Способ образования двумерного линейного электрического поля и устройство для его осуществления

Изобретение относится к области электронной и ионной оптики и масс-спектрометрии, где используется движение заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкций и технологий изготовления устройств пространственно-временной фокусировки и масс-разделения заряженных частиц. Способ образования двумерных линейных электрических полей заключается в формировании с помощью устройства из плоских дискретных и гиперболических электродов на границах рабочей области линейного по одной координате распределений среднего значения потенциала. Причем плоские дискретные электроды состоят из равномерно распределенных по границам области тонких заземленных металлических нитей, а расположенные в каждом квадранте по одному гиперболические электроды имеют малые размеры полуосей. Под действием противоположных потенциалов на смежных гиперболических электродах в плоскостях дискретных электродов создаются линейные по одной оси распределения среднего значения потенциала, под действием которых в рабочей области образуется двумерное линейное электрическое поле. Технический результат - минимизация размеров и улучшение конструктивно-технологических параметров электродных систем для образования двумерных линейных электрических полей с протяженными вдоль одной оси рабочими областями. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к областям электронно-ионной оптики и масс-спектрометрии, основанных на движении заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкции и технологии изготовления устройств пространственно-временной фокусировки и масс-разделения заряженных частиц. Гиперболические электродные системы не эффективны для создания масс-анализаторов с протяженной вдоль одной оси рабочей областью из-за значительных размеров электродов по всем координатам [1]. Задачу решают системы из плоских электродов с дискретно-линейным распределением потенциала [2], с дискретно-изменяющейся электрической прозрачностью [3] и дискретно-изменяющейся плотностью зарядов [4]. Техническая задача предлагаемого изобретения состоит в усовершенствовании конструктивно-технологических характеристик устройств образования двумерных линейных электрических полей с протяженной вдоль одной оси рабочей областью, использующих гиперболические и плоские дискретные эквипотенциальные электроды.

Двумерные линейные электрические поля в рабочей области с размерами 2xc, 2yc, L по осям X, Y, Z при условии yc>>xc можно образовывать с помощью плоских дискретных поверхностей из неэквипотенциальных проводящих элементов, распределенных по оси Y с постоянным шагом ∆y [2] или эквипотенциальных проводящих элементов, неравномерно распределенных по оси Y [3, 4]. Наиболее близким к заявленному решению является способ, описанный в [4], заключающийся в образовании линейного электрического поля с помощью эквипотенциальных элементов, неравномерно распределенных по оси Y. Однако недостатками указанных систем являются трудности конструкторско-технологического характера, которые усложнят процесс изготовления ионно-оптических устройств и анализаторов ионов с использованием плоских дискретных электродов.

Во всех случаях при использовании плоских дискретных электродов задача образования двумерных линейных в плоскости XOY электрических полей сводится к созданию на границах области x=±xc линейных вдоль оси Y распределений среднего значения потенциала:

ϕ с р ( y i ) = 1 Δ y i y i Δ y / 2 y i + Δ y / 2 ϕ i ( y ) d y = ϕ m c p y c y i , ( 1 )

где φ∂i(y) - распределение потенциала в плоскостях x=±xc i-го дискретного элемента, ∆yi - шаг дискретности электродов, φmсрср(yc).

Для практической реализации ионно-оптических систем с двумерными линейными электрическими полями представляют интерес использование плоских дискретных поверхностей, образованных из равномерно распределенных по оси Y с шагом ∆y, параллельных оси Z, одинаковых эквипотенциальных проводящих элементов - нитей или полосок. Однако использование только плоских дискретных с постоянным шагом ∆y эквипотенциальных поверхностей не решает проблему образования двумерных линейных электрических полей. Задача решается с помощью дополнительных 4-х гиперболических потенциальных поверхностей, позволяющих сформировать линейные по оси Y распределения среднего значения потенциала в плоскостях x=±xc дискретных поверхностей. Гиперболические поверхности 2 располагают в области |x|>xc и на смежных поверхностях устанавливают противоположные потенциалы φ0 и -φ0 (Фиг.1). Наличие дискретных поверхностей 1 позволяет сместить начала координат гиперболических поверхностей 2 по оси Х на расстояние x0 для поверхностей в I и IV квадрантах и на расстояние - x0 для поверхностей во II и III квадрантах и тем самым существенно уменьшить значение их геометрического параметра r0 - действительной полуоси гипербол. Величина смещения определяется соотношением:

x 0 x c 0,45 Δ y .                                         ( 2 )

