Способ получения полимерных композиций с использованием стадии переработки отходов полиэтилентерефталата

Изобретение может быть использовано в химической промышленности. Полимерную композицию готовят в обогреваемом реакторе с мешалкой в среде инертного газа - азота. Сначала вторичный полиэтилентерефталат - измельченные отходы полиэтилентерефталата и многоатомный спирт - олигопропилендиол или олигопропилентриол загружают в реактор, расплавляют и вводят катализатор - ацетат цинка. Затем в реактор добавляют модификатор - новолачную смолу. Полученную смесь нагревают до температуры 240-260°С в течение 1-2 часов, охлаждают до 20-25°С и подвергают размолу в шаровой мельнице до размера 100-1000 мкм. Компоненты берут в следующем соотношении, мас.%:

вторичный полиэтилентерефталат 4-45 многоатомный спирт 2-45 новолачная смола 10-94

Изобретение позволяет утилизировать отходы полиэтилентерефталата с получением полимерных композиций, которые используются при изготовлении пресс-материалов, порошковых покрытий, пенопластов и литых изделий, а также для модификации эпоксидных смол. 1 з.п. ф-лы, 1 табл., 18 пр.

 

Изобретение относится к способу получения полимерных композиций с использованием стадии переработки отходов полиэтилентерефталата (ПЭТФ) в порошкообразный продукт. Описывается способ переработки отходов ПЭТФ, включающий термообработку отходов в реакторе при температуре 240-260°C в течение 1-2 часов в присутствии олигопропилендиола или олигопропилентриола, с последующим введением новолачного олигомера. Предложенный способ позволяет получать твердый продукт, который легко перерабатывается в порошок и может служить основой для получения прессматериалов, порошковых покрытий, пенопластов и литых изделий конструкционного назначения, а также для модификации эпоксидных смол.

В настоящее время проблема утилизации полиэфирных полимеров на основе терефталевой кислоты и этиленгликоля (ПЭТФ) является важной экологической проблемой, т.к. изделия из него в виде полимерной тары, бутылок, ковров и тканей в природе не разлагаются и засоряют не только свалки, но и водоемы.

Известен способ переработки ПЭТФ-контейнеров от хранения пищевых продуктов разложением ПЭТФ на исходные мономеры, а именно на этиленгликоль и терефталевую кислоту с получением сырья для дальнейшей переработки (Патент №2137787). Это дорогой многооперационный энергоемкий процесс, с низким коэффициентом использования ПЭТФ.

По патенту №2384592 описывается способ получения порошкообразного продукта путем переработки отходов ПЭТФ, включающий термообработку отходов в замкнутом герметизированном объеме в среде смеси паров, выделяющихся из отходов ПЭТФ при термообработке, и находящихся в объеме атмосферного воздуха, при условии 160°C≤t<200°C и избыточном давлении пара и воздуха, равном 1.5÷4.5 кгс/см2, в течение 20-40 часов. Предложенный способ позволяет получать порошкообразный продукт размером частиц 5-50 мкм, обладающий повышенной растворимостью в щелочном растворе и низкой степенью термодеструкции.

Недостатком способа является то, что для достижения заявленных результатов отходы ПЭТФ необходимо нагревать при избыточном давлении пара и воздуха (1.5÷4.5 кгс/см2) в течение 20-40 часов.

Наиболее близким по технической сущности и достигаемому результату является способ по патенту №2200175, в котором предлагается переработка отходов полиэтилентерефталата в порошкообразный продукт алкоголизом вторичного полиэтилентерефталата многоатомным спиртом, охлаждение полученной смеси до 20-25°C и размол в шаровой мельнице. Для этого бытовые отходы ПЭТФ смешивают с многоатомным спиртом, затем проводят этерификацию полученного гидроксилсодержащего полиэфира отходом дистилляции фталевого ангидрида при мольном соотношении фталевого ангидрида, входящего в состав отходов, и гидроксилсодержащего полиэфира 0,31-0,35:1 до получения твердой карбоксилсодержащей полиэфирной смолы. Далее эту смолу (30-56%) смешивают с твердой эпоксидиановой смолой (28-54%), катализатором отверждения - оксидом цинка (3-5%), регулятором розлива - винилином (1-2%), пигментом (1,5-9%) и наполнителем - отходом производства ферросплавов (6-9%). Полученную смесь гомогенизируют и измельчают. В качестве отходов производства ферросплавов используют феррованадиевый шлам или силикатную пыль ферросилиция. Изобретение позволяет расширить ассортимент исходных материалов, утилизировать бытовые и производственные отходы, снизить себестоимость производства, улучшить физико-механические свойства покрытий.

