуемой смеси - воды и нефти (или нефтепродукта), измеряют эффективные времена спин-спиновой релаксации в эталонных и измеряемом образцах по начальным участкам огибающих эхо-сигналов в интервале, который выбирают определенным образом, при этом в образец добавляют компоненту смеси, обуславливающую величину сигнала ПМР компоненты с наименьшим содержанием, после чего определяют концентрацию воды и нефти согласно соответствующим математическим выражениям, кроме этого, дополнительно определяют интегральные параметры дисперсного распределения капель воды из времен спин-решеточной релаксации воды по определенной формуле. Технический результат: обеспечение возможности определения интегральных параметров дисперсного распределения капель воды. 4 ил.

Использование: для дистанционного обнаружения вещества посредством магнитного резонанса. Сущность изобретения заключается в том, что выполняют поляризационную селекцию и фазовый анализ для поиска и обнаружения запрещенных веществ, упакованных в неметаллическую оболочку. Технический результат: повышение помехоустойчивости приема сигналов и достоверности обнаружения вещества путем подавления ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам. 2 ил.

Изобретение относится к радиоспектроскопии ЯКР и может быть использовано для измерения размеров микрокристаллов, содержащих квадрупольные ядра. Способ включает регистрацию сигналов квадрупольного спинового эха, определение времени релаксации T 2 * посредством инверсии преобразования Лапласа, расчет эквивалентного радиуса гранул с помощью полученной формулы и предварительно измеренных констант, характерных для данного вещества. Измерения выполняются с помощью релаксометрии ядерного квадрупольного резонанса, а в качестве регистрируемого параметра используется время релаксации T 2 * . Техническим результатом изобретения является неразрушающий способ измерения размеров микрогранул в порошках, в микропористых и микрокомпозитных материалах, однозначно идентифицирующий материал измеряемых микрогранул, не требующий использования сильного поляризующего магнитного поля. 3 ил.
Наверх