Гиперболические поверхности в этом случае описываются уравнением:

y = ± r 0 2 / 2 ( x ± x 0 ) .                                         ( 3 )

Под действием противоположных потенциалов φ0 и -φ0 на смежных гиперболических поверхностях в сечениях x=±xc формируются распределения потенциала φ(±xc,y) - (кривая 1, Фиг.2), средние значения которых φср(±xc,y) при выполнении условия (2), будут изменяться по линейному закону (кривая 2, Фиг.2):

ϕ с р ( x c , y ) = E m y ,                                    ( 4 )

где E m = 0.9 Δ y ϕ 0 / r 0 2 . При этом в рабочей области |x|<xc, |y|<yc образуется поле с распределением потенциала вида:

ϕ ( x , y ) = E m x c x y ,                                           ( 5 )

которое соответствует двумерному линейному электрическому полю с проекциями напряженности поля на оси X и Y:

E x = E m x c y , E y = E m x c x .                              ( 6 )

Из (5) и (6) следует, что система из 2-х плоских с постоянным шагом ∆y эквипотенциальных дискретных и 4-х гиперболических поверхностей позволяет образовывать двумерные линейные электрические поля в рабочих областях 4 |x|<xc, |yc|<y с произвольным соотношением параметров xc, yc. Причем при фиксированной длине полуосей r0 гиперболических поверхностей выбором параметров xc и ∆y размеры рабочей области по оси X могут изменяться в широких пределах.

Устройство для образования двумерного линейного электрического поля по предлагаемому в п.1 формулы изобретения способу состоит из 2-х плоских дискретных электродов 1 длиной L>>2xc и 4-х гиперболических электродов 2 длиной L>>2xc (Фиг.1). Дискретные электроды 1 с размером ya>>xc по оси Y расположены в плоскостях x=±xc и образованы из равномерно распределенных по оси Y с шагом ∆y тонких диаметром d<<∆y параллельных оси Z эквипотенциальных нитей. Начала координат гиперболических электродов сдвинуты попарно по оси Х на расстояние ±x0 и имеют конечные координаты х=±xa, y=±ya, где xa≥(xc+1.5r0), ya≥(yc+1.5xc). Гиперболические электроды расположены за пределами рабочей области 4 (Фиг.1) |x|>xc по одному в каждом квадранте. Геометрический параметр r0 гиперболических электродов определяется шагом дискретности ∆y плоских электродов и их размером ya по оси Y:

r 0 = 2 y a Δ y .

При заданных параметрах xc, yc рабочей области геометрический параметр r0 гиперболических электродов, используемых в совокупности с плоскими дискретными электродами с постоянным значением шага ∆y, оказывается значительно меньше параметра r0 гиперболических электродов 3 (Фиг.1), создающих такое же поле в отсутствии дискретных электродов. Это позволяет в анализаторах с вытянутыми вдоль оси Y рабочими областями 4 (Фиг.1), когда yc>>xc путем минимизации значения параметра r0 гиперболических электродов в 2-2,5 раза сократить размеры электродных систем анализаторов по оси X. Размер L электродов 1 и 2 по оси Z выбирается исходя из допустимого уровня отклонения поля от линейного в рабочей области анализатора из-за краевых эффектов:

L≥4xc.

Использование в качестве плоских дискретных электродов равномерно распределенных по оси Y металлических нитей в совокупности с гиперболическими электродами упрощает конструкцию и технологию изготовления, а также снижает размеры анализаторов с двумерными линейными электрическими полями.

ЛИТЕРАТУРА

1. Гуров B.C., Мамонтов Е.В., Дягилев А.А. Электродные системы с дискретным линейным распределением высокочастотного потенциала для масс-анализаторов заряженных частиц // Масс-спектрометрия. 2007. №4 (2). - С.139-142.

2. Патент RU №2327245 от 03.05.2006, Способ масс-селективного анализа ионов по времени пролета и устройство для его осуществления.

3. Патент RU №2387043 от 10.04.2008, Способ формирования линейного поля и устройство для его осуществления.

4. Патент RU №2422939 от 25.11.2009, Способ образования двумерного линейного электрического поля и устройство для его осуществления.