Задачей предлагаемого изобретения является утилизация отходов из ПЭТФ и получение полимерных композиций, которые легко перерабатываются в порошок и могут служить основой для получения прессматериалов, порошковых покрытий, пенопластов и литых изделий конструкционного назначения, а также для модификации эпоксидных смол.

Технический результат, достигаемый с помощью предложенного способа, заключается в получении новых полимер-олигомерных композиций из отходов ПЭТФ, для этого отходы ПЭТФ подвергают переэтерификации в присутствии олигопропилендиола или олигопропилентриола, с последующим введением новолачной смолы. Алкоголизом ПЭТФ в присутствии катализатора ацетата цинка в количестве 0,5% получают гидроксилсодержащий полиэфир, который хорошо совмещается с новолачной смолой.

Предлагается способ получения полимерных композиций с использованием стадии переработки отходов полиэтилентерефталата в порошкообразный продукт алкоголизом вторичного полиэтилентерефталата многоатомным спиртом, отличающийся тем, что полимерную композицию готовят в обогреваемом реакторе с мешалкой в среде инертного газа - азота, при этом сначала вторичный полиэтилентерефталат - измельченные отходы полиэтилентерефталата и многоатомный спирт - олигопропилендиол или олигопропилентриол, загружают в реактор, расплавляют и вводят катализатор ацетат цинка; затем в реактор добавляют модификатор - новолачную смолу; полученную смесь нагревают до температуры 240-260°C в течение 1-2 часов; охлаждают до 20-25°C, подвергают размолу в шаровой мельнице до размера 100-1000 мкм; причем указанные компоненты берут в следующем соотношении, мас.%:

вторичный полиэтилентерефталат - 4-45

многоатомный спирт - 2-45

новолачная смола - 10-94.

Способ отличается тем, что используют новолачную смолу с температурой каплепадения по Уббелоде 105-150°C.

Синтез смолы из отходов ПЭТФ проводили в обогреваемом реакторе с мешалкой в среде инертного газа (азот). Сначала измельченные бытовые отходы ПЭТФ и олигопропилендиол марки «Лапрол 202» или олигопропилентриол марки «Лапрол 503» загружали в реактор, расплавляли и вводили катализатор (ацетат цинка). Затем в реактор загружали новолачную смолу марки СФ 0112. Процесс осуществляли при 240-260°C в течение 1-2 часов, полученную смесь охлаждали до 20-25°C, подвергали размолу в шаровой мельнице до размера 100-1000 мкм.

Из данных табл.1 следует, что соотношение компонентов и технологические параметры синтеза можно варьировать в достаточно широких пределах с целью получением требуемых свойств смолы. Предложенный способ позволяет получать порошкообразные композиции переработки отходов ПЭТФ, что расширяет арсенал технических средств переработки отходов полиэтилентерефталата.

Осуществление заявляемого изобретения проиллюстрировано следующими примерами, сведенными в таблицу 1.

