Способ измерения комля древесного растения



Способ измерения комля древесного растения
Способ измерения комля древесного растения
Способ измерения комля древесного растения
Способ измерения комля древесного растения
Способ измерения комля древесного растения

 


Владельцы патента RU 2495418:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Марийский государственный технический университет (RU)

Изобретение относится к экологии и может быть использовано для измерения комля древесного растения. Для этого проводят выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания. Устанавливают местоположение шейки корня, измеряют диаметр ствола от шейки корня на стандартной высоте 1,3 м. При этом, отбор выполняют по всем видам и размерам древесных растений, измерения диаметра ствола каждого древесного растения выполняют без его разрушения. За комель древесного растения принимают участок ствола от корневой шейки до расчетной высоты с учетом доверительного интервала, границы которого вычисляются по формулам:

h D min = 1 ,3(1 exp( 0 ,064732D 1 ,12520 )) ; h D max = 1 ,4(1 exp( 0 ,35284D 0 ,72414 ))

где D - диаметр ствола древесного растения на измеряемой высоте, см,

h D min - нижняя граница минимальных значений измеряемой от корневой шейки высоты, м, h D max - верхняя граница минимальных значении измеряемой от корневой шейки высоты, м. Изобретение обеспечивает повышение точности анализа ствола в комлевой части у любых типоразмеров древесных растений, произрастающих на пробной площади. 1 з.п. ф-лы, 5 ил., 6 табл., 1 пр.

 

Изобретение относится к дендрометрии, например, при компонентном анализе лесного древостоя, а также к инженерной экологии при изучении компонентного экологического равновесия лесного древостоя, и может быть использовано в охране и защите лесной экосистемы, обустройстве лесного ландшафта, экологическом мониторинге лесной среды внутри древостое, технологическом мониторинге процессов естественного возобновления древесных растений и леса в целом при учете ежегодных изменений в распределениях диаметра комлевой части растущих деревьев, подлеска и подроста, поросли, кустарника и кустарничков.

Известен способ анализа древесного ствола, в том числе и измерения комлевой части, (см., например, учебник: В.К.Захаров. Лесная таксация. Изд-е 2-е, исправл. и доп.- М.: Лесная промышленность, 1967. - С.301, 304), включающий два частных процесса: а) полевых операций по отбору и обмеру деревьев; б) камеральной обработки полевых материалов. По первой части способ по аналогу включает действия: выбор участка насаждения и его характеристика, отбор одного, нескольких или всех деревьев с описанием их таксационных показателей.

Достоинством является то, что по этому техническому решению возможно действие отбора всех деревьев древостоя.

Недостатком известного способа является постоянная высота 1,3 м замера диаметра ствола дерева и одинаковая ступень толщины для всех измеряемых деревьев. В итоге измеряют деревья диаметром только 6-8 см и более (за рубежом 4 см и более), то есть измерению подвергают не все древесные растения. Например, в процесс таксации не включают подрост, который получает характеристику только по численности деревьев.

Известен также способ анализа древесного ствола измерением комля дерева с диаметром на стандартной высоте 1,3 м от корневой шейки и далее по патенту №2201593, включающий выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания, установление местоположения шейки корня, измерение расстояний на стволе от шейки корня.

Достоинством является то, что расстояния от корневой шейки принимаются некратной длины, но начиная со стандартной высоты 1,3 м.

Недостатком является то, что при этом некратная длина относится к участку ствола выше стандартной высоты 1,3 м и тем самым не определяется различие в ступенях толщины всех типоразмеров древесных растений, произрастающих на выбранной пробной площади. Измерение диаметра на стандартной высоте возможно только для лесных деревьев ступени толщины не менее 8 см. Поэтому недостатком является невозможность измерения на высоте 1,3 м толщины ствола мелких древесных растений подроста, подлеска, кустарника и кустарничков, поросли на пнях. Существующие способы измерения диаметра деревьев направлены не на древесные растения, а на взрослые особи для изготовления из них кругляка.

Технический результат - расширение функциональных возможностей и повышение точности анализа ствола в комлевой части у любых типоразмеров древесных растений, произрастающих на пробной площади.

Этот технический результат достигается тем, что способ измерения комля древесного растения, включающий выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания, установление местоположения шейки корня, измерение диаметра ствола от шейки корня на стандартной высоте 1,3 м, отличающийся тем, что отбор выполняют по всем видам и размерам древесных растений, произрастающих на выбранной пробной площади, измерения диаметра ствола каждого древесного растения выполняют без его разрушения, при этом за комель древесного растения принимают участок ствола от корневой шейки до расчетной высоты, зависящей от диаметра ствола на этой же высоте, причем с возрастанием диаметра ствола древесного растения верхнее сечение комля принимается не менее стандартной высоты.

