Емкостный способ определения неравномерности линейной плотности продуктов прядения

Изобретение относится к текстильной промышленности и представляет собой емкостный способ определения неравномерности линейной плотности продуктов прядения. Образец пропускают между двумя пластинами конденсатора, измеряют реактивное сопротивление конденсатора, определяют изменение емкости, которое пропорционально изменениям диэлектрической проницаемости образца и регистрируют их как коэффициент вариации по линейной плотности или коэффициент неровноты по линейной плотности. Измерение реактивного сопротивления конденсатора производят в интервале частот от 1 кГц до 10 мГц, рассчитывают массу влаги в образце, а затем массу «сухого» материала в образце. На основании полученных значений массы сухого продукта производят расчет показателей неравномерности по линейной плотности продукта прядения. Способ позволяет ускорить процесс измерения показателей неравномерности по линейной плотности продуктов прядения путем компенсации влияния влажности материала на результат измерения. 3 табл., 1 ил., 1 пр.

 

Изобретение относится к текстильной промышленности и может быть использовано при определении неравномерности по линейной плотности текстильных материалов в прядении (холста, ленты, ровницы, нити и т.п.).

Известен способ определения показателей неравномерности весовым методом [ГОСТ 6611.1-73 (ИСО 2060-72) Нити текстильные. Метод определения линейной плотности. - Введ. 1976-01-01. - М.: Изд-во стандартов, 1976. - 28 с. - ил.], заключающийся в отматывании нити определенной длины в виде пасмы или отрезка и определении ее массы. Единицы продукции или пучки нитей перед испытанием должны быть освобождены от наружной упаковки и выдержаны в климатических условиях по ГОСТ 10681-75. В этих же условиях должны проводиться испытания. Продолжительность выдерживания в климатических условиях нитей всех видов в единицах продукции (початках, шпулях, катушках, бобинах, куличах, мотках) должна быть не менее 10 ч, кроме льняной пряжи и искусственных комплексных нитей, для которых продолжительность выдерживания устанавливается не менее 24 ч. Для определения неравномерности по линейной плотности нитей применяют пасмы длиной нити 200, 100, 50, 25, 20, 10 и 5 м и отрезки нитей длиной 1 и 0,5 м. Перед определением массы отрезки нитей должны быть дополнительно выдержаны в климатических условиях по ГОСТ 10681-75 не менее 2 ч. Каждую пасму или каждый отрезок в отдельности взвешивают с погрешностью не более 0,5% от взвешиваемой массы. По результатам измерений вычисляют коэффициент вариации.

Недостатком данного способа является большая трудоемкость и длительность испытаний.

За прототип принят способ определения неравномерности емкостным методом [ГОСТ Р ИСО 16549-2008. Материалы текстильные. Метод определения неравномерности продуктов прядения. Емкостный метод. - Введ. 2010-01-01. - М.: Изд-во стандартов, 2010. - 8 с.], заключающийся в пропускании образца между двумя пластинами конденсатора, что вызывает изменение емкости, которая пропорциональна изменениям диэлектрической проницаемости образца. Измеряют реактивное сопротивление конденсатора на определенной частоте, определяют изменения емкости и регистрирует их как коэффициент вариации по линейной плотности или коэффициент неровноты по линейной плотности.

Диэлектрическая постоянная волокна является фактором, определяющим изменение емкости. Пока диэлектрическая постоянная не меняется (идеально равномерное распределение влаги по длине продукта), диэлектрическая постоянная не влияет на показания неравномерности, которые зависят исключительно от изменения массы. Если диэлектрическая постоянная изменяется (при неравномерном распределении влаги), то тогда показания неравномерности превышают их истинные значения. Таким образом, на результат измерения значительное влияние оказывает влажность материала. Для уменьшения этого влияния, а так же для обеспечения равномерного распределения влаги по длине материала, перед началом измерения производят кондиционирование образца в течение не менее 24 часов при нормальных условиях.

Недостатком данного способа является длительность этапа подготовки образца, который, однако, полностью не устраняет влияние влажности материала на результат измерения.