Таблица 1
Рецептуры получения олигоэфиров и свойства продуктов
Компоненты Содержание компонентов, мас.%.:
Примеры
1 2 3 4 5 6 7 8 9
ПЭТ (вторичный) 4 4 5 10 15 20 25 45 15
Лапрол - 503 2 4 5 10 15 20 25 45 25
СФ-0112 94 92 90 80 70 60 50 10 60
Zn(Ac)2 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Свойства продукта Температура каплепадения по Уббелоде, °C
116 107 104 95 99 92 84 62 102
Компоненты Содержание компонентов, масс.%.:
Примеры
10 11 12 13 14 15 16 17 18
ПЭТ (вторичный) 4 4 5 10 15 20 25 45 5
Лапрол 202 2 4 5 10 15 20 25 45 15
СФ-0112 94 92 90 80 70 60 50 10 80
Zn(Ac)2 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Свойства продукта Температура каплепадения по Уббелоде, °C
98 91 86 64 56 52 48 42 62

Пример 1. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 40 г отходов из ПЭТФ, 20 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 940 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 116°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа.

Пример 2. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 40 г отходов из ПЭТФ, 40 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 920 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 107°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа.

Пример 3. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 50 г отходов из ПЭТФ, 50 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 900 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 104°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа и пенопластов.

Пример 4. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 100 г отходов из ПЭТФ, 100 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 800 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 95°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 5. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 150 г отходов из ПЭТФ, 150 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 700 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 99°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 6. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 200 г отходов из ПЭТФ, 200 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 40 мин. Затем загружают при перемешивании новолачную смолу 600 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 92°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 7. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л загружено 250 г отходов из ПЭТФ, 250 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 260°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 500 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 84°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 8. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 450 г отходов из ПЭТФ, 450 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 260°C в течение 1 часа. Затем загружают при перемешивании новолачную смолу 100 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 62°C. После измельчения порошок может быть использован для изготовления порошковых покрытий.

Пример 9. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 150 г отходов из ПЭТФ, 250 г лапрола 503 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 600 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 102°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 10. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 40 г отходов из ПЭТФ, 20 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 940 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 98°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 11. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 40 г отходов из ПЭТФ, 40 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 920 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 91°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 12. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 50 г отходов из ПЭТФ, 50 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 900 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 86°C. После измельчения порошок может быть использован для изготовления пресспорошков новолачного типа, пенопластов и литых изделий.

Пример 13. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 100 г отходов из ПЭТФ, 100 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 800 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 64°C. После измельчения порошок может быть использован для изготовления порошковых покрытий и модификации эпоксидных смол.

Пример 14. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 150 г отходов из ПЭТФ, 150 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 700 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 56°C. После измельчения порошок может быть использован для изготовления порошковых покрытий и модификации эпоксидных смол.

Пример 15. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 200 г отходов из ПЭТФ, 200 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 260°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 600 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 52°C. После измельчения порошок может быть использован для изготовления порошковых покрытий.

Пример 16. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 250 г отходов из ПЭТФ, 250 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 260°C в течение 40 мин. Затем загружают при перемешивании новолачную смолу 500 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 48°C. После измельчения порошок может быть использован для изготовления порошковых покрытий.

Пример 17. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 450 г отходов из ПЭТФ, 450 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 260°C в течение 1 часа. Затем загружают при перемешивании новолачную смолу 100 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 42°C. После измельчения порошок может быть использован для изготовления порошковых покрытий.

Пример 18. В стальной аппарат, снабженный крышкой с мешалкой, манометром и тефлоновой уплотнительной прокладкой, с внутренним объемом 2,5 л, загружено 150 г отходов из ПЭТФ, 250 г лапрола 202 и 5 г ацетата цинка. Смесь в аппарате перемешивают и подвергают термообработке при 240°C в течение 20 мин. Затем загружают при перемешивании новолачную смолу 600 г и продолжают нагревать в течение 1 часа. Получают материал с температурой каплепадения по Уббелоде 62°C. После измельчения порошок может быть использован для изготовления порошковых покрытий и модификации эпоксидных смол.

