Способ введения пластификатора и устройство для его осуществления

Изобретение относится к порошковой металлургии, в частности к способу гранулирования пластифицированного материала. Может использоваться для получения изделий из непластичных порошков, обладающих плохой формуемостью. Порошковый материал с раствором пластификатора на вакуумном фильтре, содержащем размещенную на фильтрующем материале перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора. Порошок насыпают на перфорированную решетку и заливают раствор пластификатора. Гранулирование осуществляют путем фильтрации в вакууме до прекращения выделения раствора. Устройство для гранулирования содержит вакуумный фильтр, содержащий перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора, фильтрующий материал и вакуумный насос. Обеспечивается равномерное распределение пластификатора и снижение расхода раствора пластификатора. 2 н. и 1 з.п. ф-лы, 9 ил., 4 пр.

 

Область техники, к которой относится изобретение.

Предлагаемое изобретение относится к порошковой металлургии, в частности к способу введения пластификатора в порошок или порошковую смесь непластичных материалов, обладающих плохой формуемостью.

Уровень техники. Известен способ введения пластификатора в порошковую смесь компонентов в виде раствора при смешивании, с последующей сушкой [Г.А. Либенсон и др. / Процессы порошковой металлургии. Том II. Формование и спекание. М: - МИСИС. - 2002. стр.53].

Известно устройство для сушки и дистилляции, представляющее собой двух ярусный шнековый аппарат, с «рубашкой», рисунок 1 (1 - цилиндр дистиллятор, 2 - цилиндр смеситель, 3 - гранулятор (протир), 4 - полый вал, 5 - полые лопатки, 6 - вал с лопатками, 7 - штуцер подачи воды, 8 - штуцер подачи цластификатора, 9 - штуцер отвода пара, 10 - штуцер подачи водяного пара, 11 - штуцер отвода воды, 12 сборник гранулята) [Г.А. Либенсон, B.C. Панов / Оборудование цехов порошковой металлургии. М.: Металлургия. 1983. стр.107, рис.64].

Наиболее близким техническим решением является способ замешивания порошковой смеси с пластификатором в растворе и последующей сушкой распылением [B.C. Панов, A.M. Чувилин / Технология и свойства спеченных твердых сплавов и изделий из них. М: - *МИСИС*. - 2001. стр.354-355/].

При распылении капля пульпы в полете подвергается нагреву инертным газом. Из капли пульпы образуется гранула. Известно, что при испарении в растворе будет концентрироваться растворенное вещество, т.е. пластификатор. Это приведет к тому, что на поверхности гранулы возникнет слой пластификатора, в то время как внутри, по теории А.В. Лыкова, может остаться часть раствора, рисунок 2.

На рисунке 2 схема движения влаги и теплоты в поверхностном слое капиллярно-пористого тела: 13 - поток скольжения, 14 - поток Стефана, q - поток теплоты, j - поток влаги [Лыков А.В. Тепло и массообмен в капиллярно-пористых телах. М.: Гостехиздат. 1954. 296 с.].

Недостатками наиболее близкого технического решения являются: градиент распределения пластификатора по объему гранулы, не возможность применить его к малотоннажному производству, длительность процесса, большой расход раствора пластификатора

Задача изобретения: разработка способа грануляции материала мало тоннажного производства

Достигаемым техническим результатом является:

- равномерное распределение пластификатора;

- снижение расхода раствора пластификатора.

Для достижения технического результата в способ получения гранулированного пластифицированного материала, включающий смешивание порошкового материала, обладающего плохой формуемостью, с раствором пластификатора на вакуумном фильтре, содержащем фильтрующий материал и вакуумный насос, при этом порошок насыпают на размещенную на фильтрующем материале перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора, заливают раствор пластификатора, включают вакуумный насос и осуществляют гранулирование путем фильтрации до прекращения выделения раствора.

Предлагаемое изобретение стало возможным после того, как авторами была установлено, что сушка испарением распыляемой пульпы происходит по теории А.В. Лыкова.