Для учета всех биологических видов древесных растений разной продуктивности по древесине, за комель древесного растения принимают участок ствола от корневой шейки до расчетной минимальной и максимальной высоты, зависящих от диаметра ствола на этой же высоте по нижней и верхней границам доверительного интервала по количественным данным из следующей таблицы:

Высота hD замера от диаметра D ствола
Минимум Максимум
D, см h D min , м D, см h D max , м
0 0 0 0
1.2 0.1 0.2 0.1
6.0 0.5 1.2 0.5
16.0 1.0 6.0 1.0
- - 16.0 1.3

С возрастанием диаметра ствола древесного растения верхнее сечение комля принимается не менее стандартной высоты по формулам границ доверительного интервала:

h D min = 1 ,3(1 exp( 0 ,064732D 1 ,12520 )) ;

h D max = 1 ,4(1 exp( 0 ,35284D 0 ,72414 )) ,

где D - диаметр ствола древесного растения на измеряемой высоте, см,

h D min - нижняя граница минимальных значений измеряемой от корневой шейки высоты, м,

h D max - верхняя граница минимальных значений измеряемой от корневой шейки высоты, м.

По результатам измерений для учета биологических видов древесных растений по низкой и средней продуктивности по древесине, преимущественно в лесах средних и высоких широт России, за комель древесного растения принимают участок ствола от корневой шейки до расчетной минимальной высоты, зависящей от диаметра ствола на этой же высоте по нижней границе доверительного интервала, проведение измерений древесных растений на пробной площади выполняют по распределению ступеней толщины и высоты замера в зависимости от диаметра верхнего сечения комля по группам, приведенным в таблице:

Непрерывная шкала измерений диаметра ствола древесных растений по группам
1 2 3 4 5 6 7
D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м
0,01 0,000 0,1 0,01 1,2 0,10 3,5 0,30 6 0,5 16 1,0 36 1,3
0,02 0,001 0,2 0,01 1,4 0,12 4,0 0,34 7 0,6 18 1,1 40 1,3
0,03 0,002 0,3 0,02 1,6 0,14 4,5 0,39 8 0,6 20 1,1 44 1,3
0,04 0,002 0,4 0,03 1,8 0,15 5,0 0,43 9 0,7 22 1,1 48 1,3
0,05 0,003 0,5 0,04 2 0,17 5,5 0,46 10 0,8 24 1,2 52 1,3
0,06 0,004 0,6 0,05 2,2 0,19 6,0 0,50 11 0,8 26 1,2 56 1,3
0,07 0,004 0,7 0,06 2,4 0,21 6,5 0,54 12 0,8 28 1,2 60 1,3
0,08 0,005 0,8 0,06 2,6 0,22 7,0 0,57 13 0,9 30 1,2 64 1,3
0,09 0,006 0,9 0,07 2,8 0,24 7,5 0,60 14 0,9 32 1,2 68 1,3
0,1 0,006 1,0 0,08 3 0,26 8,0 0,64 15 1,0 34 1,3 ≥72 1,3

при условных обозначениях групп диаметров ствола древесных растений:

1 - мелкие саженцы и сеянцы (ступень толщины 0,01 см);

2 - средние саженцы и сеянцы, подрост, поросль (ступень 0,1 см);

3 - крупные саженцы, мелкий подрост, кустарнички, поросль (0,2 см);

4 - средний подрост, кустарник и кустарнички, поросль (0,5 см);

5 - крупный подрост, деревца, подлесок, крупный кустарник (1 см);

6 - лесные деревья (ступень толщины 2 см);

7 - лесные деревья (ступень толщины 4 см).

Для формирования непрерывной шкалы измерений диаметра ствола древесных растений, с учетом точности измерений по группам значений диаметра ствола, применяются измерительные инструменты: 1 - микрометр; 2-4 - штангенциркуль; 5-7 - мерная вилка.

Сущность технического решения заключается в том, что с учетом цены деления измерительных инструментов создается непрерывная шкала диаметров, от которых по математической функции предела роста рассчитывается высота измерения данного диаметра ствола.

Сущность технического решения заключается также в том, что измерения возможно проводить на древесных растениях любого биологического вида, возраста, формы и размеров.

Положительный эффект заключается в том, что предлагаемый способ измерений позволяет увязать комплексно все элементы леса по древесным растениям, не выделяя из растительного сообщества деревья. Это позволит перейти на экологическую таксацию древесных растений и на основе переменных значений высоты замера при различных диаметрах ствола оценивать компонентное экологическое равновесие сложного по составу древостоя с включением в него подроста, подлеска, кустарника и кустарничков, древесной поросли. Анализ компонент такой сложной системы объективнее позволяет оценить показатели экологической устойчивости и неустойчивости отдельных пород деревьев и давать прогнозы на процессы сукцессии. Наибольший эффект будет достигнут при моделировании динамики сукцессии элементов древесной растительности на пробной площади после ряда многолетних замеров по предлагаемой непрерывной шкале диаметра ствола. При этом способ применим в любых лесорастительных условиях, что в будущем позволит оценивать также и влияние лесной почвы и других подсистем лесной экосистемы.