1. Способ получения полимерных композиций с использованием стадии переработки отходов полиэтилентерефталата в порошкообразный продукт алкоголизом вторичного полиэтилентерефталата многоатомным спиртом, отличающийся тем, что полимерную композицию готовят в обогреваемом реакторе с мешалкой в среде инертного газа - азота, при этом сначала вторичный полиэтилентерефталат - измельченные отходы полиэтилентерефталата и многоатомный спирт - олигопропилендиол или олигопропилентриол загружают в реактор, расплавляют и вводят катализатор - ацетат цинка; затем в реактор добавляют модификатор - новолачную смолу; полученную смесь нагревают до температуры 240-260°С в течение 1-2 ч; охлаждают до 20-25°С, подвергают размолу в шаровой мельнице до размера 100-1000 мкм; причем указанные компоненты берут в следующем соотношении, мас.%:

вторичный полиэтилентерефталат 4-45
многоатомный спирт 2-45
новолачная смола 10-94

2. Способ по п.1, отличающийся тем, что используют новолачную смолу с температурой каплепадения по Уббелоде 105-150°С.



 

Похожие патенты:
Изобретение относится к строительным материалам широкого спектра применения и может быть использовано для дорожных, кровельных, изоляционных, герметизирующих работ.

Изобретение относится к области химической переработки углеводородного сырья и может быть использовано для низкотемпературного пиролиза изношенных автомобильных шин и других вторичных полимерсодержащих материалов с получением продуктов пиролиза, используемых в промышленности в качестве энергоносителей и сырья для дальнейшей химической переработки.
Изобретение относится к утилизации отходов производственного потребления, в частности полиэтилена, и может быть применено при приготовлении эмульсионных взрывчатых веществ (ЭВВ).
Изобретение относится к области переработки вторичного сырья и может быть использовано для измельчения отходов полимеров, в том числе резины и полимерных композиционных материалов.
Изобретение относится к автодорожной отрасли, к получению материалов для дорожного полотна с использованием вяжущего на основе битума с применением резиновой крошки из отходов резин общего, в том числе, шинного назначения и наношпинели магния в качестве модификаторов.
Изобретение относится к области переработки полимерных отходов, в частности образующихся в производстве бутадиен-стирольных термоэластопластов, содержащих структурированные включения и изготовления с их использованием в качестве полимерных модификаторов полимерно-битумных композиций.

Изобретение относится к способу и установке деполимеризации фторполимеров. .
Изобретение относится к биологически разрушаемой термопластичной композиции. .
Изобретение относится к способам утилизации отходов полимеров, а именно каталитической деструкции указанных отходов с получением моторных топлив и/или их компонентов.
Изобретение относится к глубокому окислению политетрафторэтилена, а именно к способу утилизации отходов политетрафторэтилена (ПТФЭ). Способ утилизации отходов ПТФЭ включает измельчение отходов ПТФЭ до частиц менее 0,2 мм, смешение их с окислителем и нагревание. В качестве окислителя используют оксид свинца при весовом соотношении = 1:(0,8-1,0), смесь прессуют в брикеты при давлении 500-600 кг/см2 и нагревают до 400°C. Технический результат - упрощение и удешевление технологического процесса утилизации ПТФЭ и получение порошка фторида свинца, который может использоваться в качестве твердой смазки в порошковой металлургии.