На рисунке 2 схематически представлена схема возможного механизма переноса влаги в слое капиллярно-пористого тела, который нагревается (поток теплоты направлен справа налево) [Лыков А.В. Тепло и массообмен в капиллярно-пористых телах. М.: Гостехиздат. 1954. 296 с.].

Устройство для получения гранулированного пластифицированного материала, содержащее вакуумный фильтр, содержащий фильтрующий материал, размещенную на нем перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора пластификатора, и вакуумный насос.

Перфорированная решетка придает гранулам форму. Конические отверстия гранулируют материал при прохождении через него раствора пластификатора и позволяют гранулам самопроизвольно высыпаться. Вакуумирование обеспечивает прохождение раствора, удаляет его избыток, обжимает гранулы и сушит воздухом, который засасывает вакуумный насос.

Для достижения поставленной цели на фильтрующий материал устанавливают перфорированную металлическую сетку с коническими отверстиями 1,0 мм, вершины которых направлены в сторону движения раствора пластификатора.

Гранулы более 1,0 мм будут не однородно заполнять полость матрицы при засыпке их пресс-форму.

Пример 1. (Способ прототип). 100 г смеси ВК8, с размером частиц 1-3 мкм, смешивали с 10 мл 4-процентного водного раствора поливинилового спирта. Перемешивали до получения однородной массы в течение 10 минут.

Сушили при температуре 70-80°С, протирали через сито 0,4 мм.

Окончательную, вторую, сушку проводили при постоянном пересыпании.

Пример 2. (Предлагаемый способ). На воронке Бохнера, рисунок 3, на фильтр с белой полосой, насыпали 100 г смеси ВК8, с размером частиц 1-3 мкм, рисунок 4. Затем сверху наливали водный 4-процентный раствор поливинилового спирта и включали вакуумный насос, рисунок 5.

Через 2 минуты раствор был отфильтрован, а смесь на фильтре - пластифицирована и частично подсушена за счет прохождения воздуха через слой осадка.

Фильтрат - это чистый раствор поливинилового спирта, не содержащий частиц смеси, рисунок 6.

Снятый с фильтра пластифицированный материал, рисунок 7, без дополнительной сушки, в состоянии капиллярно удерживаемой влаги, направляли на протирку через сито 0,4 мм.

Пример 3. (Предлагаемый способ). По условию примера 2, на фильтровальную бумагу, перед тем как насыпать смесь, клали решетку, с диаметром отверстий 0,5 мм, рисунок 8. На рисунке видно, что отверстия имеют конусную форму, вершина которого направлена в сторону движения фильтрата. Диаметр вершины усеченного конуса 1 мм. Это позволяет осуществить съем осадка (пластифицированную смесь) в виде гранул.

Пример 4. На вакуумный фильтр насыпали медный порошок, фракции - 0,63+0,4 мм, который имеет чешуйчатую форму частиц и не обладает текучестью, рисунок 9 [Получение медного порошка из прокатной окалины и его свойства / Т.В. Логинова и др. Депонирована в ВИНИТИ 28.12.201) г. №564-В2011].

В качестве пластификатора был 4-процентный водный раствор поливинилового спирта.

Устройство работает следующим образом. На поверхность бумажного фильтра кладут решетку, с коническими отверстиями. Вершины конусов, обращены по направлению движения фильтрата, и на нее засыпают слой порошка, затем заливают раствор и включают вакуумный насос, который создает разряжение в колбе.

Раствор пластификатора фильтруют через слой порошка. После фильтрации на каждой частице останется тонкий слой раствора. Толщина этого слоя будет равна пограничному слою (теория Людвига Прандтля).

После фильтрации, материал извлекают из отверстий в перфорированной решетке. Для этого перфорированную решетку переворачивают, гранулы высыпаются под действием собственного веса и конусной формы отверстий.

Можно использовать вакуум фильтры со сходящим полотном. Предложенный способ конкурентоспособен с сушкой распылением.

1. Способ получения гранулированного пластифицированного материала, включающий смешивание порошкового материала с раствором пластификатора на вакуумном фильтре, содержащем размещенную на фильтрующем материале перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора, при этом порошковый материал насыпают на перфорированную решетку, заливают раствор пластификатора и осуществляют фильтрацию в вакууме до прекращения выделения раствора с получением гранулированного пластифицированного материала путем извлечения его из отверстий решетки.