Положительным является также и то, что предлагаемый способ применим и к существующей практике таксации деревьев по ступеням толщины, что подробно было показано в нашей книге (Мазуркин П.М., Долгих М.В. Компонентное равновесие и устойчивость древостоя. Йошкар-Ола: МарГТУ, 2011. 164 с.) и кратко пояснено на примере из указанной книги в конце описания изобретения. Для известных таксационных таблиц замеров диаметров лесных деревьев по ступеням толщины применятся только правая часть непрерывной шкалы измерений по данному способу.

Существенной новизной является измерение объединение древостоя с подлеском, подростом, кустарником и кустарничками, древесной пневой и корневой порослью. В итоге способ позволяет формировать общую подсистему леса под названием «древесный покров» или «древесная растительность». В итоге формируется действительно часть лесной экосистемы, учитывающая все видовые и возрастные распределения древесных растений на выбранной пробной площади. Это позволяет исключить узкое понимание древесных растений только как источника древесины и поднимет уровень лесоведения и лесоводства на научно обоснованный уровень.

Предлагаемое техническое решение обладает существенными признаками новизны, положительным эффектом и перспективой расширения областей практического применения дендрометрии в инженерной экологии при компонентном анализе сложного фитоценоза лесного древостоя, а также экологическом мониторинге охраны и защиты лесных участков на особо охраняемых территориях и технологическом мониторинге при экологически ответственном выращивании лесных деревьев и древостое в лесном хозяйстве.

Из научно-технической и патентной литературы материалов, порочащих новизну предлагаемого способа, не обнаружено.

На фиг.1 показана схема измерения трех древесных растений разной крупности ствола; на фиг.2 дана таблица изменения высоты замера в зависимости от измеряемого диаметра ствола по нижней минимальной и верхней максимальной границам доверительного интервала; на фиг.3 приведены графики границ доверительного интервала и формулы этих графиков;

на фиг.4 показан график нижней минимальной границы доверительного интервала, полученный в программной среде CurveExpert-1.38; на фиг.5 дана таблица в виде непрерывной шкалы измерений диаметра ствола древесных растений с указанием возрастающей ступени толщины при снижающейся точности измерений от микрометра до мерной вилки.

Способ измерения комля всех деревьев на пробной площади сложного разновозрастного древостоя включает такие действия.

Вначале на лесном участке выбирается пробная площадь для измерений всех находящихся на ней древесных растений, например, для компонентного экологического анализа древесной растительности. Если изучаемая древесная растительность на пробной площади распределена мозаично, то возможен и территориальный экологический анализ леса.

Затем, по очередности измерений, отбирается измеряемое древесное растение на пробной площади, выполняется эвристическое описание свойств выбранного древесного растения и места его произрастания. При этом измерения в последующем проводятся без разрушения древесных растений, то есть любой особи из растительности на пробной площади. Поэтому маршруты прохождения исследователей намечаются заранее и составляется абрис пробной площади с указанием тех мест, на которых возможно вытаптывание лесной почвы.

На каждом древесном растении устанавливают местоположение шейки корня и при этом за комель растущего древесного растения принимают участок ствола от корневой шейки до расчетной высоты, зависящей от диаметра ствола на этой же высоте, причем с возрастанием диаметра ствола древесного растения верхнее сечение комля принимается не менее стандартной высоты.

Для учета всех биологических видов древесных растений разной продуктивности по древесине, за комель древесного растения принимают участок ствола от корневой шейки до расчетной минимальной и максимальной высоты, зависящих от диаметра ствола на этой же высоте по нижней и верхней границам доверительного интервала по количественным данным из следующей таблицы:

Высота hD замера от диаметра D ствола
Минимум Максимум
D, см h D min , м D, см h D max , м
0 0 0 0
1.2 0.1 0.2 0.1
6.0 0.5 1.2 0.5
16.0 1.0 6.0 1.0
- - 16.0 1.3

С возрастанием диаметра ствола древесного растения верхнее сечение комля принимается не менее стандартной высоты по формулам границ доверительного интервала:

h D min = 1 ,3(1 exp( 0 ,064732D 1 ,12520 )) ;

h D max = 1 ,4(1 exp( 0 ,35284D 0 ,72414 )) ,

где D - диаметр ствола древесного растения на измеряемой высоте, см,

h D min - нижняя граница минимальных значений измеряемой от корневой шейки высоты, м,

h D max - верхняя граница минимальных значений измеряемой от корневой шейки высоты, м.