Техническим результатом заявляемого изобретения является ускорение процесса измерения показателей неравномерности по линейной плотности продуктов прядения путем компенсации влияния влажности материала на результат измерения.

Указанный технический результат достигается тем, что в емкостном способе определения неравномерности линейной плотности продуктов прядения, заключающемся в пропускании образца между двумя пластинами конденсатора, измерении реактивного сопротивления конденсатора, определении изменения емкости, которое пропорционально изменениям диэлектрической проницаемости образца и регистрации их как коэффициента вариации по линейной плотности или коэффициента неровноты по линейной плотности, согласно изобретению, измерение реактивного сопротивления конденсатора производят в интервале частот от 1 кГц до 10 мГц, определяют массу влаги в образце по формуле:

m в = k 1 f m i n f m a x ( ε ( f ) ε ( f m a x ) ) d f f m a x f m i n , г                   ( 1 )

где k1 - коэффициент, зависящий от конструкции устройства;

fmax - максимальная частота, на которой производилось измерение, Гц;

fmin - минимальная частота, на которой производилось измерение, Гц;

ε(f) - значение диэлектрической проницаемости на текущей частоте;

ε(fmax) - значение диэлектрической проницаемости на максимальной частоте,

массу «сухого» материала в образце вычисляют по формуле:

m м а т = k 2 ( ( ε ( f m a x ) 1 ) k 3 m в ) , г                  ( 2 )

где k2 - коэффициент, зависящий от геометрических размеров конденсатора, коэффициента передачи устройства и плотности волокна;

k3 - коэффициент пропорциональности, зависящий от вида волокна, коэффициента передачи устройства и рассматриваемого диапазона частот,

на основании полученных значений массы сухого продукта производят расчет показателей неравномерности по линейной плотности продукта прядения по известным зависимостям.

Указанный результат достигается за счет использования для расчета неравномерности массы сухого продукта, что устраняет влияние влажности на результат измерения и позволяет исключить этап кондиционирования перед измерением.

На чертеже показаны зависимости диэлектрической проницаемости конденсатора с диэлектриком из влагосодержащего хлопкового волокна от частоты для постоянной массы пробы и различных значений влажности.

Пример практического осуществления способа

Способ был реализован на примере хлопковой нити линейной плотностью 13 текс. Образец исследуемого продукта заправляют между обкладками емкостного датчика. Устанавливают наименьшую частоту генератора из заданной сетки частот и измеряют диэлектрическую проницаемость материала для данной частоты. Измеренное значение сохраняют для последующих вычислений. Затем устанавливают следующую частоту из заданной сетки и вновь измеряют значение диэлектрической проницаемости. В результате перебора большого количества частот получают зависимость диэлектрической проницаемости хлопковой нити от частоты (таблица 1).

Таблица 1
f, кГц 2 3 4 5 6 7 8 9 10 20 30 40
ε 1,126 1,120 1,117 1,115 1,112 1,109 1,109 1,109 1,109 1,102 1,102 1,098
f, кГц 50 60 70 80 90 100 200 300 400 500 600 700
ε 1,098 1,098 1,093 1,095 1,095 1,093 1,088 1,089 1,089 1,087 1,087 1,085
f, кГц 800 900 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ε 1,082 1,085 1,083 1,081 1,078 1,078 1,079 1,076 1,074 1,074 1,073 1,073

Зависимости диэлектрической проницаемости конденсатора с диэлектриком из влагосодержащего хлопкового волокна от частоты для постоянной массы пробы и различных значений влажности показаны также на чертеже.

По формуле (1) вычисляют массу влаги, сорбированной нитью, затем по формуле (2) вычисляют массу «сухого» материала, находящегося между пластинами емкостного датчика. Разделив данное значение на длину пластин, получают линейную плотность нити. В таблице 2 приведены сравнительные данные массы сухого материала и влаги, измеренные способами заявляемым и по прототипу (для значений коэффициентов k1=3,8; k2=8; k3=1,1).