2. Устройство для получения гранулированного пластифицированного материала, содержащее вакуумный фильтр, выполненный с возможностью смешивания порошкового материала с раствором пластификатора, содержащий фильтрующий материал и размещенную на нем перфорированную решетку с коническими отверстиями, вершины которых направлены в сторону движения раствора пластификатора, а диаметр обеспечивает извлечение пластифицированного материала в виде гранул.

3. Устройство по п.2, отличающееся тем, что конические отверстия имеют диаметр вершины 1 мм.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к получению легко выделяемых и передиспергируемых наночастиц переходных металлов. Может использоваться в качестве ИК-поглотителей, в частности в прозрачных термопластичных или сшиваемых полимерах для архитектурного или автомобильного застекления.

Изобретение относится к получению пригодных для использования на воздухе пассивированных тонкодисперсных порошков металлов или сплавов. Порошок со средним размером частиц менее 10 мкм состоит из одного из реакционноспособных металлов: циркония, титана или гафния, или содержит один из указанных реакционноспособных металлов, получают путем металлотермического восстановления их оксидов или галогенидов посредством восстанавливающего металла, который флегматизируют путем добавления пассивирующего газа или газовой смеси в процессе и/или после восстановления оксидов или галогенидов и/или путем добавления пассивирующего твердого вещества перед восстановлением оксидов или галогенидов, причем как восстановление, так и флегматизацию выполняют в едином вакуумируемом и газогерметичном реакционном сосуде.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий на основе железа из порошковой композиции, содержащей распыленный водой предварительно легированный стальной порошок.
Изобретение относится к порошковой металлургии, в частности к получению спеченных деталей из порошковой композиции на основе распыленного водой порошка на основе железа.
Изобретение относится к порошковой металлургии, в частности к получению алюминиевой гранулированной пудры. .

Изобретение относится к порошковой металлургии, а именно к получению порошка на основе железа, содержащего небольшое количество углерода. .

Изобретение относится к порошковой металлургии, в частности к получению высокоазотистой аустенитной порошковой стали с нанокристаллической структурой. .
Изобретение относится к технологии получения таблеток из шихты оксида цинка методом прессования, а в частности к его промежуточной стадии - спеканию. .

Изобретение относится к порошковой металлургии, в частности к твердосплавным композициям. .
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий из распыленного водой предварительно легированного стального порошка. .