По результатам измерений для учета биологических видов древесных растений по низкой и средней продуктивности по древесине, преимущественно в лесах средних и высоких широт России, за комель древесного растения принимают участок ствола от корневой шейки до расчетной минимальной высоты, зависящей от диаметра ствола на этой же высоте по нижней границе доверительного интервала, проведение измерений древесных растений на пробной площади выполняют по распределению ступеней толщины и высоты замера в зависимости от диаметра верхнего сечения комля по группам, приведенным в таблице:

Непрерывная шкала измерений диаметра ствола древесных растений по группам
1 2 3 4 5 6 7
D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м D, см h D min , м
0,01 0,000 0,1 0,01 1,2 0,10 3,5 0,30 6 0,5 16 1,0 36 1,3
0,02 0,001 0,2 0,01 1,4 0,12 4,0 0,34 7 0,6 18 1,1 40 1,3
0,03 0,002 0,3 0,02 1,6 0,14 4,5 0,39 8 0,6 20 1,1 44 1,3
0,04 0,002 0,4 0,03 1,8 0,15 5,0 0,43 9 0,7 22 1,1 48 1,3
0,05 0,003 0,5 0,04 2 0,17 5,5 0,46 10 0,8 24 1,2 52 1,3
0,06 0,004 0,6 0,05 2,2 0,19 6,0 0,50 11 0,8 26 1,2 56 1,3
0,07 0,004 0,7 0,06 2,4 0,21 6,5 0,54 12 0,8 28 1,2 60 1,3
0,08 0,005 0,8 0,06 2,6 0,22 7,0 0,57 13 0,9 30 1,2 64 1,3
0,09 0,006 0,9 0,07 2,8 0,24 7,5 0,60 14 0,9 32 1,2 68 1,3
0,1 0,006 1,0 0,08 3 0,26 8,0 0,64 15 1,0 34 1,3 ≥72 1,3

при условных обозначениях групп диаметров ствола древесных растений:

1 - мелкие саженцы и сеянцы (ступень толщины 0,01 см);

2 - средние саженцы и сеянцы, подрост, поросль (ступень 0,1 см);

3 - крупные саженцы, мелкий подрост, кустарнички, поросль (0,2 см);

4 - средний подрост, кустарник и кустарнички, поросль (0,5 см);

5 - крупный подрост, деревца, подлесок, крупный кустарник (1 см);

6 - лесные деревья (ступень толщины 2 см);

7 - лесные деревья (ступень толщины 4 см).

Для формирования непрерывной шкалы измерений диаметра ствола древесных растений, с учетом точности измерений по группам значений диаметра ствола, применяются измерительные инструменты: 1 - микрометр; 2-4 - штангенциркуль; 5-7 - мерная вилка.

Данные заносят в журнал и затем их обрабатывают для получения в камеральных условиях таблиц исходных данных для моделирования по распределениям значений диаметра ствола и высоты его измерения. Если будут замерены и другие таксационные показатели каждого растения из всей древесной растительности на пробной площади, то статистическим моделированием выявляют двухфакторные закономерности влияния диаметра и высоты замера на другие показатели древесных растений.

Способ измерения комля древесных растений, например, только лесных деревьев для компонентного анализа сформировавшегося древостоя по ступеням толщины от 8 и более сантиметров по существующей в лесном хозяйстве методике России измерений диаметра ствола на стандартной высоте 1,3 м, включает такие действия.

Вначале на лесном участке выбирается пробная площадь для измерений находящихся на ней деревьев, как правило, на будущих делянках для расчета объема и товарной оценки стволов лесных деревьев по классам товарности в виде деловых и дровяных деревьев. Таких измерений выполняется огромное количество, но из полученных таблиц исходных данных не извлекается экологическая информация. В итоге, после рубки деревьев на лесосеке и продажи сортиментов результаты измерений и последующих расчетов просто выбрасываются. А они могли бы послужить, хотя и однократно, для экологической оценки компонентного равновесия в срубаемом древостое с тем, чтобы в дальнейшем мерами лесного хозяйства добиться высокой продукции будущего древостоя.

Особенно необходимо проводить, хотя бы на выделах леса в виде древостоев, перечет деревьев по ступеням толщины на стандартной высоте 1,3 м на особо охраняемых территориях с тем, чтобы проводить санитарные и другие виды рубок деревьев обновления и переформирования. И тем самым не дать погибнуть лесным угодьям, например, переданным от лесных предприятий заповедникам, национальным паркам, охотничьим хозяйствам и прочим лесным участкам, ан которых прекращена хозяйственная деятельность, в частности, заготовка древесины и иного сырья.

По очередности измерений отбирается измеряемое лесное дерево на пробной площади в виде выдела или же будущей делянки, выполняется эвристическое описание свойств выбранного дерева и места его произрастания. При этом измерения, например, по сплошному перечету, проводятся без разрушения измеряемых деревьев. Кроме того, такое упрощенное измерение предполагает игнорирование подлеска, подроста, кустарника и кустарничков, поросли.

Они по существующим способам измерений не имеют экономической ценности. Поэтому учитываются только взрослые и ценные особи.

