Способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов


 


Владельцы патента RU 2495820:

Курочкин Андрей Владиславович (RU)
Исмагилов Фоат Ришатович (RU)

Изобретение относится к способу получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающему окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности. Способ характеризуется тем, что процесс проводят в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. Использование настоящего способа позволяет расширить пределы применимости способа, интенсифицировать процесс, упростить технологию, снизить материалоемкость и повысить энергетическую эффективность. 1 з.п. ф-лы, 3 пр.

 

Изобретение относится к способу получения серы путем окисления высококонцентрированных сероводородсодержащих газов кислородом и может найти применение в газоперерабатывающей, химической, нефтехимической и других отраслях промышленности в процессах переработки и обезвреживания сероводородсодержащих газов, содержащих до 90% сероводорода.

В настоящее время остро стоит проблема обезвреживания и утилизации сероводорода, выделяющегося в больших количествах при разработке газоконденсатных и нефтяных месторождений. Применяющиеся каталитические методы не позволяют глубоко проводить очистку и связаны с высокими энергозатратами.

Известен способ очистки отдувочных газов скважин с содержанием сероводорода (30-50 об.%) путем окисления в серу в кипящем слое нанесенного магнийоксидного катализатора, взятого в виде сферических гранул, при температуре 250-350°C [Авторское свидетельство СССР №1608109, 1990 г., МПК C01B 17/04]. Недостатком способа является сложность в управлении процессом, связанная с необходимостью контроля й регулирования кипящего слоя катализатора, а также высокие потери катализатора из-за истирания. При содержании сероводорода в газе более 50% усложняется также отвод тепла из зоны окисления, т.к. увеличение теплообменной поверхности приводит к нарушению режима кипящего слоя. Конденсацию серы проводят на последующей стадии процесса в отдельном аппарате, оснащенном теплообменной поверхностью, что также является фактором, усложняющим процесс.

Известны способы получения серы из высококонцентрированных газов (до 50 об.%), согласно которым окисление сероводорода проводится в две стадии в двух последовательных реакторах, причем в первом реакторе, осуществляется окисление в кипящем слое катализатора при соотношении O2/H2S, равном 0,5-0,51, при температуре 250-300°C, а на второй стадии, согласно способу [Авторское свидетельство СССР № 1627507, 1991 г., МПК C01B 17/04] проводится в неподвижном слое катализатора при температуре 140-155°C, а по способу [Патент РФ №1723761, 1995 г., МПК C01B 17/04] на второй стадии окисление ведут с использованием блочного катализатора сотовой структуры, снижая температуру с 140-155°C в начале слоя до 110-120°C в конце слоя со скоростью 6,6-15°C/с. В этих способах не устраняется недостаток, присущий способу окисления высококонцентрированных сероводородсодержащих газов [А.С. №1608109, 1990 г.], а именно сложность процесса, связанная с двухстадийностью и сложностью управления процессом окисления сероводорода в кипящем слое катализатора и отвода тепла реакции при концентрации сероводорода выше 50 об.%, а также необходимость конденсации серы в отдельном аппарате, после каждой стадии окисления, регулирования подачи кислорода по ступеням окисления. Съем серы с единицы объема катализатора в этих процессах еще ниже, чем по способу [А.С. №1608109, 1990 г.].

Известен способ получения элементарной серы из газов, содержащих до 30% сероводорода, путем окисления сероводорода в две стадии, причем в каждой стадии окисление ведут в стационарном слое гранулированного катализатора с раздельной подачей кислорода в количестве, обеспечивающем отношение кислорода к сероводороду равное 0,25-0,3, и на второй 0,5-1,15. Образующаяся в реакции сера конденсируется и улавливается в последовательно расположенных промежуточных поглотительных емкостях после каждой стадии процесса [Авторское свидетельство СССР №856974, 1981 г., МПК C01B 17/04]. Недостатком способа является сложность процесса, связанная с двухстадийностью окисления, что усложняет регулирование подачи кислорода по ступеням, а также необходимостью конденсации серы после каждой ступени окисления. Использование данного двухстадийного процесса приводит к дальнейшему снижению интенсивности процесса по сравнению с вышеуказанными аналогами [А.С. № 1627507, П. №1723761], что выражается в том, что съем серы не превышает 1-1,5 кг с 1 литра катализатора за 1 час. Данный способ не позволяет получать серу из газов, в которых содержание сероводорода превышает 30%.