Изобретение относится к порошковой металлургии, в частности к подбору состава материала при производстве изделий из порошковых металлических композиционных материалов с заданным физико-механическим свойством. Подбор компонентов осуществляют с использованием следующей зависимости: C к о м = ∑ i = 1 k C i ⋅ ρ i ¯ n i ⋅ K i , где Ском - заданное свойство композиционного материала; Сi - то же свойство i-го металлического порошка; ρ ¯ i - относительная плотность i-го металлического порошка; ni - показатель пористости частиц i-го металлического порошка; Ki - концентрация i-го металлического порошка; i - номер металлического порошка (i=1…k). Относительную плотность определяют из условия равенства контактных усилий: σ т 1 ⋅ ρ 1 ¯ n 1 ⋅ F = σ т 2 ⋅ ρ 2 ¯ n 2 ⋅ F ; σ т 1 ⋅ ρ 1 ¯ n 1 ⋅ F = σ т 3 ⋅ ρ 3 ¯ n 3 ⋅ F ; σ т 1 ⋅ ρ 1 ¯ n 1 ⋅ F = σ т k ⋅ ρ k ¯ n k ⋅ F , где σ T 1 … k - сопротивление пластической деформации металлических порошков; F - площадь контакта соприкосновения частиц металлических порошков и уравнения плотности композита: ρ ¯ к о м = ∑ i = 1 k ρ ¯ i ⋅ K i , где ρ ¯ к о м - заданная относительная плотность композиционного материала. Обеспечивается повышение точности определения заданных физико-механических свойств композитов. 2 пр.
Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза. Может использоваться для изготовления каталитических блоков нейтрализаторов отработавших газов двигателей внутреннего сгорания, фильтров для очистки сточных вод гальванических ванн в металлургической промышленности, масляных фильтров в системе смазки двигателей внутреннего сгорания. Шихта содержит, мас.%: железная окалина 42-47, α-оксид алюминия 32-39, ферросилиций ФС 1-5, медный порошок, являющийся отходом при травлении и механической обработке биметалла 1-5, алюминий АСД-1 - остальное. Обеспечивается нейтрализация отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала, повышается устойчивость к динамическим и статическим нагрузкам и снижается материалоемкость изделий. 1 табл., 1 пр.
Изобретение относится к порошковой металлургии, в частности к составу шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза. Может использоваться для изготовления каталитических блоков нейтрализаторов отработавших газов двигателей внутреннего сгорания, фильтров для очистки сточных вод гальванических ванн в металлургической промышленности, масляных фильтров в системе смазки двигателей внутреннего сгорания. Шихта содержит, мас.%: железная окалина - 42,0-47,0; α-оксид алюминия - 32,0-39,0; ферросилиций ФС-1 - 1,0-5,0; комплексная добавка иридия и родия в соотношении 2:1 - 0,2-0,4; алюминий АСД-1 - остальное. Обеспечивается нейтрализация отработавших газов ДВС посредством фильтрующих элементов из пористого проницаемого материала, повышается устойчивость к динамическим и статическим нагрузкам и снижается материалоемкость изделий. 1 табл., 1 пр.

Изобретение относится к порошковой металлургии, в частности к получению ферритов. Может использоваться в электронной и радио промышленностях. Исходные компоненты смешивают, подвергают помолу и проводят механическую активацию смеси в энергонапряженном аппарате в течение не менее 10 минут. Полученную смесь брикетируют, нагревают с помощью облучения проникающим электронным пучком до температуры синтеза, выдерживают при данной температуре под облучением и охлаждают. Во время выдержки под облучением осуществляют воздействие ультразвуком частотой от 15 до 25 кГц. Обеспечивается повышение степени монофазности ферритов. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе оксидного соединения ванадия. В качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V), или оксида ванадия (V) и карбоната лития, или натрия, или оксида ванадия (V) и борной кислоты, или их смеси с последующим добавлением расплава к дистиллированной воде, при интенсивном перемешивании и выдержке. Гелем пропитывают исходный порошок алюминия при соотношении гель (мл):порошок алюминия (г)=1÷2:1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50-60°C в течение 0,5-1 ч. Обеспечивается высокая степень полноты сгорания за счет достижения смешения компонентов на молекулярном уровне. 6 ил., 5 пр.

Изобретение относится к порошковой металлургии, в частности к получению дисперсноупрочненной высокоазотистой аустенитной стали с нанокристаллической структурой. Смесь из порошков хрома, никеля, марганца и железа помещают в реактор, снабженный проточной системой газов, и добавляют мелющие шары в количестве от 30% до 50% объема реактора. После чего осуществляют герметизацию реактора, проводят предварительную продувку смеси азотосодержащим газом со скоростью 2-16 л/час в течение 10-20 минут и уменьшают скорость потока газа до 0,2-0,3 л/час. Смесь подвергают механическому легированию с параметром дозы энергии от 150 до 720 кДж/г, затем в реактор добавляют порошковую композицию металл - неметалл в количестве, не превышающем 50% от массы стали, и проводят дополнительное механическое легирование в течение 10-60 минут. Обеспечивается улучшение механических свойств стали и уменьшение времени легирования. 1 ил., 1 табл.

