Устройство создания мощных ионных потоков

Изобретение относится к области плазменной техники. Технический результат - повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке. Устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух электродов - анода и катода, между которыми создается разность потенциалов. Источник ионов выполнен в виде резервуара с жидкостью, соединенного с нагревательным элементом или с криогенной установкой, внутри которого установлен анод, причем анод и стенки резервуара расположены с зазором, создающим капиллярное движение потока жидкости из резервуара, катод выполнен в форме пластины со щелью, расположенной над анодом, который выполнен в виде системы соосных цилиндров, расположенных относительно друг друга с зазором, а катод выполнен в форме пластины с системой щелей. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области создания поверхностного слоя путем плазменного напыления и предназначено для получения направленных потоков (пучков) ионов.

Известна конструкция автоэмиссионного жидкометаллического источника ионов (Патент RU 2389105 C1 Морозов Е.А., Ефимов И.Н. Устройство создания ионных потоков, опубликовано 5.05.2010 Бюл. №13).

Устройство создания ионных потоков, состоящее из вакуумной камеры с источником ионов и двух электродов, источников ионов выполнен в виде резервуара с жидкостью соединенного с нагревательным элементом или с криогенной установкой внутри которого установлен электрод (анод), выполненный в виде пластины-лезвия, причем электрод и стенки резервуара расположены с некоторым зазором, создающим капиллярное движение потока жидкости из резервуара, второй электрод (катод) выполнен в форме пластины со щелью, расположенной над первым электродом (анодом).

Задачей предлагаемого изобретения является повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке.

Поставленная цель достигается за счет того, что устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух электродов, источник ионов выполнен в виде резервуара с жидкостью, соединенного с нагревательным элементом или с криогенной установкой, внутри которого установлен электрод (анод), причем электрод и стенки резервуара расположены с некоторым зазором, создающим капиллярное движение потока жидкости из резервуара, второй электрод (катод) выполнен в форме пластины со щелью, расположенной над первым электродом (анодом). Электрод (анод) выполнен в виде системы соосных цилиндров, расположенных друг относительно друга с некоторым зазором, а второй электрод (катод) выполнен в форме пластины с системой щелей. К каждому цилиндру электрода (анода) разность потенциалов подводится к каждому цилиндру электрода (анода). Цилиндры могут смещаться вдоль образующей относительно друг друга. Система соосных цилиндров электрода (анода) выполнена в виде системы цилиндрических тел с направляющими отличными от окружности.

Выполнение электрода в виде системы тонких цилиндров с кромками-лезвиями с радиусом закругления кромки ~1 мкм приводит к увеличению силы тока пучка ионов.

Конструкция устройства создания мощных ионных потоков поясняется на чертеже.

Ионный источник состоит из резервуара с жидкостью образующей ионы - 1; системы соосных цилиндров с кромками в форме лезвия из металла смачиваемого жидкостью резервуара - 2; прилегающего к лезвию капилляра - 3; расположенного над пластиной вытягивающего электрода - 4 со щелями для формирования ионного пучка - 5. Источник помещен в вакуумную камеру. Регулирование температуры жидкости осуществляется применением индукционного нагрева для расплавов или криогенной системы для работы с сжиженными газами. Между цилиндрами электрода (анода) и вытягивающим электродом создается разность потенциалов U ~100 кВ.

Устройство работает следующим образом.

Жидкость смачивает цилиндры 2, не вступая с материалом в химическую реакцию и, вследствие капиллярного эффекта движется к кромке пластины, образуя на кромке линейный микровыступ. Высокая разность потенциалов между цилиндрами 2 и вытягивающим электродом 4 и малый радиус закругления кромки цилиндров, приводит к возникновению в области микровыступа сильно неоднородного электростатического поля. Указанное поле переводит жидкость в неустойчивое состояние и приводит к формированию ионного потока 5, который выводится через кольцеобразные щели в вытягивающем электроде 4.

