Малочувствительный взрывчатый состав для снаряжения электродетонаторов

Изобретение относится к области создания средств инициирования и может быть использовано при изготовлении безопасных как в снаряжении, так и обращении электродетонаторов (ЭД) без инициирующих взрывчатых веществ (ВВ). Малочувствительный взрывчатый состав включает (в мас.%): бризантное ВВ 70-95 и нанометалл 5-30. В качестве бризантного ВВ состав содержит динитродиаминоэтилен, а в качестве нанометалла - наномедь или наносеребро. Состав имеет низкую потенциальную опасность изготовления электродетонаторов и малую вероятность их несанкционированного воздействия в результате механического или электромагнитного воздействия, при этом обеспечивает устойчивую детонацию с параметрами, достаточными для надежного инициирования вторичного заряда. 2 з.п. ф-лы, 5 пр.

 

Изобретение относится к области создания средств инициирования и может быть использовано при изготовлении безопасных как при снаряжении, так и при обращении электродетонаторов (ЭД) без инициирующих взрывчатых веществ (ВВ).

Известен взрывчатый состав (патент РФ №2258689, МПК С06В 25/34, публ. 20.08.2005) для изготовления детонирующего шнура и капсюля детонатора, содержащий гексоген и 0,3-3% высокодисперсного окисла металла из группы: Fe2O3, Fe3O4, PbO, Pb3O4, CuO, Al2O3, TiO2 с удельной поверхностью 0,5-1,2 м2/г и SiO2 с удельной поверхностью 100-700 м2/г или их смеси. Изобретение направлено на достижение устойчивой сыпучести гексогена и составов на его основе. Недостатком изобретения является использование чувствительного взрывчатого вещества (ВВ) - гексогена, что повышает степень опасности при изготовлении состава в процессе снаряжения и эксплуатации ЭД.

Взрывчатый состав для изготовления детонирующих шнуров и капсюлей детонаторов, описанный в патенте РФ №2257367, МПК С06 В25/00, публ. 27.07.2005, содержащит гексоген, 10-40% крупнокристаллического ВВ - перекристаллизованного гексогена или тетранитратпентаэритрита или гранулированного взрывчатого вещества - гексогена, цементированного полимерными или восковыми добавками, или сыпучего состава тротил/гексоген или сыпучего тетранитратпентаэритрита, или пентолита со средним размером частиц 300-700 мкм и 0,3-3,0% высокодисперсного окисла металла. Изобретение направлено на создание стабильно сыпучего взрывчатого состава для изготовления детонирующих шнуров и капсюлей детонаторов. Недостаток данного изобретения - высокая степень опасности при снаряжении и использовании ЭД.

Инициирующий взрывчатый состав (патент РФ №2309139, МПК С06В 43/00, публ. 27.10.2007), чувствительный к низкотемпературному лазерному излучению, содержащий перхлорат 5-гидразинотетразолртути (II), полиметилвинилтетразол и наноалмазы детонационного синтеза. Изобретение направлено на снижение порога инициирования взрывчатого состава при сохранении высокой адгезии к поверхности взрывчатого вещества, безопасности в обращении. Область применения состава ограничена средствами инициирования, в которых начальным импульсом служит лазерное излучение.

Предложен детонатор (РФ №2427786, МПК F42B 3/113, публ. 27.08.2011) на основе светочувствительного взрывчатого вещества, в котором используется смесевое светочувствительное взрывчатое вещество, выполненное в виде запрессованного до плотности 0,9-1,1 г/см3 материала из смеси высокодисперсного ТЭНа с удельной поверхностью 4000-20000 см/2г и наноалюминия со средним размером частиц не более 60 нм при соотношении ингредиентов (мас.ч.) от 75:15 до 95:5, соответственно. ТЭН в рецептуре может быть заменен на бензотрифуроксан. Состав, описанный в патенте РФ №2427786, выбран в качестве прототипа.

Недостатком состава, приведенного в прототипе, является использование высокочувствительных ВВ - ТЭНа (частость взрывов - 100%, чувствительность к трению (нижний предел) - 150 МПа) или БТФ (частость взрывов - 84%, чувствительность к трению (нижний предел) - 100 МПа). Применение столь чувствительных ВВ приводит к повышению степени опасности при изготовлении детонаторов, а так же увеличивает риск несанкционированного срабатывания в процессе эксплуатации. Кроме того, предложенный детонатор срабатывает от импульса лазерного излучения, в то время как в промышленности и военной технике значительно более распространены электродетонаторы.

Задачей заявленного изобретения является разработка инициирующего состава на основе малочувствительных бризантных ВВ, предназначенного для снаряжения электродетонаторов. Новый технический результат позволит понизить потенциальную опасность изготовления электродетонаторов и уменьшить вероятность их несанкционированного воздействия в результате механического или электромагнитного воздействия.