Наиболее близким аналогом изобретения является способ получения элементарной серы из газов, содержащих до 30% сероводорода, путем окисления сероводорода в две стадии, заключающийся в том, что сероводородсодержащий газ - "кислый газ" с установки аминовой очистки попутного газа, содержащий 28 об.% сероводорода, смешивают с воздухом, обеспечивая мольное соотношение O2/H2S равное 0,25, и подают в реактор первой каталитической ступени, где при температуре 280°C и объемной скорости 3600 ч-1 проводят окисление сероводорода. Образующуюся в реакторе серу конденсируют на выносном теплообменном аппарате первой каталитической ступени и выводят с установки, а обедненный сероводородом газ смешивают с дополнительным количеством воздуха, поддерживая мольное соотношение O2/H2S, равное 1,0, и направляют во вторую каталитическую ступень, также состоящую из реактора и узла конденсации серы, из которой выводят балансовое количество серы. Съем серы составляет 1,2 кг/ ч. Выход серы на исходный сероводород составляет 99,5% [Алхазов и др. Пути каталитического обезвреживания природного газа с большим содержанием сероводорода // Тезисы докладов региональной научно-производственной конференции «Проблемы комплексного освоения Астраханского газоконденсатного месторождения», г.Астрахань, апрель 1987, М.: 1987, с.217-218.]. Увеличение числа ступеней процесса позволяет проводить окисление газов, содержание сероводорода в которых превышает 50%. Однако использование этого способа, хотя и решает проблему переработки высококонцентрированных газов с получением серы, однако приводит к еще большему усложнению процесса из-за его многоступенчатости, и еще большему снижению съема серы с единицы объема катализатора.

Задача изобретения - расширение пределов применимости способа, интенсификация процесса, упрощение технологии, снижение материалоемкости и повышение энергетической эффективности.

Технический результат, который может быть получен при осуществлении способа:

- расширение пределов применимости способа за счет возможности переработки высококонцентрированных сероводородсодержащих газов с получением серы, с содержанием сероводорода вплоть до 90 об.%.;

- интенсификация процесса за счет повышения съема серы с единицы объема катализатора;

- упрощение технологии за счет проведения процесса в одну стадию;

- повышение селективности процесса за счет предотвращения локальных перегревов катализатора;

- снижение материалоемкости за счет уменьшения количества единиц оборудования и загрузки катализатора;

- повышение энергетической эффективности за счет отвода более высокопотенциального тепла (водяного пара более высокого давления или иного охлаждающего агента более высокой температуры).

Указанный технический результат достигается тем, что в способе получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающем окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности, согласно изобретению процесс проводят в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. В качестве реактора может быть использован аппарат с внутренними теплообменными поверхностями спирально-радиального типа.

В заявляемом способе расположение слоя катализатора между теплообменными поверхностями обеспечивает возможность конденсации серы на этих поверхностях, а также позволяет отводить тепло реакции прямого окисления высококонцентрированного сероводорода и тепло конденсации серы непосредственно из зоны реакции.

Расположение теплообменных поверхностей под углом от 45 до 90 градусов к горизонтали позволяет полностью выводить сконденсированную серу из зоны реакции.

Направление подачи газа под углом от 0 до 90 градусов к горизонтали предотвращает противоточное движение газа и сконденсированной серы.

Отношение толщины слоя катализатора к размеру гранул 5-10:1 позволяет обеспечить эффективный теплообмен (отсутствие локальных перегревов катализатора) и газофазный транспорт паров серы от гранул катализатора к теплообменной поверхности (предотвращается конденсация серы на гранулах катализатора).

Предлагаемый способ получения элементарной серы осуществляется следующим образом. Высококонцентрированный (до 90 об.% H2S) сероводородсодержащий газ смешивают со стехиометрическим количеством кислородсодержащего газа, например, воздуха, и при температуре 200-250°C и давлении 0,1-10 МПа направляют в реактор, где приводят в контакт с гранулированным катализатором, расположенным в неподвижном слое между теплообменными поверхностями, соблюдая пространственное расположение теплообменных поверхностей и направления движения газа, указанное выше. В межкатализаторное пространство реактора, ограниченное теплообменными поверхностями, подают хладоагент в количестве, достаточном для отвода тепла реакции. Образовавшаяся жидкая сера конденсируется на теплообменных поверхностях, стекает в низ реактора и выводится из него. Газ, очищенный от сероводорода, также выводят из реактора.

В качестве реактора могут быть использованы, например, аппараты с внутренними теплообменными поверхностями спирально-радиального типа.

