Магниторезистивный датчик

Изобретение относится к измерительной технике и может быть использовано в устройствах контроля и измерения перемещений, магнитного поля и электрического тока. Магниторезистивный датчик содержит замкнутую мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки ферромагнитного металла, проводник перемагничивания, сформированный в виде меандра из пленки немагнитного металла, и двухслойный проводник управления, сформированный в виде плоской катушки и состоящий из слоя немагнитного металла и слоя ферромагнитного металла. Изобретение обеспечивает уменьшение энергопотребления магниторезистивного датчика. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам, а именно к магниторезистивным датчикам, основанным на использовании анизотропного магниторезистивного эффекта, и может быть использовано в измерительной технике в устройствах контроля и измерения магнитных полей, электрических токов и линейных перемещений.

Известен магниторезистивный датчик магнитного поля с нечетной передаточной характеристикой, содержащий мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки магнитомягкого ферромагнитного металла (Патент US №4847568, 1989).

Магниторезисторы в таком датчике представляют собой полоски, изготовленные методами литографии из пленки магнитомягкого ферромагнитного металла, ориентированные вдоль оси легкого намагничивания (ОЛН) исходной пленки. С целью формирования нечетной передаточной характеристики на поверхности полосок нанесены, так называемые, полосы Барбера, представляющие собой низкорезистивные шунты из немагнитного металла, ориентированные под углом 45° к длине полоски. Благодаря наличию низкорезистивных шунтов электрический ток в полосках течет примерно под углом 45° к длине полоски и, соответственно, к ОЛН полоски. В соседних плечах мостовой схемы полосы Барбера в магниторезистивных полосках под углом ±45° к длине полоски. Благодаря этому в отсутствие магнитного поля угол между направлением тока и намагниченностью полосок в соседних плечах моста составляет примерно ±45°. При появлении магнитного поля в направлении перпендикулярном направлению ОЛН угол между направлением тока и намагниченностью полосок в соседних плечах моста изменяется в разные стороны (в одних уменьшается, а в других увеличивается), что, в свою очередь, ведет к уменьшению и увеличению сопротивления магниторезисторов в соседних плечах и, соответственно, к изменению разбаланса мостовой схемы.

Недостатком такого датчика является технологическая сложность создания полос Барбера. Кроме того, в таких датчиках принципиально невозможно использовать ферромагнитные сплавы с повышенным значением поля магнитной анизотропии, что сужает диапазон измеряемых магнитных полей.

Прототипом предлагаемого технического решения является магниторезистивный датчик магнитного поля, содержащий следующие электрически изолированные друг от друга и от подложки функциональные элементы: замкнутую мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки магнитомягкого ферромагнитного металла, проводник перемагничивания, сформированный виде меандра из пленки немагнитного металла и проводник управления, сформированный в виде плоской катушки из пленки немагнитного металла (Патент РФ №2279737 C1, МКИ H01L 43/08).

Магниторезисторы в таком датчике состоят из коротких полосок магнитомягкого ферромагнитного металла, соединенных последовательно низкорезистивными перемычками из немагнитного металла и ориентированных в соседних плечах моста под углом ±45° к оси легкого намагничивания (ОЛН) исходной пленки. Благодаря такому решению угол между намагниченностью полосок и ОЛН в соседних плечах моста в отсутствие внешнего поля составляет примерно ±45°, а при появлении магнитного поля в направлении, перпендикулярном ОЛН, начинает изменяться в противоположных направлениях, что, в свою очередь, ведет к изменению разбаланса мостовой схемы пропорционально значению напряженности магнитного поля.

Проводники перемагничивания и управления в таком датчике изготовлены из немагнитного металла. При этом проводник управления формируется в виде планарной катушки и используется для уменьшения начального сигнала (технологического разбаланса) его мостовой измерительной схемы. Для этого по проводнику управления пропускают постоянный ток. При прохождении тока вокруг рабочих полосок проводника управления возникает магнитное поле, которое приводит к изменению разбаланса мостовой схемы. Значение и направление тока, пропускаемого по проводнику управления, определяют при калибровке датчика в зависимости от значения и знака технологического разбаланса мостовой схемы. Это значение, как правило, выбирают таким, чтобы начальный сигнал (разбаланс мостовой измерительной схемы) датчика был близким к нулю при заданном (обычно нулевом) значении внешнего магнитного поля.