Изобретение относится к области порошковой металлургии, в частности к получению многослойных композитов на основе системы Nb-Al. Может использоваться для синтеза наноструктурных интерметаллических соединений данной системы. Смесь порошков ниобия и алюминия чистотой не менее 98% и долей алюминия от 1,5 до 45 мас.% подвергают механической обработке в планетарной шаровой мельнице при ускорении шаров от 100 до 600 м/с2 продолжительностью от 0,5 до 20 минут. Компактирование кручением под квазигидростатическим давлением на наковальнях Бриджмена осуществляют при температуре от 10 до 100°С, давлении от 2 до 10 ГПа и относительном повороте наковален при кручении до достижения сдвиговой деформации γ≥50. Полученный композит со слоистой структурой характеризуется наномасштабным размером зерен и слоев, повышенной твердостью и большой удельной площадью межфазных границ. 3 ил., 1 пр.

Изобретение относится к порошковой металлургии, в частности к порошковой композиции на основе железа, и способу получения диффузионно-легированного порошка. Диффузионно-легированный порошок получен смешиванием порошка железа или на основе железа с частицами легирующего порошка, содержащими медь и никель, и нагрев смеси порошков в неокислительной или восстановительной атмосфере до температуры 500-1000°С в течение 10-120 минут для связывания частиц легирующего порошка с поверхностью базового порошка. Гранулометрический состав легирующего порошка из меди и никеля такой, что D50 составляет менее 15 мкм. Общее содержание меди и никеля составляет максимально 20 вес.%, при содержании меди более 4 вес.% и соотношении между медью и никелем от 9/1 до 3/1. Спеченные детали имеют минимальное изменение размеров в процессе спекания. 5 н. и 10 з.п. ф-лы, 3 ил., 6 табл., 2 пр.
Изобретение относится к порошковой металлургии, в частности к приготовлению шихты для формирования матрицы алмазного инструмента из твердосплавной порошковой смеси с упрочняющими наночастицами из сверхтвердых материалов. В растворитель пластификатора последовательно вводят упрочняющие сверхтвердые частицы наноразмера и вещества пластификатора. Из полученной суспензии при температуре на 30-50°C ниже температуры разложения вещества пластификатора выпаривают избыточное количество растворителя так, чтобы ее количество по отношению к веществу пластификатора составляло не более 10%, после чего пластификатор вводят в твердосплавную порошковую смесь. Смешивание сверхтвердых частиц наноразмера с растворителем и выпаривание избыточного количества растворителя из суспензии проводят в кавитационном поле ультразвука. Обеспечивается получение однородной по объему шихты и однородность износостойкости матрицы инструмента.

Изобретение относится к порошковой металлургии, в частности к изготовлению сварочной порошковой проволоки. Может использоваться при производстве любых видов порошковых проволок. Готовят шихту для порошковой проволоки путем сушки и просева каждого компонента через сито № 0315 или № 02, дозировки компонентов и их перемешивания. Определяют угол естественного откоса полученной шихты при помощи воронки, выполненной из нержавеющей немагнитной стали с конусностью в пределах 9÷22° и полировкой внутренней поверхности Ra в пределах 0,01÷0,16 мкм, сравнивают его с эталонным углом естественного откоса и проводят корректировку угла естественного откоса шихты, изменяя гранулометрический состав компонентов шихты. Каждый компонент предварительно рассеивают и определяют угол естественного откоса каждой фракции всех компонентов, при угле естественного откоса, превышающем верхний предел эталонного угла, удаляют мелкие и добавляют крупные фракции компонентов, а при угле естественного откоса меньше нижнего предела эталонного угла удаляют крупные и добавляют мелкие фракции компонентов. Устройство для определения угла естественного откоса порошковых материалов включает основание (1), средство перемещения воронки (2), выполненное в виде направляющих стоек (4) для перемещения воронки (2), кольца (5), соединенного со стойками, и средство измерения высоты подъема воронки (2), выполненное в виде измерительной шкалы 8, установленной на основании (1) и снабженной подвижной нониусной шкалой 9, соединенной с кольцом воронку (2), выполненную с конусностью в пределах 9÷22°, плоский диск (3). При этом воронка 2 и плоский диск 3 выполнены с полировкой рабочих поверхностей в пределах Ra 0,01÷0,16 мкм. Обеспечивается повышение качества шихты порошковой проволоки и повышение точности определения угла естественного откоса порошковых материалов. 2 н. и 3 з.п. ф-лы, 6 ил.
Наверх