Таким образом, конструкция автоэмиссионного ионного источника использует для движения ионообразующей жидкости в область сильно неоднородного электростатического поля систему соосных цилиндров с кромкой малого закругления в форме лезвия.

1. Устройство создания мощных ионных потоков, состоящее из вакуумной камеры, источника ионов в виде резервуара с жидкостью, соединенного с нагревательным элементом или с криогенной установкой, анода, расположенного внутри резервуара с возможностью создания капиллярного движения потока жидкости, и катода в виде пластины с щелью, расположенного над анодом, отличающееся тем, что анод выполнен в виде системы соосных цилиндров с кромками в форме лезвия из металла, смачиваемого жидкостью резервуара, причем капилляр выполнен примыкающим к лезвию, а между анодом и катодом создается разность потенциалов.

2. Устройство создания мощных ионных потоков по п.1, отличающееся тем, что цилиндры могут смещаться вдоль образующей.

3. Устройство создания мощных ионных потоков по п.1, отличающееся тем, что цилиндры имеют направляющие, отличные от окружности.



 

Похожие патенты:

Изобретение относится к области аналитического приборостроения и может быть использовано при решении задач органической и биоорганической химии, биотехнологии и экологии, в частности в системах для определения состава и количества химических соединений в виде газовой фазы, растворов и биологических жидкостей.

Изобретение относится к области газового анализа и предназначено для применения в качестве ионизатора в спектрометрах ионной подвижности, масс-спектрометрах и других аналитических приборах.

Изобретение относится к области создания полупроводниковых приборов методом легирования и предназначено для получения направленных потоков (пучков) ионов. .

Изобретение относится к ускорительной технике. .

Изобретение относится к области масс-спектрометрии и может быть использовано в анализаторах атомных частиц, масс-спектрометрах, в частности в магнитных резонансных масс-спектрометрах.

Изобретение относится к области аналитического приборостроения. Источник ионов для масс-спектрометра первому варианту включает камеру (1), в первом торце (2) камеры (1) выполнено отверстие (3), в котором размещено устройство (4) электрораспыления пробы. В боковой стенке (5) камеры (1) у первого торца (2) установлена по касательной к боковой стенке (5) по меньшей мере одна трубка (7) для подачи в камеру (1) нагретого сжатого газа. Во втором торце (9) камеры (1) установлен первый электрод (11) с центральным отверстием (12) для выхода ионов, окруженный вторым электродом (13) с отверстием (14) в центральной области, образующим с первым электродом (9) электростатическую фокусирующую линзу для ионов (15). В боковой стенке (5) камеры (1) выполнено по меньшей мере одно отверстие (13) для выхода газа и неиспарившихся капель пробы, отстоящее от второго торца (8) на расстояние d, удовлетворяющее определенному соотношению. По второму варианту отверстие (44), в котором размещено устройство (4) электрораспыления пробы, выполнено в боковой стенке (43) камеры (40), а в первом торце (41) камеры (40) выполнено отверстие (42) для выхода газа. Технический результат - повышение доли заряженных частиц, в первую очередь ионов, поступающих из источника ионов на вход в масс-спектрометр. 2 н. и 18 з.п. ф-лы, 10 ил.