Предложен малочувствительный взрывчатый состав для изготовления безопасных при снаряжении и применении электродетонаторов без инициирующих ВВ, включающий смесь бризантного ВВ и нанометалла, который в качестве бризантного ВВ содержит динитродиаминоэтилен, а в качестве нанометалла - наномедь или наносеребро при следующем соотношении компонентов (мас.%):

динитродиаминоэтилен 70-95
наномедь или наносеребро 5-30

Для приготовления состава необходимо использовать динитродиаминоэтилен с размером частиц то 0,1 до 100 мкм; нанометалл с размером частиц от 30 до 100 нм.

В предпочтительном варианте состав содержит динитродиаминоэтилен с размером частиц (1-3) мкм.

Наномедь или наносеребро целесообразно вводить в состав с размером частиц (50-70) нм.

Динитродиаминоэтилен - бризантное взрывчатое вещество, обладающее малой чувствительностью к механическим воздействиям: чувствительность к удару по ГОСТ 4545 (частость взрывов) при сбрасывании груза 10 кг с высоты 25 см - 4%, чувствительность к ударному трению (нижний предел) - 392 МПа.

Добавка нанометалла к динитродиаминоэтилену позволяет получить смесь, заряды из которой чувствительны к воздействию высоковольтного электрического разряда (3-9) кВ, что способствует возбуждению в нем детонации.

Процесс изготовления предложенного взрывчатого состава заключается в последующем введении соответствующей навески динитродиаминоэтилена и нанометалла в объемный смеситель с последующим механическим перемешиванием до получения однородной массы.

Пример применения состава.

Пример 1

Приготовленный описанным выше способом состав с соотношением компонентов динитродиаминоэтилен: наномедь 85:15 (по массе) запрессовывается в оболочку диаметром 6,0 мм до плотности 1400 г/см3. При этом размер частиц динитродиаминоэтилена составляет (1-3) мкм, наномеди - (50-70) нм. При пропускании высоковольтного электрического разряда (U=9 кВ, длительности импульса ~1 мкс) через заряд в нем возбуждается устойчивая детонация с параметрами достаточными для надежного инициирования вторичного заряда.

Пример 2

Приготовленный описанным выше способом состав с соотношением компонентов динитродиаминоэтилен: наномедь 70:30 (по массе) запрессовывается в оболочку диаметром 6,0 мм до плотности 1450 г/см3. При этом размер частиц динитродиаминоэтилена составляет (1-3) мкм, наномеди - (50-70) нм. При пропускании высоковольтного электрического разряда (U=9 кВ, длительности импульса ~1 мкс) через заряд в нем возбуждается устойчивая детонация с параметрами достаточными для надежного инициирования вторичного заряда.

Пример 3

Приготовленный описанным выше способом состав с соотношением компонентов динитродиаминоэтилен: наномедь 95:5 (по массе) запрессовывается в оболочку диаметром 6,0 мм до плотности 1500 г/см3. При этом размер частиц динитродиаминоэтилена составляет (1-3) мкм, наномеди - (50-70) нм. При пропускании высоковольтного электрического разряда {U=9 кВ, длительности импульса ~1 мкс) через заряд в нем возбуждается устойчивая детонация с параметрами достаточными для надежного инициирования вторичного заряда.

Пример 4

Приготовленный описанным выше способом состав с соотношением компонентов динитродиаминоэтилен: наносеребро 70:30 (по массе) запрессовывается в оболочку диаметром 6,0 мм до плотности 1400 г/см3. При этом размер частиц динитродиаминоэтилена составляет (1-3) мкм, наносеребра - (50-70) нм. При пропускании высоковольтного электрического разряда (U=9 кВ, длительности импульса ~1 мкс) через заряд в нем возбуждается устойчивая детонация с параметрами достаточными для надежного инициирования вторичного заряда.

Пример 5

Приготовленный описанным выше способом состав с соотношением компонентов динитродиаминоэтилен: наносеребро 95:5 (по массе) запрессовывается в оболочку диаметром 6,0 мм до плотности 1400 г/см3. При этом размер частиц динитродиаминоэтилена составляет (1-3) мкм, наносеребра - (50-70) нм. При пропускании высоковольтного электрического разряда (U=9 кВ, длительности импульса ~1 мкс) через заряд в нем возбуждается устойчивая детонация с параметрами достаточными для надежного инициирования вторичного заряда.

1. Малочувствительный взрывчатый состав для снаряжения электродетонаторов, включающий бризантное взрывчатое вещество (ВВ) и нанометалл, отличающийся тем, что в качестве бризантного ВВ он содержит динитродиаминоэтилен, а в качестве нанометалла - наномедь или наносеребро при следующем соотношении компонентов, мас.%:

динитродиаминоэтилен 70-95
наномедь или наносеребро 5-30

2. Состав по п.1, отличающийся тем, что он содержит динитродиаминоэтилен с размером частиц 1-3 мкм.