1. Способ образования двумерного линейного электрического поля, заключающийся в создании по границам x=±xc рабочей области |x|<xc, |y|<yc параллельных оси Z плоских дискретных проводящих поверхностей с размерами 2ya, L по осям Y, Z, состоящих из совокупности распределенных по оси Y параллельных оси Z тонких проводящих нитей, отличающийся тем, что по оси Y эквипотенциальные нити распределены равномерно с шагом Δy, причем за границами рабочей области |x|>xc располагают по одной в каждом квадранте гиперболические проводящие поверхности y = ± r 0 2 / 2 ( x ± x 0 ) , где |x0|<|xc|, r0 - действительная полуось гипербол, и на смежных поверхностях устанавливают противоположные потенциалы φ0 и -φ0.

2. Устройство для образования двумерного линейного электрического поля, содержащее по границам рабочей области x=±xc параллельные оси Z электроды длиной L>>2xc из распределенных по оси Y параллельных оси Z проводящих тонких нитей, отличающееся тем, что используют два в плоскостях х=±xc дискретных с размером ya>>xc по оси Y электрода из равномерно распределенных с шагом Δy по оси Y эквипотенциальных нитей диаметром d<<Δy и четыре, по одному в каждом квадранте, гиперболических электрода с действительной полуосью r0, сдвинутых попарно по оси X на расстояние ±x0, с конечными координатами x=±xa,
y=±ya, где xa≥(xc+1,5r0), ya≥(yc+1,5xc).



 

Похожие патенты:

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и нано-электроники методами вторично-ионной и лазерной масс-спектрометрии.

Изобретение относится к разделению ионов в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки на базе различий этих ионов в энергиях появления, в массах, зарядах, подвижности, сечениях захвата медленных электронов и метастабильно возбужденных частиц, а также в эффективности образования путем перезарядки на ионах буферного газа при воздействии на эти ионы переменных и постоянных электрических полей, создаваемых внутри ловушки, в том числе и зарядами ионов с относительно малыми m/z, сфокусированных вокруг оси ловушки.

Изобретение относится к области газового анализа, а именно к технике генерации заряженных ионов в воздушной среде или в других газах, и может быть использовано в качестве источника ионов в спектрометрах ионной подвижности, масс-спектрометрах и других аналитических приборах.

Изобретение относится к области оптики заряженных частиц и масс-спектрометрии, а именно к радиочастотным системам транспортировки и манипулирования заряженными частицами.

Изобретение относится к способам и устройствам, обеспечивающим анализ потоков заряженных частиц по энергиям и массам с помощью электромагнитных полей, и может быть использовано при изучении поверхностей твердых тел, для определения элементного или изотопного состава плазмы рабочего вещества.

Изобретение относится к спектрометрии ионной подвижности, применяемой в приборах для контроля газообразных примесей в воздухе. .
Метод масс-спектрометрического секвенирования пептидов и определения их аминокислотных последовательностей основан на фрагментировании в ионном источнике масс-спектрометра между соплом и скиммером молекулярных ионов пептидов под воздействием электрического поля управляемой величины и на последующем анализе масс-спектров фрагментов. Пептид поступает в источник ионов, электрогазодинамическая система транспортировки которого позволяет управлять степенью фрагментации молекулярного иона при помощи изменения электрического поля. Далее ионы разделяют в масс-анализаторе и направляют в детектор, где осуществляют регистрацию масс-спектра пептида и его фрагментов с различной глубиной фрагментации одновременно в одном спектре. Масс-спектры фрагментов пептида, полученные при разных значениях напряженности электрического поля, обрабатывают системой регистрации, анализируют, в результате чего определяют аминокислотную последовательность исходного пептида. Управляемая степень фрагментации в источнике ионов под воздействием варьируемого электрического поля в диапазоне 122-104 В/м и давлениях остаточного газа в диапазоне 100-2000 Па позволяет определять аминокислотную последовательность пептидов, содержащих до 10-15 аминокислотных остатков, что соответствует средней длине пептидов - продуктов ферментативного гидролиза белков. Технический результат - упрощение и ускорение способа.

Изобретение относится к области анализа смесей химических соединений на основе разделения ионов, выведенных из приосевой зоны, в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки по отношениям массы к заряду и на базе различий в устойчивости ионов к столкновительно-индуцированной диссоциации. Для предотвращения излишней гибели анализируемых ионов внутренние стенки входной и выходной диафрагм разрезаны на сегменты, и к ним приложены альтернированные или переменные напряжения. Регистрация масс-спектров ионов-продуктов в процессе столкновительно-индуцированной диссоциации осуществляется с помощью масс-анализатора, сопряженного с ловушкой, в частности на времяпролетном масс-анализаторе с ортогональным вводом ионов. Технический результат - получение количественной информации об исследуемых соединениях и повышение точности структурно-химического анализа. 14 з.п. ф-лы, 7 ил.