В доступной научно-технической и патентной литературе не был обнаружен способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов, заключающийся в том, что проводят окисление сероводорода кислородом в неподвижном слое гранулированного катализатора и конденсацию получаемой серы на теплообменной поверхности в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «новизна».

Исследованиями авторов было доказано, что проведение окисления в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, при том, что направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, а отношение толщины слоя к размеру гранул катализатора составляет 5-10:1, позволяет осуществить процесс в одну стадию, что упрощает способ, а также обеспечивает расширение пределов применимости способа, интенсификацию процесса, снижение материалоемкости и повышение энергетической эффективности. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «изобретательский уровень».

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. Высококонцентрированный (90 об.% H2S) сероводородсодержащий газ смешивают со стехиометрическим количеством воздуха и при температуре 250°C и давлении 0,15 МПа направляют в реактор, представляющий собой аппарат с внутренними теплообменными поверхностями спирально-радиального типа, где проводят окисление сероводорода в неподвижном слое гранулированного катализатора АОК-75-44 ТУ 6-68-211-04, размещенного между теплообменными поверхностями, расположенными под углом 60 градусов к горизонтали, при этом направление ввода реакционного газа составляет 90 градусов к горизонтали. В межкатализаторное пространство реактора между теплообменными поверхностями подают хладоагент в количестве, достаточном для отвода тепла реакции. Образовавшаяся жидкая сера конденсируется на теплообменных поверхностях и стекает в низ реактора и выводится из него. Газ, очищенный от сероводорода, также выводится из реактора. Отношение толщины слоя к размеру гранул составляет 8:1, съем серы составляет 4,0 кг/ч на 1 литр катализатора. Выход серы на исходный сероводород составляет 99,5%.

Пример 2. В условиях, аналогичных примеру 1, окисление сероводорода проводят в неподвижном слое гранулированного катализатора ИКТ-27-42 ТУ 6-68-205-03, размещенного между теплообменными поверхностями, расположенными под углом 90 градусов к горизонтали, при этом направление ввода реакционного газа составляет 45 градусов к горизонтали. Отношение толщины слоя к размеру гранул составляет 5:1, съем серы составляет 4,1 кг/ч на 1 литр катализатора. Выход серы - 99,6%.

Пример 3. В условиях, аналогичных примеру 1, окисление сероводорода в газе, содержащем 85 об.% сероводорода, проводят в неподвижном слое гранулированного катализатора ИКТ-27-42 ТУ 6-68-205-03, размещенного между теплообменными поверхностями, расположенными под углом 45 градусов к горизонтали, при этом направление ввода реакционного газа составляет 0 градусов к горизонтали. Отношение толщины слоя к размеру гранул составляет 10:1, съем серы составляет 4,1 кг/ч на 1 литр катализатора. Выход серы - 99,6%.

Из примеров 1-3 видно, что предлагаемый способ позволяет проводить окисление сероводорода с получением серы при концентрации его в газе до 90 об.%, что расширяет пределы применимости способа, кроме того, достигается более высокий выход серы за счет предотвращения локальных перегревов в зоне реакции; при охлаждении реактора образуется пар с более высоким потенциалом (250°C, 4,0 МПа), повышается съем серы с единицы объема катализатора, что указывает на более высокую интенсивность процесса.

Предлагаемый способ может быть использован в нефтехимической промышленности, воспроизводим и при использовании реализуется его назначение. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «промышленная применимость».

1. Способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающий окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности, отличающийся тем, что процесс проводят в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90° к горизонтали, а направление подачи газа составляет угол от 0 до 90° к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1.

2. Способ по п.1, отличающийся тем, что в качестве реактора используют аппарат с внутренними теплообменными поверхностями спирально-радиального типа.



 

Похожие патенты:
Изобретение относится к области химии и может быть использовано в процессах получения серы из дымовых газов, содержащих диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к области химии и может быть использовано для получения элементной серы из отходящего газа, содержащего диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Изобретение относится к области химии. .

Изобретение относится к каталитическим композициям для восстановления сернистых соединений, содержащихся в газовом потоке. .

Изобретение относится к области химии. .

Изобретение относится к области химии и может быть использовано для получения серы. .

Изобретение относится к катализаторам для восстановления диоксида серы из серосодержащих газов. .

Изобретение относится к области химии и может быть использовано для получения водорода и серы. .

Изобретение относится к области химии и может быть использовано для получения серы из сернистого ангидрида. .