На каждом дереве устанавливают местоположение шейки корня и при этом за комель растущего древесного растения принимают участок ствола от корневой шейки до стандартной высоты 1,3 м, которая при таком упрощенном варианте предлагаемого способа не зависит от диаметра ствола. Затем значения диаметра всех измеренных нескольких сотен деревьев в камеральных условиях распределяют по ступеням толщины ствола или же подвергают статистическому моделированию без группировки.

Пример. Он принят по сплошному перечету деревьев из нашей книги (Мазуркин П.М., Долгих М.В. Компонентное равновесие и устойчивость древостоя. Йошкар-Ола: МарГТУ, 2011. 164 с.). Для оценки показателей компонентного равновесия и устойчивости смешанного сосняка принята конкретная лесосека на Нолинском лесничестве (табл.1) в юго-восточной части Кировской области.

Таблица 1
Сплошной перечет деревьев всех пород на выделах 12 и 1 кв. 106
Ступень толщины d, см Количество деревьев, шт.
деловых Nд дровяных Nдр всего N
8 0 0 0
12 0 0 0
16 97 22 119
20 75 20 95
24 55 14 69
28 61 14 75
32 100 18 118
36 70 6 76
40 25 8 33
44 11 5 16
48 3 0 3
52 5 0 5
56 0 0 0
Итого 502 107 609

Результаты анализа измерений и моделирования идентификацией устойчивых биотехнических закономерностей будут достаточно достоверными, но все же не идеальными. В итоге пример реализует предложенный способ только в упрощенном частном виде.

В таблице численность деревьев сгруппирована по ступеням толщины и группам товарности. Этот подход называется таксацией при учете стволовой древесины.

Количество деловых деревьев примерно в пять раз превышает количество дровяных, что является показателем экологической обстановки на данной территории. Значительное количество 96,6% хвойных пород, процентное соотношение сосны к общему количеству деревьев составляет 74,7%.

Максимальное количество деловых деревьев трех пород равно 100 шт. при ступени 32 см. Однако, из-за максимума численности дровяных деревьев, общее количество 119 растений двух категорий состояния находится на ступени толщины 16 см. Второй максимум 118 штук виден на толщине 32 см. Максимумы у деловых и общего количества деревьев как бы поменялись местами. Это - результат внешнего влияния на древостой. Доля деловых деревьев составляет 100×502/609=82,43%. Этот показатель применим для сравнения разных древостоев друг с другом.

Коэффициенты устойчивости и неустойчивости. Коэффициент устойчивости Kу древостоя, в нашем примере смешанного сосняка на пробной площади, вычисляется по простой формуле

K у = N д /N , (1)

где Nд - количество деловых деревьев разных видов, шт.,

N - общее количество деловых и дровяных деревьев на пробной площади (в нашем примере на лесосеке 8,8 га), шт.

Коэффициент неустойчивости Кдр лесного древостоя по наличию деревьев дровяного качества определяется также по простой формуле

K др = N др /N , (2)

где Nдр - численность дровяных лесных деревьев разных пород, шт.

Отношение численности дровяных деревьев к деловым деревьям дает принципиально новый показатель - коэффициент Кн неустойчивости

K н = N др /N д , (3)

Все породы деревьев получают данные, приведенные в таблице 2.

Таблица 2
Коэффициенты устойчивости и неустойчивости древостоя
Ступень толщины d, см Коэффициент устойчивости Kу=Nд/N Коэффициенты неустойчивости
Kдp Kн
16 0,8151 0,1849 0,2268
20 0,7895 0,2105 0,2667
24 0,7971 0,2029 0,2545
28 0,8133 0,1867 0,2295
32 0,8475 0,1525 0,1800
36 0,9211 0,0789 0,0857
40 0,7576 0,2424 0,3200
44 0,6875 0,3125 0,4545
48 1,0000 0,0000 0,0000
52 1,0000 0,0000 0,0000
Итого 0,8243 0,1757 0,2131

В целом по древостою в нижней строке таблицы 2 получены значения показателей, которые применимы для сравнения с другими смешанными древостоями.

Коэффициент устойчивости сосняка равен Ку=0,8243.

Коэффициент неустойчивости сосняка по численности дровяных деревьев всех трех пород равен Кдр=0,1757.

Коэффициент неустойчивости сосняка по отношению числа дровяных деревьев к деловым стволам равен Кдр=0,2131.

Эффективность нового способа проявляется в том, что он позволяет анализировать любые древесные сообщества, в том числе и по результатам существующей лесной таксации диаметра ствола по крупным равномерным ступеням толщины на стандартной высоте измерения 1,3 м.