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований, и может быть использовано в ходе натурного эксперимента для измерения элементного состава собственной внешней атмосферы космического аппарата. Технический результат - расширение диапазона исследуемых масс с увеличением разрешающей способности. Циклический масс-спектрометр газовых частиц содержит приемник ионов, три тороидальных дефлектора, блок обработки ионных спектров и заземленные сетки, дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключены к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов. В пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца. 1 ил.

Изобретение относится к области энергетики, а именно к технологии получения заряженных частиц больших энергий, и предназначено для применения в области ядерной физики и технологии. Технический результат - повышение плотности энергии потока заряженных частиц. Способ осуществляется путем выполнения во времени последовательности процессов: генерации потока заряженных частиц, ускорения, фокусировки, замедления и дефокусировки, причем процессы в указанном порядке осуществляются периодически с частотой изменения величины магнитного поля, а вывод потока частиц на мишень происходит за счет изменения индукции магнитного поля на стационарной траектории в сторону увеличения или уменьшения. Все перечисленные процессы осуществляются под действием одного и того же переменного аксиально-симметричного магнитного поля бетатронного типа, параметры которого позволяют проводить процессы в согласованном режиме и определяются следующим образом: индукция магнитного поля в области стационарной траектории уменьшается пропорционально расстоянию ρ от оси симметрии по закону В ~ ρ-α, где α=0,5, индукция магнитного поля В0 на стационарной траектории, окружности радиуса ρ0, составляет половину среднего значения магнитного поля Bcp внутри этой окружности B0=0,5·Bcp; частота изменения В0, в зависимости от вида ускоряемых частиц - электронов или ионов, составляет ν=105-109; изменение B0 во времени подчинено условию периодичности B(t+2T)=B(t), B(t+T)=-B(t), где T=ν-1 - полупериод изменения величины индукции магнитного поля. 3 ил.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22. Технический результат - повышение точности работы системы автоподстойки частоты сигнального генератора и резонансной частоты измерительного резонатора. 1 ил.

Изобретение относится к области спектрометрии ионной подвижности. Технический результат - увеличение разрешающей способности анализатора, например, по ионной подвижности в широком диапазоне времени открывающего затвор основного импульса. Особенностями способа являются эпюры напряжений, подаваемых на электропроводящие нити затвора, или их комбинация. Применяемые эпюры напряжений или их комбинация позволяют сузить ионный пакет (импульс) по времени на полувысоте за счет «поджатия» заднего фронта ионного пакета и увеличить его интенсивность, не влияя на состояние заряженных частиц. 9 ил.

Изобретение относится к области химического анализа примесных соединений и ионов в растворах. Основой изобретения является экстракция ионов или их образование из раствора, просачивающегося в вакуумную часть газодинамического интерфейса через трековую мембрану под действием атмосферного давления и электрического поля в каналах мембраны. Испарение жидкости поддерживается электрическим нагревом при пропускании тока через проводящее напыление на поверхности мембраны. Выход и образование ионов стимулируется воздействием струй сверхзвукового газового потока при возможном содержании в нем метастабильно возбужденных атомов, образованных при прохождении потока через источник электронной ионизации или область газового разряда. Возможно предварительное накопление, разделение и столкновительно-индуцированная диссоциация выбранных ионов, поступающих в линейную радиочастотную ловушку газодинамического интерфейса вместе с другими струями сверхзвукового газового потока, создающими относительно небольшую дополнительную плотность газа вблизи оси этой ловушки. Ловушка сопряжена с масс-анализатором, например времяпролетным масс-спектрометром с ортогональным вводом ионов. Технический результат - возможность характеризации биомолекул в растворах по равновесным вероятностям удерживания различных носителей заряда их отдельными ионогенными группами. 18 з.п. ф-лы, 10 ил.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач в органической и биоорганической химии, иммунологии, биотехнологии, криминалистике, протеомике при исследовании лабильных веществ с использованием метода «электроспрей». Устройство стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов выполнено в виде металлического капилляра, по которому подается раствор. На торце этого капилляра образуется мениск жидкости, из которого происходит эмиссия заряженных частиц под воздействием электрического напряжения подаваемого на противоэлектрод. Снаружи металлического капилляра устанавливается коаксиальная насадка из химически стойкого, не-смачиваемого, непористого диэлектрика. Торец насадки со стороны мениска имеет форму усеченного конуса с диаметром сечения и внутренним каналом, равным двум диаметрам капилляра, на котором расположен мениск. Внутренний канал расположен по оси прямого усеченного конуса и имеет переменное сечение, длина внутреннего канала в его узкой части равна диаметру сечения конуса и составляет пять его диаметров. Внутренний канал в его широкой части имеет диаметр много больше диаметра в его узкой части. Вершина конуса имеет угол не более 90 градусов. Плоский противоэлектрод электрически присоединен к высоковольтному источнику питания, а металлический капилляр заземлен. Коаксиальный зазор между капилляром и насадкой подключен к воздушному откачивающему насосу для устранения излишков нераспыленного раствора вместе с лабораторным воздухом. Технический результат - увеличение времени режима стабильного электрораспыления при атмосферном давлении растворов веществ для источников ионов, уменьшение шумов в регистрируемых спектрах, отсутствие ложных пиков в спектрах из-за электрохимической эрозии, повышение электрической прочности узла электрораспыления на пробои. 4 ил.