Таблица 2
По заявляемому способу По способу прототипа
Масса воды, mв, г Масса сухого материала mмат, г Линейная плотность, г/м2 Масса воды, mв, г Масса сухого материала, mмат, г Линейная плотность, г/м2
0,0209 0,339 13,3 0,021 0,4 13

Полученное значение сохраняют для вычисления неравномерности по линейной плотности. Затем нить сдвигают на величину длины пластин и измерения повторяют для следующего участка нити, вычисления производят с использованием средств вычислительной техники.

Сравнение времени проведения испытаний емкостным способом по прототипу и заявляемым способом приведено в таблице 3.

Таблица 3
Время испытаний По прототипу, часов По заявляемому способу, часов
Этап кондиционирования 24 0
Этап измерения 0,12 0,3
Суммарное 24,12 0,3

Результаты показывают, что происходит значительное ускорение (почти в 80 раз) процесса измерения показателей неравномерности по линейной плотности продуктов прядения за счет компенсации влияния влажности материала на результат измерения.

Емкостный способ определения неравномерности линейной плотности продуктов прядения, заключающийся в пропускании образца между двумя пластинами конденсатора, измерении реактивного сопротивления конденсатора, определении изменения емкости, которое пропорционально изменениям диэлектрической проницаемости образца и регистрации их как коэффициента вариации по линейной плотности или коэффициента неровноты по линейной плотности, отличающийся тем, что измерение реактивного сопротивления конденсатора производят в интервале частот от 1 КГц до 10 МГц, определяют массу влаги в образце по формуле
m в = k 1 f m i n f m a x ( ε ( f ) ε ( f m a x ) ) d f f m a x f m i n , г                    ( 1 )
где k1 - коэффициент, зависящий от конструкции устройства;
fmax - максимальная частота, на которой производилось измерение, Гц;
fmin - минимальная частота, на которой производилось измерение, Гц;
ε(f) - значение диэлектрической проницаемости на текущей частоте;
ε(fmax) - значение диэлектрической проницаемости на максимальной частоте, массу «сухого» материала в образце вычисляют по формуле
m м а т = k 2 ( ( ε ( f m a x ) 1 ) k 3 m в ) , г                ( 2 )
где k2 - коэффициент, зависящий от геометрических размеров конденсатора, коэффициента передачи устройства и плотности волокна;
k3 - коэффициент пропорциональности, зависящий от вида волокна, коэффициента передачи устройства и рассматриваемого диапазона частот, на основании полученных значений массы сухого продукта производят расчет показателей неравномерности по линейной плотности продукта прядения по известным зависимостям.



 

Похожие патенты:

Изобретение относится к текстильному материаловедению. При осуществлении способа образец нагружают, разгружают и после отдыха определяют сминаемость, причем погружение выполняется после формирования неориентированных складок с последующей цифровой фотосъемкой несмятого и смятого образца, передачей изображения на экран ЭВМ в реальном времени и обработкой цифровых изображений путем выделения областей интегральной яркости и сопоставления интенсивности распределения яркости участков изображений по этим областям, а о степени сминаемости судят по коэффициенту, рассчитываемому по формуле: K = S o − S k S o ∗ 100 где S0 - величина спектра изображения несмятого образца в средней области гистограммы, %; Sk - величина спектра изображения смятого образца в средней области гистограммы, %. Достигается моделирование реального процесса смятия текстильных материалов в швейных изделиях, повышение достоверности результатов испытаний за счет использования более объективного критерия сминаемости.

Изобретение относится к текстильной промышленности и может быть использовано при бесконтактном анализе структуры трикотажных полотен при исследовании их геометрических показателей характеристик петлеобразования для оценки качества полотна.

Изобретение относится к легкой промышленности и может быть использовано для испытания текстильных материалов при одноцикловом растяжении под постоянной нагрузкой меньше разрывной.

Изобретение относится к неразрушающим способам производственного контроля и может использоваться при анализе материалов и изделий в текстильной промышленности. .

Изобретение относится к текстильной отрасли и может быть использовано для анализа структурных параметров как имеющихся, так и проектируемых образцов тканей. .