Недостатком известного магниторезистивного датчика является его большое энергопотребление, обусловленное необходимостью задавать достаточно большой ток в проводнике управления для уменьшения начального сигнала датчика с большим по абсолютной величине значением технологического разбаланса. Указанный недостаток в свою очередь обусловлен низкой чувствительностью мостовой измерительной схемы датчика к току в его проводнике управления.

Задачей, поставленной и решаемой настоящим изобретением, является: уменьшение энергопотребления магниторезистивного датчика.

Указанный технический результат достигается тем, что в магниторезистивный датчик, содержащий мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки ферромагнитного металла, проводники перемагничивания и управления, сформированные из пленки немагнитного металла введен дополнительный элемент, а именно на проводнике управления сформирован дополнительный слой из такого же ферромагнитного металла, что и магниторезисторы,

Кроме того, ось легкого намагничивания дополнительного слоя ферромагнитного металла ориентирована параллельно оси легкого намагничивания пленки, из которой сформированы магниторезисторы. Сущность изобретения заключается в том, что в предлагаемом устройстве создан двухслойный проводник управления, состоящий из слоя немагнитного металла с высокой проводимостью и слоя ферромагнетика. При этом рабочие полоски проводника (планарной катушки) управления ориентированы вдоль ОЛН магниторезисторов. В отсутствие тока в проводнике управления намагниченность ферромагнитного слоя в рабочих полосках управляющей катушки ориентирована вдоль ОЛН, т.е. вдоль длины рабочих полосок проводника управления. При пропускании тока по проводнику управления под воздействием магнитного поля, возникающего вокруг рабочих полосок, вектор намагниченности ферромагнитного слоя разворачивается в направлении, перпендикулярном полоске и тем самым усиливает компоненту вектора магнитного поля, созданного током. Такое техническое решение обеспечивает увеличение магнитного поля вокруг проводника управления соответствующего одному и тому же значению тока в проводнике управления и тем самым, повышение чувствительности мостовой измерительной схемы к току в проводнике управления. При этом благодаря тому, что дополнительный слой изготавливается из того же магнитомягкого ферромагнитного металла, что и магниторезисторы, не происходит увеличение гистерезиса выходного сигнала датчика.

На фиг.1 представлена в разрезе структура датчика. На фиг.2 показан топологический рисунок датчика (вид сверху).

Магниторезистивный датчик содержит (фиг.1) подложку 1, на которой расположены следующие функциональные элементы магниторезистивного датчика: пленочные магниторезисторы, состоящие из слоя ферромагнитного металла 2 и защитных слоев 3 и 4, проводник перемагничивания 5, сформированный из пленки немагнитного металла и двухслойный проводник управления, состоящий из слоя немагнитного металла 6 и слоя ферромагнитного металла 7. Все функциональные элементы изолированы диэлектриком 8 друг от друга и подложки.

Измерительная схема магниторезистивного датчика (фиг.2) представляет собой замкнутый мост, содержащий четыре магниторезистора R1, R2, R3 и R4 в виде коротких полосок ферромагнитного металла, соединенных низкорезистивными перемычками из немагнитного металла и ориентированных под углом ±45° к оси легкого намагничивания (ОЛН) исходной пленки и контактные площадки 9-12. Проводник перемагничивания 5, сформированный в виде меандра, рабочие полоски которого проходят над магниторезисторами, содержит контактные площадки 13 и 14. Проводник управления сформирован в виде планарной катушки и содержит контактные площадки 15 и 16. Рабочие полоски планарной катушки расположены над магниторезисторами и ориентированы вдоль ОЛН ферромагнитной пленки, из которой изготовлены магниторезисторы. ОЛН ферромагнитной пленки, нанесенной на управляющую катушку, ориентирована вдоль рабочих полосок катушки, т.е. параллельно ОЛН ферромагнитной пленки, из которой изготовлены магниторезисторы.

Предлагаемый магниторезистивный датчик работает следующим образом. Мостовая измерительная схема с помощью контактов 9 и 10 подключается к генератору напряжения, а с помощью контактов 10 и 12 к измерительному прибору (например, вольтметру). При отсутствии внешнего поля и тока в проводнике управления векторы намагниченности полосок, из которых состоят магниторезисторы устанавливаются вдоль ОЛН. (Магнитными полями вокруг магниторезисторов, вызванными измерительным током протекающим по плечам моста можно пренебречь, в силу их малости).