3. Состав по п.1, отличающийся тем, что он содержит нанометалл с размером частиц 50-70 нм.



 

Похожие патенты:
Изобретение относится к взрывчатым композициям и может быть использовано в боеприпасах различного назначения и в горном деле. .
Изобретение относится к взрывчатым композициям с улучшенными эксплуатационными характеристиками и может быть использовано в боеприпасах различного назначения. .

Изобретение относится к органической химии, а именно: к способу получения 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло-[5,5,0,0 3,11,05,9]додекана (ГБ), который является промежуточным продуктом в синтезе гексанитрогексаазаизовюрцитана - перспективного мощного взрывчатого вещества.

Изобретение относится к многоручьевому фильеру для деления зарядов взрывчатых веществ в пластичном состоянии на ленты заданной толщины и ширины. .
Изобретение относится к области производства порохов, в частности мелкозерненых пироксилиновых порохов (МЗПП) для стрелкового оружия. .

Изобретение относится к разработке зарядов для патронов стрелкового оружия, в частности для спортивно-охотничьего патрона 30 CARBINE (7,62×33). .

Изобретение относится к области производства порохов, в частности флегматизации пироксилиновых и сферических (СФП) порохов. .

Изобретение относится к взрывчатым композициям и может быть использовано в горном деле или для снаряжения боеприпасов, обеспечивающих фугасное и тепловое воздействие на поражаемые объекты.

Изобретение относится к взрывчатым веществам и может быть использовано для снаряжения боеприпасов, обеспечивающих многофакторное поражение военных объектов. .
Изобретение относится к способу модификации поверхности неорганического оксида. Способ включает обработку неорганического оксида водорастворимой солью никеля (II) с последующим образованием наночастиц оксида никеля (II) на поверхности неорганического оксида.

Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитных сплавов Со35Ni35Аl30. Для повышения механических и функциональных свойств, создания материала с двойным эффектом памяти формы и высокотемпературной сверхэластичностью в способе получения нанокомпозита с двойным эффектом памяти формы на основе монокристалла ферромагнитного сплава Со35Ni35Аl30 первичный отжиг монокристалла проводят при температуре 1330-1340°С в течение 8,5 часов в атмосфере инертного газа.
Изобретение может быть использовано для производства защитных покрытий трубопроводов в нефтяной, газовой, нефтегазоперерабатывающей, горнодобывающей и химической промышленности.
Изобретение относится к области материаловедения. Способ получения полимерного композита антифрикционного назначения на основе политетрафторэтилена включает предварительную физико-химическую обработку порошка ультрадисперсного детонационного алмаза, механическое диспергирование смеси порошков политетрафторэтилена и ультрадисперсного детонационного алмаза, прессование и термическое спекание композита в инертной среде.

Изобретение может быть использовано в области порошковой металлургии, в частности в получении ультрадисперсных порошковых материалов на основе карбидов вольфрама, используемых в качестве прекурсоров при производстве твердых сплавов.
Изобретение относится к химической промышленности. Фуллеренсодержащую сажу смешивают с жидкостью, взаимодействующей с находящимися в саже фуллеренами, например, с водным раствором щелочи концентрацией не менее 0,5 мас.%, из ряда, включающего КОН, NaOH, Ва(ОН)2 и/или с перекисью водорода Н2О2, при соотношении к саже 1:(20-300) мл/г.

Изобретение относится к области электроники и нанотехнологии и касается способа получения композиционного материала, содержащего слоистые материалы на основе графита и сульфида молибдена.

Изобретение относится к технологии получения массивов наноколец различных материалов, используемых в микро- и наноэлектронике. Сущность изобретения: в способе получения массивов наноколец, включающем подложку с нанесенными полистирольными сферами, с нанесенным затем слоем металла и последующим травлением, в качестве подложки используют упорядоченные пористые пленки, а расположение наноколец задается расположением пор в пленочном материале с использованием подходов самоорганизации.
Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом.

Изобретение относится к металлургии и может быть использовано для получения наноструктурированного науглероживателя для внепечной обработки высокопрочного чугуна с шаровидным и вермикулярным графитом, используемого в сталеплавильном и литейном производствах.

Изобретение относится к новому способу получения фуллеренола С84, при котором сухой углеродный шлам (отходы производства сульфоаддукта нанокластеров углерода) загружают в экстрактор типа аппарата Сокслета и экстрагируют фуллеренол в виде водного раствора аммиачной соли фуллеренола раствором аммиака, нагревом его в испарительной части экстрактора. Способ позволяет утилизировать отходы производства сульфоаддукта с получением фуллеренола С84. 11 з.п. ф-лы, 3 ил.
Наверх