1. Способ измерения комля древесного растения, включающий выбор пробной площади, отбор дерева на пробной площади, описание свойств выбранного дерева и места его произрастания, установление местоположения шейки корня, измерение диаметра ствола от шейки корня на стандартной высоте 1,3 м, отличающийся тем, что отбор выполняют по всем видам и размерам древесных растений, произрастающих на выбранной пробной площади, измерения диаметра ствола каждого древесного растения выполняют без его разрушения, при этом за комель древесного растения принимают участок ствола от корневой шейки до расчетной высоты, с учетом доверительного интервала, границы которого вычисляются по формулам
h D min = 1 ,3(1 exp( 0 ,064732D 1 ,12520 )) ;
h D max = 1 ,4(1 exp( 0 ,35284D 0 ,72414 )) ,
где D - диаметр ствола древесного растения на измеряемой высоте, см,
h D min - нижняя граница минимальных значении измеряемой от корневой шейки высоты, м,
h D max - верхняя граница минимальных значении измеряемой от корневой шейки высоты, м.

2. Способ измерения комля древесного растения по п.1, отличающийся тем, что для измерений диаметра ствола древесных растений применяются следующие измерительные инструменты:
i) мелкие саженцы и сеянцы с диаметром ствола 0,01 см - микрометр;
ii) средние саженцы и сеянцы, подрост, поросль с диаметром 0,1 см, крупные саженцы, мелкий подрост, кустарнички, поросль с диаметром 0,2 см, средний подрост, кустарник и кустарнички, поросль с диаметром ствола 0,5 см - штангенциркуль;
iii) крупный подрост, деревца, подлесок, крупный кустарник ступень диаметром 1 см, лесные деревья диаметром 2 см, лесные деревья диаметром ствола 4 см- мерную вилку.



 

Похожие патенты:

Изобретение относится к экологии и может быть использовано для измерения ветвей кроны дерева ели. Для этого проводят описание свойств выбранного учетного дерева и места его произрастания.

Изобретение относится к производству древесных композиционных материалов (ДКМ) и может быть использовано при определении их химической безопасности. .

Изобретение относится к лесной промышленности и может быть использовано для анализа кроны учетной ели по испытаниям хвоинок годичных веточек. .

Изобретение относится к деревообрабатывающей промышленности, в частности к производству плоских пластинчатых материалов, таких как пиломатериалы и строганый шпон, получаемых путем продольного раскроя круглых лесоматериалов.

Изобретение относится к технике выявления и измерения морфологической неоднородности (структура) древесины внутри отдельных годичных колец. .

Изобретение относится к экологическому и технологическому мониторингу ландшафтов вдоль трасс продуктопроводов различных типов, в частности нефте- и газопроводов, а также линий электропередачи и связи, с травяной и древесной растительностью, растущей в промежутках времени между расчистками трассы.

Изобретение относится к деревообрабатывающей промышленности и может быть использовано при анализе токсичности клееных древесных материалов. .

Изобретение относится к неорганической химии и, в частности, к технологиям диагностирования материалов химической и атомной промышленности. .

Изобретение относится к лесопользованию и рационализации пользования древесными ресурсами и отходами от переработки древесного сырья в условиях промышленных предприятий и различных типов котельных, работающих на древесном топливе.

Группа изобретений касается способа измерения содержания влаги в биологическом материале. Для этого предоставляют справочную базу данных для множества различных типов материалов с известным содержанием влаги. Затем образец биологического материала, такого как древесная стружка (тонкие кусочки), сканируют с использованием электромагнитного излучения по меньшей мере на двух различных энергетических уровнях рентгеновского излучения. Определяют величину излучения, пропущенного через образец биологического материала, на указанных двух энергетических уровнях. Идентифицируют тип материала в указанной справочной базе данных, наиболее схожий с биологическим материалом образца. Определяют содержание влаги в указанном образце биологического материала. Также предложено устройство для измерения содержания влаги в биологическом материале. Группа изобретений обеспечивает оценку содержания влаги в биологическом материале в автоматизированной процедуре. 2 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к лесной, деревообрабатывающей промышленности и может быть использовано при сертификации древесины на корню в условиях лесного хозяйства и лесозаготовок, а также при сертификации древесины круглых и пиленых древесных материалов в условиях переработки древесного сырья и механической обработки древесины. Cпособ осуществляют введением сравнительных испытаний, хотя бы на одной технологической операции механической обработки древесины, между ультразвуковым испытанием на кернах и хотя бы одним стандартизированным способом испытания на стандартных образцах, например, на прочность древесины на образцах размерами 20×20×30 мм, затем определение значений переходного коэффициента от акустических показателей кернов, извлеченных из растущего дерева или круглых и пиленых лесоматериалов, находящихся в штабеле, к прочности древесины на стандартны, образцах, изготовленных из этих же древесных заготовок, а затем применение полученных значений переходного коэффициента на весь объем партии древесины, заготовленной с одной лесосеки или лесного участка. После взятия кернов изготовляют стандартные образцы, их измеряют ультразвуковым прибором, затем стандартные образцы испытывают на механические показатели древесины, а по результатам испытаний рассчитывают переходные коэффициенты между ультразвуковыми показателями кернов и стандартных образцов, а также переходные коэффициенты между ультразвуковыми показателями кернов и механическими показателями стандартных образцов. Достигается повышение надежности испытаний и расширение функциональных возможностей. 1 н.п., 2 з.п. формулы,1 прим., 3 ил.