При подаче через контактные площадки 13 и 14 в проводник перемагничивания короткого импульса тока, создаваемое им магнитное поле будет действовать вдоль ОЛН на полоски магниторезисторов R1 и R3 в одном направлении, а на полоски магниторезисторов R2 и R4 в противоположном направлении. Под действием магнитного поля, созданного импульсом тока в проводнике перемагничивания, векторы намагниченности полосок в магниторезисторах R1 и R3 и магниторезисторах R2 и R4 установятся в противоположных направлениях.

Установившийся после прохождения такого импульса тока выходной сигнал мостовой измерительной схемы является начальным сигналом (технологическим разбалансом мостовой схемы) магниторезистивного датчика. Его значение может быть уменьшено практически до нуля с помощью подачи постоянного тока в катушку управления. Полярность и значение этого тока определяется знаком и значением начального сигнала мостовой схемы.

При появлении внешнего магнитного поля в направлении перпендикулярном ОЛН сопротивление магниторезисторов R1, R3 и R2, R4 начинает изменяться в противоположных направлениях, что ведет к изменению разбаланса мостовой схемы пропорционально значению напряженности магнитного поля.

Заявляемое техническое решение позволяет уменьшить абсолютное значение тока в проводнике управления необходимое для настройки начального сигнала датчика, и тем самим уменьшить на (50-80)% энергопотребление датчика.

1. Магниторезистивный датчик, содержащий мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки ферромагнитного металла, проводники перемагничивания и управления, сформированные из пленки немагнитного металла, отличающийся тем, что на проводнике управления сформирован дополнительный слой из такого же ферромагнитного металла, что и магниторезисторы.

2. Магниторезистивный датчик по п.1, отличающийся тем, что ось легкого намагничивания дополнительного слоя ферромагнитного металла ориентирована параллельно оси легкого намагничивания пленки, из которой сформированы магниторезисторы.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к области магнитных датчиков и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока, биодатчиках.

Изобретение относится к области магнитных датчиков и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока.

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК).

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для преобразования высокочастотного магнитного поля в электрический сигнал.

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом. .

Изобретение относится к микроэлектронике, а именно к элементной базе спинтроники - новой области развития современной электроники, поскольку в его работе используются механизмы спин-зависимого электронного транспорта.

Изобретение относится к области магнитных наноэлементов и может быть использовано в датчиках магнитного поля и тока, запоминающих и логических элементах, гальванических развязках на основе многослойных металлических наноструктур с магниторезистивным эффектом.

Изобретение относится к области магнитных наноэлементов. В магниторезистивной головке-градиометре, содержащей подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре ряда последовательно соединенных такими же перемычками в каждом плече мостовой схемы тонкопленочных магниторезистивных полосок, содержащих каждая верхний и нижний защитные слои, между которыми расположена ферромагнитная пленка, первый изолирующий слой поверх тонкопленочных магниторезистивных полосок, на котором сформирован первый планарный проводник с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками, и второй изолирующий слой, второй планарный проводник, проходящий над и вдоль рабочей тонкопленочной магниторезистивной полоски, и защитный слой, при этом все тонкопленочные магниторезистивные полоски расположены в один ряд, во всех тонкопленочных магниторезистивных полосках ОЛН ферромагнитной пленки направлена под углом 45° относительно продольной оси тонкопленочной магниторезистивной полоски, а рабочее плечо мостовой схемы, ближайшее к краю головки-градиометра, удалено от трех балластных плеч мостовой схемы, ширина балластной тонкопленочной магниторезистивной полоски в N раз меньше ширины рабочей тонкопленочной магниторезистивной полоски, а балластный ряд мостовой схемы состоит из набора N параллельно соединенных тонкопленочных магниторезистивных полосок. Изобретение обеспечивает ослабление действующего на магниторезистивную головку-градиометр локального магнитного поля и увеличение чувствительности. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области магнитных датчиков на основе многослойных наноструктур с магниторезистивным эффектом. Способ согласно изобретению включает окисление кремниевой подложки 1, формирование диэлектрического слоя 2, формирование магниторезистивной структуры, содержащей верхний 3 и нижний 4 защитные слои, между которыми расположена ферромагнитная пленка 5, формирование из трех рядов параллельных магниторезистивных полосок балластных плеч мостовой схемы и полоски рабочего плеча мостовой схемы путем жидкостного травления, причем ширина магниторезистивных полосок балластных плеч мостовой схемы в N раз меньше ширины полоски рабочего плеча, а длины магниторезистивных полосок балластных и рабочего плеча мостовой схемы равны, нанесение первого изолирующего слоя 6, вскрытие в нем контактных окон к полоскам, формирование перемычек между рядами магниторезистивных полосок балластных плеч мостовой схемы путем напыления слоя алюминия 7 и последующего плазмохимического травления, формирование второго изолирующего слоя 8, вскрытие в нем переходных окон к перемычкам, формирование планарного проводника, проходящего над рабочем плечом мостовой схемы, путем напыления слоя алюминия 9 последующего плазмохимического травления и пассивацию с образованием верхнего защитного слоя 10. Изобретение обеспечивает возможность уменьшения размеров датчика, увеличения чувствительности датчика, увеличения процента выхода годных изделий. 2 з. п. ф-лы, 2 ил.