Изобретение относится к области электрохимии. В органический растворитель с фоновым электролитом вводят электрокатализатор - 3,5-ди-трет-бутил-о-бензохинон и проводят электролиз сероводорода на платиновом аноде при температуре 20-25°С и атмосферном давлении. При этом получают элементную серу. Изобретение позволяет снизить энергозатраты и сократить время стадии регенерации электрокатализатора.

Изобретение может быть использовано в нефтяной, газовой, газоперерабатывающей, нефтеперерабатывающей, нефтехимической отраслях промышленности и относится к способам жидкофазной окислительной конверсии сероводорода, содержащегося в газах, с получением элементарной серы. Способ включает подачу очищаемых от сероводорода газов в зону абсорбции при встречном движении их с абсорбентом, а воздуха - в зону регенерации в количестве, обеспечивающем отношение парциальных объемов кислорода воздуха и сероводорода в газах в диапазоне 0,5÷25:1, отбор очищенных газов из верхней части зоны абсорбции, а серы - из нижней зоны регенерации, отличающийся тем, что вместе с очищаемыми газами в зону абсорбции подают воздух в количестве, обеспечивающем соотношение парциальных объемов кислорода воздуха к сероводороду газов 0,05÷0,75:1, причем суммарный объем подаваемого воздуха в зоны абсорбции и регенерации обеспечивает соотношение парциальных объемов кислорода воздуха к сероводороду, не превышающее первоначальное. Предлагаемый способ позволяет увеличить эффективность очистки газов от сероводорода (не менее 99,99%) за счет интенсификации процесса окисления сероводорода до элементарной серы благодаря частичному проведению регенерации абсорбента в зоне абсорбции и, как следствие, снизить материальные затраты на реализацию способа. 3 табл., 2 ил.

Изобретение относится к области химии. Серу получают методом каталитического прямого окисления сероводорода кислородом в две или более стадии в условиях отвода тепла реакции из объема катализатора. Начальные стадии окисления проводят при 250-300°C и объемной скорости 12000-36000 сек-1, а конечную стадию окисления проводят при 250-280°C и объемной скорости 900-3600 сек-1. Сероводородсодержащий газ подают на первую стадию окисления, а кислородсодержащий газ подают на каждую стадию окисления, причем на конечную стадию окисления кислородсодержащий газ подают в стехиометрическом соотношении кислорода к сероводороду. Изобретение позволяет получать серу из высококонцентрированных газов, снизить энергозатраты. 1 ил., 3 пр.

Изобретение относится к подготовке углеводородного газа. Cпособ комплексной подготовки углеводородного газа, включающий очистку от тяжелых углеводородов, меркаптанов, сероводорода и осушку с получением очищенного газа и газов регенерации, а также утилизацию кислого газа регенерации с получением серы и отходящего газа, при этом углеводородный газ предварительно смешивают со смесью газов регенерации и отходящего газа и подвергают абсорбционной очистке хемосорбентом с получением органической фазы, воды и предварительно очищенного газа, направляемого на дальнейшую очистку, при этом в качестве хемосорбента используют углеводородный раствор серы, органических ди- и полисульфидов, а также каталитическое количество органического соединения, содержащего третичный атом азота, который получают путем смешения органической фазы с серой в количестве, обеспечивающем полное окислительное превращение меркаптанов. Технический результат заключается в повышении выхода подготовленного газа, упрощении технологии. 1 ил.

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности. Способ получения элементной серы из сероводорода включает проведение электролиза сероводорода на платиновом аноде в органическом растворителе в присутствии фонового электролита при температуре 20-25°С и атмосферном давлении. Предварительно перед проведением электролиза сероводорода в органический растворитель вносят триэтиламин. Технический результат - усовершенствование процесса получения элементной серы, позволяющее значительно снизить значение анодного перенапряжения при проведении электросинтеза серы на основе сероводорода. Конверсия сероводорода в элементную серу - 95-98%. 1 прим.

Изобретение относится к области химии и может быть использовано для управления процессом восстановления кислородсодержащих сернистых газов с получением элементарной серы в цветной металлургии, химической и нефтеперерабатывающей промышленности. Способ управления процессом восстановления сернистых дымовых газов природным газом в присутствии дополнительного кислорода, включающий переработку дымовых газов с получением серы в термической и, по меньшей мере, одной каталитической ступенях, предусматривает регулирование расхода природного газа и общего расхода кислорода в термическую ступень, исходя из предварительно установленной эмпирической функциональной зависимости между значениями концентраций компонентов хвостового газа, расходов компонентов дымового газа и температуры в камере термического реактора. Для этого замеряют текущее значение температуры в камере термической ступени, определяют объемный расход O2 и N2 в дымовом газе и концентрацию H2S, COS и SO2 в хвостовом газе и рассчитывают поправочные коэффициенты, на основании которых одновременно корректируют расход природного газа и расход кислорода в термическую ступень. Причем расход кислорода определяют как разность между расчетным расходом общего кислорода и тем расходом кислорода, который поступает с дымовым газом. 1 ил., 2 табл.