Изобретение относится к области приборостроения. Технический результат - увеличение светосилы ионного источника тлеющего разряда за счет уменьшения диффузионных потерь ионов в разрядной камере. Источник тлеющего разряда содержит размещенные с зазором и соосно цилиндрические полый анод, имеющий профилированную донную часть, и полый катод, размещенный в полости анода со стороны его открытого торца, совместно образующие разрядную камеру. Выходом камеры является осевое отверстие для вытягивания ионов и откачки, образованное в донной части полого анода. Профиль донной части анода выполнен с возможностью одновременной самофокусировки электронного потока из полого катода в зону осевого отверстия разрядной камеры и формирования параболического электрического поля на выходе из камеры, при этом донная часть анода, обращенная внутрь камеры, имеет форму выпуклого конуса, а обращенная наружу - поверхность вогнутой сферической формы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитического приборостроения и может быть использовано для высокочувствительного анализа состава растворов, находящихся при атмосферном давлении. Исследуемый раствор помещается в каналы диэлектрической мембраны, откуда ионы экстрагируются в вакуум импульсами сильного электрического поля. При этом распыление самого раствора не происходит. Для реализации этого способа предлагается устройство, в котором за счет конструкции электродов обеспечивается возможность быстрого формирования электрических полей, стимулирующих эффективную экстракцию ионов, из раствора, находящегося в каналах мембраны. Существенными признаками, отличающими изобретение являются: 1) возможность прямого управления электрическим полем, экстрагирующим ионы; 2) отсутствие переходных процессов при запуске устройства, изменении напряжений, приложенных к его электродам, или замене пробы; 3) возможность повышения интенсивности выхода ионов из раствора за счет использования импульсных электрических полей с существенно большей напряженностью; 4) более низкий расход анализируемых ионов, содержащихся в растворе, за счет согласования потока экстрагируемых ионов с периодичностью их разделения и регистрации во времяпролетных приборах; 5) существенное повышение чувствительности при регистрации ионного состава растворов за счет более эффективного использования всех каналов мембраны и снижения фоновых шумов; 6) возможность прямого ввода ионов из раствора во времяпролетную камеру анализатора без дополнительной модуляции ионного потока. Технический результат - обеспечение стабильного и управляемого транспорта ионов из полярного раствора в вакуум в контролируемых условиях в течение длительного времени. 2 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к области метрологии и может быть использовано для определения частоты и времени, в частности при создании атомных стандартов частоты и атомных часов. В заявленном способе получения и детектирования ионов изотопов торий-229 и торий-232 с различной кратностью заряда предусмотрено испарение и ионизация тория, фильтрация ионов по энергии и фильтрация ионов по отношению массы к заряду, улавливание ионов тория выбранной степени заряда в квадрупольной ионной ловушке линейной конфигурации. Далее осуществляют охлаждение ионов тория выбранной степени заряда в квадрупольной ионной ловушке линейной конфигурации до тепловых температур при напуске гелия, воздействие на охлажденные ионы тория лазерным излучением для охлаждения и спектроскопического исследования, испарение и ионизация до необходимого зарядового состояния тория, предварительно осажденного на вольфрамовом стержне и содержащего изотопы 229Th и 232Th, пучком электронов энергией 0.6-1 кэВ, эмитируемых с нагретого катода. Затем производится фильтрация ионов по энергии в энергетическом диапазоне шириной не более 4 эВ, соответствующем максимальному числу ионов необходимой степени заряда, замедление ионов до энергии не более 5 эВ и фильтрация ионов по отношению массы к заряду методом квадрупольной масс-спектрометрии. Техническим результатом изобретения является повышение эффективности использования пробы, уменьшение ее необходимого количества и снижение опасности накопления используемых радиоактивных материалов, уменьшение вариации числа загружаемых в ловушку ионов. 7 ил.

Изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении аналитических задач органической химии, криминалистики, метаболомики и медицины. Источник ионов с фотоионизацией при атмосферном давлении выполнен в виде полого газового потока азота, обдувающего прогреваемый выход капиллярной хроматографической колонки и одновременно выполняющего роль ионизационной камеры, отделяя внешний фоновый газ (лабораторный воздух) от потока газа-носителя, поступающего из хроматографической колонки вместе с ионизируемым веществом внутрь полого газового потока азота. Ортогонально потоку газов располагается источник ионизирующего ультрафиолетового излучения. Ионы, образовавшиеся вдоль оси потока газов, вместе с потоком поступают на вход в интерфейс анализатора. Для исключения побочных ион-молекулярных реакций в интерфейсе поток газов выбирается чуть больше, чем максимально может пропустить интерфейс (входная диафрагма), что позволяет исключить затягивание лабораторного воздуха с примесями и искажение аналитической информации. Технический результат - исключение эффекта «помутнения» оптического окна и загрязнения ионизационной камеры и повышение чувствительности прибора. 1 ил.
Наверх