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной магнитными чернилами. Магниторезистивная головка-градиометр содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре ряда последовательно соединенных такими же перемычками в каждом плече мостовой схемы тонкопленочных магниторезистивных полосок, содержащих каждая верхний и нижний защитные слои, между которыми расположена ферромагнитная пленка, причем во всех тонкопленочных магниторезистивных полосках ось легкого намагничивания ферромагнитной пленки направлена под углом 45° относительно продольной оси тонкопленочной магниторезистивной полоски, первый изолирующий слой поверх тонкопленочных магниторезистивных полосок, на котором сформирован проводник с двумя контактами с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками с рабочими частями проводника, расположенными над тонкопленочными магниторезистивными полосками, второй изолирующий слой и защитный слой, при этом все тонкопленочные магниторезистивные полоски расположены в один ряд, а ближайший к краю подложки ряд тонкопленочных магниторезистивных полосок удален от трех остальных рядов тонкопленочных магниторезистивных полосок на расстояние не менее десяти периодов повторения этих рядов, второй изолирующий слой снабжен калибровочным проводником, размещенным над рабочими тонкопленочными магниторезистивными полосками мостовой схемы. Техническим результатом изобретения является создание магниторезистивной головки-градиометра с планарным калибровочным проводником, позволяющим определять работоспособность головки без применения внешнего источника локального магнитного поля. 3 ил.

Изобретение относится к измерительным устройствам и может быть использовано в интегральных линейных и угловых акселерометрах и гироскопах в качестве датчика перемещений. Технический результат: повышение точности нулевого сигнала преобразователя перемещений. Сущность: магниторезистивный датчик содержит пластину проводящего монокремния, в которой с помощью анизотропного травления выполнен подвижный объект. На разных сторонах конца подвижного объекта размещены дискретные источники магнитного поля, которые расположены напротив четырехслойных магниторезистивных структур, размещенных на разных сторонах пластины проводящего монокремния. Четырехслойные магниторезистивные структуры состоят из первого свободного ферромагнитного слоя, второго проводящего немагнитного слоя, третьего зафиксированного ферромагнитного слоя и четвертого антиферромагнитного слоя. Два свободных и два зафиксированных ферромагнитых слоя соединены в четырехплечий мост. 4 ил.

Предлагаемое изобретение относится к измерительной технике и представляет собой устройство автономной регистрации амплитуды напряженности однократного импульсного магнитного поля. Устройство содержит индукционный первичный преобразователь, резистор, отрезок тонкого провода, магниторезистивный мост и электрические соединители. Преобразователь включает концентратор магнитного поля и катушку, намотанную на концентратор. Мост, выполненный по тонкопленочной интегральной технологии, включает магниторезисторы, выполненные из ферромагнитного сплава, обладающего прямоугольной петлей гистерезиса. Катушка через резистор соединена с отрезком тонкого провода, уложенного на поверхность двух из четырех магниторезисторов, образующих противоположные плечи магниторезистивного моста. Через соединители устройство подключается к блоку считывания информации. Техническим результатом является повышение чувствительности магниторезистивного устройства к измеряемому магнитному полю, исключение влияния электрических наводок на результат измерений. 2 ил.