(57) Изобретение относится к области лесной промышленности и предназначено для раннего выявления резонансных свойств древесины на корню. Образец зафиксирован с усилием затяжки 1,0 Нм через ленту из резины общего назначения твердостью в пределах 50-60 условных единиц, проложенную в зоне контактов кулачков зажима, с техническим зазором 1,0 между концами ленты 1,0-2,0 мм. Заявленный способ позволяет быстро и точно определить резонансные свойства древесины. 4 ил., 2 табл., 1 пр.

Изобретение относится к способу ультразвукового испытания технической древесины в виде чураков, например специальных сортиментов в виде резонансных чураков, и может быть использовано при сертификации древесины в условиях лесозаготовок, лесного хозяйства и деревообработки при контроле качества чураков при различных условиях их хранения, а также в инженерной экологии при оценке экологического качества территории по значениям скорости ультразвука древесины чураков, заготовленных на данной территории. Способ включает хранение технической древесины в виде чураков с естественной сушкой в штабелях до достижения устойчивой влажности, нанесение на торцы чурака радиальных линий с метками, установление датчиков ультразвукового прибора относительно меток на торцы, измерение ультразвуковых параметров древесины вдоль чурака по меткам. Непосредственно в штабеле на торцы испытуемого чурака дополнительно к радиальным линиям с метками наносят по две линии в виде концентрических окружностей, отмечающие присердцевинную, спелодревесную и заболонную зоны. Относительно примерно симметричных меток на торцах чурака устанавливают датчики ультразвукового прибора. После проведения измерений выявляют закономерности изменения ультразвуковых параметров древесины вдоль чурака. Способ обеспечивает упрощение процесса и снижение трудоемкости ультразвукового испытания и сертификации технической древесины в виде чураков и короткомерных спецсортиментов в штабеле, а также расширение функциональных возможностей метода ультразвукового испытания на заболонной и спелодревесной зонах сечения круглых лесоматериалов. 4 з.п. ф-лы, 3 ил., 3 табл., 1 пр.

Изобретение относится к дендрометрии при изучении относительного сбега комля в ходе роста и развития деревьев, преимущественно берез, и может быть использовано при фитоиндикации качества территорий и разработке мероприятий по защите земельных участков от водной эрозии, а также в дендроэкологическом мониторинге за развитием овражной сети с учетом изменений относительной формы комля растущих березовых деревьев. Способ анализа относительного сбега комля в ходе роста и развития березы, произрастающей на склоне оврага, характеризуется тем, что поперек оврага выбирают пробную площадь с деревьями, затем выбирают на пробной площади учетные деревья, измеряют высоту кроны и полную высоту учетных деревьев. У каждого учетного дерева на стандартной высоте 1,3 м измеряют диаметр и одновременно периметр поперечного сечения ствола. Комель дерева принимают в виде симметричной геометрической фигуры, расположенной вдоль вертикальной оси ствола учетного дерева. Высоту комля у каждого учетного дерева измеряют от поперечного сечения комля на корневой шейке до точки пересечения вертикальной оси с поверхностью почвы. Затем от этой точки до периферии комля на нижней стороне по склону измеряют полупериметр нижнего поперечного сечения комля. После этого с учетом местного угла склона у каждого учетного дерева дополнительно измеряют максимальную высоту комля от корневой шейки ствола до поверхности почвы на нижней стороне по склону у комля. По множеству измеренных берез выполняют расчеты относительных показателей в виде коэффициента формы поперечного сечения ствола дерева на стандартной высоте 1,3 м, относительного сбега поперечного сечения ствола дерева от корневой шейки до стандартной высоты 1,3 м, относительного сбега комля дерева от сечения на высоте комля до стандартной высоты над корневой шейкой дерева. Затем статистическим моделированием выявляют связь между параметрами относительного сбега комля берез, произрастающих на склоне оврага, относительно поперечного сечения на стандартной высоте и угла склона. Способ обеспечивает расширение функциональных возможностей анализа по относительному сбегу комлевой части деревьев, произрастающих на склоне оврага или холма, а также повышение точности измерений березы ниже корневой шейки, начиная от стандартной высоты ствола в 1,3 м над корневой шейкой дерева до поверхности склона оврага или холма. 5 з.п. ф-лы, 12 ил., 11 табл., 1 пр.