Изобретение может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности. Способ очистки газа от сероводорода включает предварительное смешивание очищаемого газа с балансовой частью газа сепарации. Полученную газовую смесь сепарируют при пониженной температуре, но не ниже температуры замерзания воды или образования газовых гидратов, с выделением водной суспензии серы. Затем очищают от сероводорода с получением очищенного газа и газа, содержащего сероводород. Смесь газа, содержащего сероводород, с частью газа сепарации и кислородсодержащим газом при мольном соотношении кислород:сероводород 0,35÷0,45 подают на окисление. Продукты окисления смешивают с частью водной суспензии серы и сепарируют смесь при температуре 125÷135°C с выделением жидкой серы и газа сепарации. Изобретение позволяет повысить степень очистки газа и снизить энергоемкость процесса. 1 ил., 1 пр.

Изобретение относится к способу получения элементной серы из отходящего газа, содержащего диоксид серы. Способ включает концентрирование диоксида серы, частичное высокотемпературное восстановление концентрированного диоксида серы концентрированным водородом до серы, сероводорода и воды, конденсацию образованных паров серы с выводом жидкой серы в сборник серы. Далее ведут переработку вышедшего технологического газа путем каталитической Клаус-конверсии, и последующую очистку хвостового газа, содержащего остаточные количества H2S, SO2, N2 и паров воды. При этом часть потока концентрированного диоксида серы отводят по байпасной линии, минуя стадии высокотемпературного восстановления, конденсации серы и каталитической конверсии, а вышедший из каталитической ступени Клаус-конверсии хвостовой газ вводят в узел гидрирования. Газ после гидрирования, состоящий из H2S, H2 и паров воды, подают в конденсационную колонну для отделения воды. Обезвоженный газ смешивают с байпасным потоком концентрированного диоксида серы и смесь направляют на дополнительную каталитическую ступень Клаус-конверсии, остаточные газы после которой возвращают на вход любой каталитической ступени, предшествующей узлу гидрирования. Техническим результатом является повышение эффективности утилизации отходящего газа. 7 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к катализаторам, используемым для получения элементарной серы по процессу Клауса. Предлагаемый катализатор получения элементарной серы по процессу Клауса на основе оксида алюминия представляет собой смесь χ-, γ-Al2O3 и рентгеноаморфной фазы оксида алюминия в следующем соотношении: χ-Al2O3 и рентгеноаморфная фаза 65-99,9 мас.% и γ-Al2O3 0,1-35, мас.%. При этом в катализаторе объем мезопор диаметром от 3 до 10 нм составляет 0,12-0,35 см3/г, а соотношение объема мезопор диаметром 3-10 нм к объему ультрамакропор диаметром выше 1000 нм меньше или равно 5. Изобретение также относится к способу приготовления данного катализатора и способу проведения процесса Клауса с его использованием. Использование предлагаемого катализатора позволяет повысить эффективность процесса Клауса. 3 н. и 8 з.п. ф-лы, 1 ил., 4 табл., 12 пр.

Изобретение может быть использовано в химической промышленности. Способ получения серы из сероводородсодержащего газа методом Клауса включает термическую стадию и, по меньшей мере, одну стадию каталитической конверсии. Технологический газ подают в каталитический реактор 1, где его подогревают, а затем подвергают каталитической обработке в слое катализатора. Подогрев технологического газа происходит путем его смешения с продуктами сгорания, поступающими из встроенной в реактор фор-камеры 5 с горелочным устройством 4 для сжигания кислого и/или топливного газа. Каталитическую обработку смешанного газа ведут путем фильтрации через горизонтальный слой катализатора 13. Cмешанный газ подают через стабилизирующее устройство 12 с возможностью поршневого движения вдоль оси аппарата и равномерной фильтрации по всему сечению катализатора. Каталитический реактор 1 выполнен в виде цилиндрического аппарата с зоной подогрева технологического газа 2 и каталитической зоной 3, расположенными последовательно по ходу газа. Изобретение позволяет снизить потери при извлечении серы, а также выбросы диоксида серы в атмосферу, увеличить срок службы катализатора. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 1 пр.
Наверх