Изобретение относится к измерительной технике, представляет собой магниторезистивный датчик тока и может быть использовано в устройствах бесконтактного контроля и измерения электрического тока. Датчик содержит замкнутую мостовую измерительную схему, проводники перемагничивания и управления. Мостовая схема состоит из четырех магниторезисторов, сформированных из пленки ферромагнитного металла в виде полосок, ориентированных под углом 45° к оси легкого намагничивания ферромагнитной пленки и расположенных парами в два ряда. Проводник перемагничивания выполнен в виде плоской прямоугольной петли, а проводник управления - в виде плоской прямоугольной катушки, рабочие полоски которых перпендикулярны друг другу. Проводники расположены над парами магниторезисторов так, что векторы магнитной индукции поля, возникающего в месте расположения магниторезисторов при прохождении тока по проводникам перемагничивания и управления, направлены в противоположные стороны, причем рабочие полоски проводника управления параллельны оси легкого намагничивания ферромагнитной пленки, из которой изготовлены магниторезисторы. Техническим результатом является уменьшение погрешности измерения тока, вызванной влиянием внешнего магнитного поля. 2 ил.

Изобретение относится к измерительной технике, представляет собой способ повышения показателя чувствительности магниторезистивных датчиков и предназначено для использования в магнитометрических информационно-измерительных системах. При реализации способа измерительный мост запитывают повышенным питающим напряжением импульсного характера и подмагничивают внешним магнитным полем. Регистрируют напряжение на измерительной диагонали моста магниторезистивного датчика, а напряжение диагонали питания измерительного моста устанавливают в ноль, при этом управление осуществляют посредством управляющих импульсов цифровой системы. 3 ил., 1 табл.

Изобретение относится к измерительной технике, представляет собой магниторезистивный преобразователь магнитного поля и может быть использовано в приборах контроля и измерения вектора магнитного поля. Преобразователь содержит тонкопленочные магниторезистивные элементы с гигантским магниторезистивным эффектом и с однонаправленным изменением сопротивления под действием магнитного поля, соединенные по мостовой схеме. В каждом плече мостовой схемы параллельно соединено либо по меньшей мере два магниторезистивных элемента, либо по меньшей мере два ряда последовательно соединенных магниторезистивных элементов. Техническим результатом является повышение отношения сигнал/шум в широком частотном диапазоне. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, представляет собой магниторезистивный датчик и может быть использовано в устройствах контроля напряженности магнитного поля и бесконтактного контроля электрического тока. Датчик содержит мостовую измерительную схему из четырех магниторезисторов, сформированных из пленки ферромагнитного сплава в виде параллельных друг другу полосок, закороченных последовательно перемычками из низкорезистивного немагнитного металла и ориентированных под углом +45° и -45° к оси легкого намагничивания исходной ферромагнитной пленки так, что полоски двух симметричных по отношению друг к другу пар магниторезисторов мостовой схемы взаимно перпендикулярны. Проводник перемагничивания сформирован из пяти полосок пленки немагнитного металла, соединенных в виде меандра, четыре рабочие полоски которого проходят над магниторезисторами, а пятая полоска проходит между двумя парами рабочих полосок. Техническим результатом является повышение надежности и упрощение технологии изготовления датчика. 1 ил.

Изобретение относится к электротехнике. Технический результат состоит в уменьшении дефектности и повышении напряжения пробоя. Способ изготовления магнитного туннельного перехода для ячейки магнитной оперативной памяти (MRAM), содержащего первый ферромагнитный слой, туннельный барьерный слой и второй ферромагнитный слой, содержит: образование первого ферромагнитного слоя; образование туннельного барьерного слоя; и образование второго ферромагнитного слоя; в котором упомянутое образование туннельного барьерного слоя содержит осаждение слоя металлического Mg; и окисление осажденного слоя металлического Mg для того, чтобы преобразовать металлический Mg в MgO. Этап образования туннельного барьерного слоя выполняют, по меньшей мере, дважды, таким образом туннельный барьерный слой содержит, по меньшей мере, два слоя MgO. 3 н. и 7 з.п. ф-лы, 3 ил.
Наверх