Изобретение относится к дендрометрии при изучении роста и развития комля деревьев, преимущественно берез, и может быть использовано при фитоиндикации территорий и разработке мероприятий по защите земельных участков от водной эрозии, экологических и климатических технологий, а также в дендроэкологическом мониторинге за развитием овражной сети и рационализации землепользования с учетом изменений формы комля растущих, в частности, березовых деревьев. Cпособ включает выбор пробной площади с учетными деревьями, измерение высоты кроны и полной высоты всех учетных деревьев. Форму комля как симметричную геометрическую фигуру учитывают от поперечного сечения комля на пересечении с поверхность почвы до стандартной высоты 1,3 м. Проводят измерения периметров комля не менее чем в трех поперечных сечениях комля каждого учетного дерева ниже корневой шейки ствола, а по измеренным данным, дополнительно с учетом периметров корневой шейки и сечения ствола на стандартной высоте 1,3 м, выявляют математическую закономерность симметричной формы комля по единой общей формуле. По параметрам выявленной единой математической закономерности формы комля выявляют рейтинг учетных деревьев для оценки качества формы комля, после чего выявляют закономерности с волновыми возмущениями влияния параметров учетных деревьев и их комлей на параметры в общем виде у математического уравнения формы комля. Для оценки качества места произрастания выделяют закономерности с волновыми возмущениями с сильной теснотой коррелятивной вариации для последующего выделения лимитирующих факторов комля и самого учетного дерева. Способ обеспечивает расширение функциональных возможностей анализа формы комля деревьев, прежде всего берез, произрастающих на ровной местности или на склоне оврага, а также повышение точности измерений деревьев ниже корневой шейки, начиная от стандартной высоты ствола в 1,3 м над корневой шейкой дерева до поверхности почвы. 5 з.п. ф-лы, 14 ил., 8 табл., 1 пр.

Изобретение относится к измерительной технике и может быть использовано для определения прочности растительных материалов (соломы, зерен злаков, отходов древесины и др.) в условиях сдвига с целью обоснованного расчета и конструирования измельчающего оборудования. Устройство содержит рабочие органы, нагружающее устройство с измерителем усилия сдвига. Рабочие органы выполнены в виде внешнего неподвижного и внутреннего подвижного цилиндров, сопряженных между собой по посадке с зазором и имеющих соосные радиальные отверстия одного диаметра для размещения испытуемых образцов. Диаметр сечений испытуемых образцов соответствует диаметру соосных радиальных отверстий, а их длина - суммарной толщине стенок внешнего неподвижного и внутреннего подвижного цилиндров, которые в свою очередь снабжены соответственно охватывающим и охватываемым вкладышами для фиксации испытуемых образцов. Технический результат: повышение достоверности результатов определения сдвиговой прочности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способам определения содержания лигнина Класона. Способ определения лигнина заключается в том, что к лигноцеллюлозному материалу добавляют водно-диоксановый раствор, полученный смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 2 М раствор гидроксида натрия, объем реакционной смеси доводят дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. Изобретение заключается в упрощении и ускорении выполнения анализа. 2 табл., 24 пр.

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов. Полученные данные передают в компьютер с программным обеспечением. После обработки данные заносят в карточку вместе с видеоинформацией об измеряемом объекте и по мобильной телефонной связи передают на центральную базу учета данных. Измерения объема пучка лесоматериалов могут производиться в любую погоду и в любое время суток. Технический результат - упрощение измерения объема пучка лесоматериалов вне зависимости от их вида, в том числе за счет измерения суммарной площади торцов с помощью сканера. 1 ил.

Изобретение относится к области исследования материалов строительных конструкций здания с помощью тепловых средств. Способ выявления параметров локального пожара включает проведение технического осмотра строительных конструкций деревянного перекрытия здания, подвергавшихся действию термического градиента в условиях локального пожара; выявление схемы огневого воздействия на составные элементы перекрытия; установление породы и сорта строительной древесины, показателей ее плотности и влажности в естественном состоянии, массивности элементов деревянного перекрытия, нахождение нормативного сопротивления строительной древесины на изгиб и скорости ее выгорания, отличающийся тем, что технический осмотр деревянного перекрытия здания дополняют инструментальными измерениями геометрических размеров площади горения, назначают контрольную ячейку перекрытия в очаге пожара, измеряют площадь поперечного сечения проемов ячейки перекрытия, вычисляют показатель проемности ячейки перекрытия; определяют толщину слоя обугливания поперечного сечения элементов деревянного перекрытия; вычисляют величину горючей загрузки, массовую скорость выгорания строительной сосновой древесины в ячейке перекрытия и коэффициент снижения скорости выгорания сосновой древесины, затем выявляют длительность локального пожара и максимальную температуру локального пожара, которые вычисляют из заданных соотношений. Достигается получение достоверной оценки основных параметров разрушительности прошедшего пожара, а также снижение трудоемкости и сокращение сроков проведения технического осмотра термоповрежденных элементов деревянного перекрытия здания. 1 з.п. ф-лы, 4 ил., 1 пр.
Наверх