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей. Способ получения нанодисперсного фторопласта осуществляют путем термодеструкции твердого политетрафторэтилена в атмосфере воздуха с использованием высоковольтного электрического разряда в переменном электрическом поле. Начало термодеструкции инициируют, помещая исходный материал в плазму высоковольтного электрического разряда между полностью либо частично платиновыми электродами и выдерживая в зоне плазмы до момента его возгорания с появлением пламени. Затем материал извлекают из зоны плазмы и переносят в камеру с доступом воздуха для протекания его термодеструкции под воздействием самопроизвольно продолжающегося тления. Далее осуществляют сбор нанодисперсного продукта термодеструкции. Технический результат - улучшение трибологических свойств получаемого материала за счет формирования индивидуального химического соединения, соответствующего формуле политетрафторэтилена, структура которого является гомогенной и включает наноразмерные частицы сферической формы. 1 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к способу удаления полифенилполиаминов, связанных мостиковыми метиленовыми группами, из водного потока и к способу получения полифенилполиаминов, связанных мостиковыми метиленовыми группами. Способ получения полифенилполиаминов включает стадии получения водного потока, содержащего полифенилполиамины, и удаления полифенилполиаминов из водного потока. Способ удаления полифенилполиаминов заключается в том, что готовят оборудование для пертракции, включающее мембрану, имеющую первую сторону и вторую сторону, противоположную первой стороне. Затем мембрану смачивают жидкостью, характеризующуюся поверхностным натяжением, меньшим чем 40 мН/м. Далее осуществляют контактирование водного потока, содержащего полифенилполиамины, связанные мостиковыми метиленовыми группами, с первой стороной мембраны и контактирование органического потока со второй стороной мембраны. Во время этого процесса происходит перенос полифенилполиаминов из водного потока через мембрану в органический поток. Изобретение позволяет сократить количество стадий способа, сделать стадию экстрагирования более устойчивой к сбоям и надежной в работе при варьирующихся технологических условиях. 2 н. и 12 з.п. ф-лы, 4 ил.
Изобретение относится к биотехнологии защиты окружающей среды и, в частности, к области химической, деревообрабатывающей, мебельной и строительной промышленности, а также сельскому хозяйству и может быть использовано для утилизации некондиционной карбамидоформальдегидной смолы при ее производстве и использовании после окончания срока ее годности. Предлагаемый способ утилизации некондиционной карбамидоформальдегидной смолы после срока ее годности с помощью компостирования в смеси с осадком сточных вод и опилками может быть использован на предприятиях по производству смол химической, деревообрабатывающей, мебельной и строительной промышленности. Это позволяет утилизировать одновременно три вида отходов: осадок сточных вод, опилки, смола, образующиеся при производстве древесно-стружечной плиты, упростить, удешевить технологию получения органо-минеральных удобрений и повысить удобрительную ценность конечного целевого продукта. 3 табл.
Изобретение относится к области дорожно-строительных материалов, в частности получению битумно-резиновых композиций связующего для дорожного покрытия на основе битума, и может быть использовано для строительства, ремонта и капитального ремонта дорожных асфальтобетонных покрытий, а также для устройства и ремонта слоев проезжей части мостов и путепроводов. Композиция включает битум, резиновую крошку из измельченных отработанных автомобильных шин с размером частиц до 1 мм и нефтяное масло с вязкостью 0,005-1,6 Па·с при 60°С. Соотношение компонентов следующее, мас.%: резиновая крошка - 8-20, нефтяное масло - 2-12, битум - остальное. Изобретение также относится к способу получения указанной композиции. Конечный продукт имеет повышенное сцепление с дорожным покрытием, повышенную устойчивость к образованию трещин при низких температурах, улучшенное сцепление при отрицательных температурах, повышенную эластичность в условиях интенсивного движения. 2 н. и 12 з.п. ф-лы, 3 табл., 24 пр.
Изобретение относится к области химии и может быть использовано в нефтедобывающей промышленности, в частности к олигоэтоксисилоксану, который получают путем обработки кремнийорганических отходов, измельченных до размера частиц не более 3 см, смесью, состоящей из тетраэтоксисилана, этилсиликата 32 и/или этилсиликата 40, гидроксида калия или гидроксида натрия и воды при температуре 60-700С в течение 3-8 час с последующей фильтрацией. Технический результат - снижение себестоимости олигоэтоксисилоксанов при сохранении их физико-химических свойств. 2 н.п.ф-лы, 2 табл.