Изобретение относится к изготовлению композиционно-волокнистых материалов (КВМ) и может найти широкое применение в ракетно-космической технике, авиастроении, химическом машиностроении, а также в других отраслях народного хозяйства.

Изобретение относится к способам контроля анизотропии углового распределения волокон в плоских волокнистых материалах и связанных с этим распределением технологических параметров и может быть использовано при решении вопросов повышения качества таких материалов и контроля качества работы производящего оборудования.

Изобретение относится к области текстильного производства, в частности к способу определения деформационных свойств основовязаного сетчатого трикотажа, используемого в качестве эндопротезов при грыжесечении, при нагружении типа мембранного.

Изобретение относится к испытательной технике, а именно к измерению деформационных свойств трикотажных полотен при растяжении, и может быть использовано для определения растяжимости при нагрузках меньше разрывных и необратимой деформации трикотажа при растяжении.

Изобретение относится к изготовлению композиционно-волокнистых материалов (КВМ) и описывает способ определения неупругой составляющей при сжатии неотвержденного композиционно-волокнистого материала, где из неотвержденного КВМ (препрега) вырезают образец ткани в виде ромба со сторонами, параллельными семействам нитей, и защемляют по сторонам четырехзвенника, прикладывают к противоположным углам четырехзвенника растягивающую нагрузку Р и определяют относительную деформацию ткани при сжатии в направлении 0 к нитям армирующего материала.

Изобретение относится к области нефтехимической промышленности и может быть использовано в промысловых и научно-исследовательских лабораториях для разработки технологий увеличения нефтеотдачи пластов и при отсчете запасов нефти, оперативном контроле за разработкой нефтяных месторождений.

Изобретение относится к оборудованию для подводной добычи нефти. .

Изобретение относится к измерительной технике и может быть использовано в системах автоматизированного непрерывного контроля технологических процессов при эксплуатации маслонаполненных механизмов для сигнализации о критическом уровне содержания воды в энергетических маслах.

Изобретение относится к сельскому хозяйству и может быть использовано в агрономических целях для наблюдения за состоянием почвенного покрова. .

Изобретение относится к измерительной технике и может быть использовано для оценки качества бензина. .

Изобретение относится к технологии выполнения клеевых соединений, может использоваться при склеивании различных пород древесины и позволяет непрерывно контролировать внутренние напряжения, возникающие в процессе формирования клеевого соединения при обработке магнитным полем.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. .

Изобретение относится к измерительной технике и предназначено для контроля влажности воздуха и газов. .
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях. Способ неразрущающего контроля теплотехнических качеств ограждающих конструкций зданий заключается в том, что измеряют фактические значения теплопроводности внутреннего и наружного поверхностных слоев конструкции. Затем вычисляют значения сопротивлений теплопередаче этих слоев по формулам: Rв=δв/λв и Rн=δн/λн, где Rв и Rн - значения сопротивлений теплопередаче внутреннего и наружного поверхностных слоев конструкции, соответственно; δв и δн - толщина внутреннего и наружного поверхностных слоев, соответственно; λв и λн - теплопроводность внутреннего и наружного поверхностных слоев, соответственно. Далее вычисляют значение сопротивления теплопередаче теплоизоляционного слоя по формуле: Rт=Rк-1/αв-1/αн-Rв-Rн, где Rт - сопротивление теплопередаче теплоизоляционного слоя; Rk - общее сопротивление теплопередаче конструкции; αв, αн - коэффициенты теплоотдачи внутренней и наружной поверхностей конструкции, соответственно. Затем вычисляют фактическое значение теплопроводности материала теплоизоляционного слоя конструкции по формуле: λт,=δт/Rт, где λт - теплопроводность материала; δт - толщина слоя. После чего определяют фактическое значение влажности материала теплоизоляционного слоя по формуле: Wт=(λт-λ0)/Δλw, где Wt - влажность материала; λ0 теплопроводность материала в сухом состоянии; Δλw - приращение теплопроводности материала на 1% влажности. Техническим результатом изобретения является определение теплофизических характеристик теплоизоляционного слоя многослойных строительных конструкций без нарушения их целостности. 1 з.п. ф-лы.
Наверх