Изобретение относится к области масс-спектрометрии. Способ образования бескапельного непрерывного стабильного ионного потока при электрораспылении растворов анализируемых веществ в источниках ионов с атмосферным давлением характеризуется отсутствием образования капель в начале процесса электрораспыления, что существенно упрощает процесс получения непрерывного стабильного и монодисперсного потока заряженных частиц в широком диапазоне объемных скоростей потоков распыляемой жидкости и, соответственно, стабильным ионным током анализируемых веществ, поступающих в анализатор, а также долговременной работой источника ионов без разборки и чистки. Особенностями способа являются: наличие сплошной управляемой скользящей задвижки из проводящего материала, соединенной с противоэлектродом электрически, при этом противоэлектрод в исходном состоянии закрыт задвижкой. Кроме того, величина потока газа, прокачиваемого через коаксиальный канал перед началом процесса электрораспыления, устанавливается больше необходимого для получения стабильного бескапельного потока ионов. При горизонтальной ориентации оси входа в анализатор ионов мениск, с вершины которого происходит эмиссия заряженных частиц в режиме бескапельного непрерывного стабильного ионного потока, устанавливается под углом к горизонтальной плоскости на оси входа в анализатор ионов. Техническим результатом является возможность образования бескапельного непрерывного стабильного ионного потока при электрораспылении растворов анализируемых веществ в источниках ионов с атмосферным давлением при нормальных условиях в момент начала и окончания процесса распыления раствора с учетом деформации формы жидкого мениска под воздействием силы тяжести. 1 з.п. ф-лы, 2 ил.

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств и может быть использовано для хромато-масс-спектрометрической идентификации контролируемых токсичных химикатов в сложных смесях в рамках мероприятий по выполнению Конвенции о запрещении производства, накопления и применения химического оружия, а также его уничтожении. Способ идентификации на основе метода масс-спектрометрии заключается в том, что на первом этапе из полного масс-спектра электронной ионизации происходит определение характеристической составляющей масс-спектра нейтральной молекулы НХ (характеристического субспектра) исследуемого соединения и его структуры с установлением полной структуры 2-диалкил-аминоэтиловой группы. Далее проводят анализ с регистрацией отрицательно заряженных ионов при энергии ионизации 4 эВ. К наибольшему по интенсивности пику в масс-спектре отрицательно заряженных ионов прибавляют массу выделенной 2-диалкил-аминоэтиловой группы и устанавливают молекулярную массу соединения. Далее из молекулярной массы вычитают массу максимального (по массовому числу) пика масс-спектра отрицательно заряженных ионов, устанавливая, таким образом, массу и строение О-алкильного радикала. В последнюю очередь устанавливается масса алкильного радикала путем вычитания из характерного иона, установленного по масс-спектру положительно заряженных ионов, массы О-алкильного радикала и фосфонотиолятной группы (PO2S). Технический результат – повышение достоверности идентификации соединений ряда О-алкил (Н или <С10, включая циклоалкилы) S-2-диалкил (Me, Et, n-Pr или i-Pr)-аминоэтил алкил (Me, Et, n-Pr или i-Pr) фосфонотиолятов в сложных смесях, расширение функциональных возможностей масс-спектрометрического метода. На базе полученных результатов возможно появление программного продукта для автоматической идентификации указанной группы соединений. 1 табл., 4 ил.
Наверх