Изобретение относится к технологии регенерации резиновой крошки из каучуков общего назначения и может быть использовано в шинной промышленности, производстве резино-технических изделий и каучукобитумных мастик, на основе которых могут быть получены гидроизоляционные материалы, используемые в строительстве (кровельные мастики, изоляция труб, дорожные покрытия), а также для изготовления антикоррозионных автомобильных мастик. Способ включает обработку резиновой крошки в мягчителе и активаторе, при этом в качестве активатора деструкции резиновой крошки используют магнитную жидкость, полученную из отходов производства, в количестве 3-5%, причем после обработки резиновой крошки в мягчителе и активаторе полученную смесь выдерживают в автоклаве при температуре 185°C и давлении 3-4 атм в течение 3 часов. Технический результат состоит в снижении энергозатрат при измельчении и переработке; процесс регенерации не требует использования металлоемкого оборудования; конечным продуктом является пастообразный регенерат, дальнейшая вулканизация которого позволяет получать резины с заведомо лучшими физико-механическими свойствами, нежели резины на основе каучука. 1 ил., 5 табл., 4 пр.

Изобретение относится к способу переработки сырья - фторопластов и материалов, их содержащих, в том числе производственных и эксплуатационных отходов, с целью получения ультрадисперсного фторопласта и перфторпарафинов. Способ заключается в подготовке сырья и последующем смешении подготовленного сырья с фторирующим агентом при термодеструкции фторопласта с одновременным его фторированием при нагреве. Технический результат - утилизация производственных и эксплуатационных фторопластсодержащих отходов с исключением образования трудноразделяемых неутилизируемых и опасных смесей, снижением затрат энергии на проведение процесса и сокращением времени проведения процесса термодеструкции. 8 з.п. ф-лы, 1 табл., 1 ил.
Изобретение относится к области технологии формования регенерированного терилена из полиэфирных отходов, в частности к способу получения териленового волокна из полиэфирных отходов. Способ заключается в том, что сначала высушенные полиэфирные отходы направляют в шнековый расплавитель, затем расплавляют и экструдируют как полиэфирный расплав. После этого расплав дважды фильтруют для удаления примесей. Затем проводят реакцию макромолекулярной полимеризации полиэфирного расплава, чтобы придать однородность молекулярной массе макромолекулярного полимера и повысить вязкость полиэфира. Затем расплав с повышенной вязкостью тонко фильтруют, используя прецизионный фильтр для расплава. После этого расплав направляют в прядильную кружку для дозированного формования, затем охлаждают и отверждают для получения элементарных нитей. В заключение элементарные нити наматывают согласно разным технологическим требованиям. Этот способ может повысить качество расплава регенерируемого полиэфира для формования. Регенерированный полиэфирный расплав имеет меньше примесей и однородную вязкость после многократной фильтрации. Волокнистый продукт имеет такие преимущества, как меньшая степень обрывности, высокая скорость намотки на катушку, высокий выход конечного продукта и меньшее количество брака. 4 з.п. ф-лы.
Изобретение относится к способу регулирования рН-показателя и нейтрализации кислых и/или основных продуктов деструкции или разложения печатных красок, клеев или органических загрязнений, образующихся в процессе подготовки и рециклинга полимеров, в частности термопластичных. На первой стадии рециклируемый полимерный материал загружают в оборудованное смесительным или измельчающим устройством режуще-уплотнительное устройство, после чего полимерные частицы непрерывно перемещают и нагревают в режуще-уплотнительном устройстве. При этом для нейтрализации образующихся продуктов деструкции или разложения в размягченный, но еще не расплавленный полимер добавляют по меньшей мере один твердый, порошкообразный, предпочтительно минеральный, наполнитель, который используют обычно для разбавления или в качестве разбавителя, например мел, диатомовую землю, оксид цинка, тальк, активированный уголь и/или карбонат, в частности карбонат кальция, в количестве, по меньшей мере, соответствующем ожидаемому кислотному или основному воздействию, причем смесь в течение определенного времени пребывания непрерывно перемешивают, перемещают, при необходимости, измельчают и поддерживают в виде отдельных кусков или свободнотекучей. Предлагаемый способ позволяет эффективно нейтрализовать кислые и основные соединения, в результате чего впоследствии уменьшается коррозия и возрастает срок службы машин. Изобретение также относится к применению наполнителя в предлагаемом способе. 2 н. и 28 з.п. ф-лы, 2 пр.
Наверх