Способ выбора полимерной гелеобразующей композиции для повышения нефтеотдачи пластов и водоизоляционных работ

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при обработке неоднородных нефтяных пластов для увеличения коэффициента охвата их заводнением и увеличения нефтеотдачи. В способе выбора полимерной гелеобразующей композиции для повышения нефтеотдачи пластов и водоизоляционных работ на основе полимера акриламида, сшивателя и воды, включающем определение параметров пласта для конкретной скважины, экспериментальное определение характеристик указанной композиции, в том числе времени гелеобразования и статического напряжения сдвига, расчет начального градиента давления, минимального радиуса гелевого экрана и минимального объема закачиваемой композиции, задают расстояние Rk в удаленной от забоя нагнетательной скважины зоне, где должен быть сформирован гелевый экран, осуществляют определение для этого расстояния значения температуры по предварительно построенному графику зависимости распределения по расстоянию в пласте значений температуры, рассчитанных с учетом температуры закаченной воды, скорости и времени ее закачки, температуры, пористости и теплопроводности пласта, и значения давления - по предварительно построенному графику зависимости распределения по расстоянию в пласте значений давления, рассчитанных по приведенной формуле, а выбор композиции производят из условий: время гелеобразования при определенной для данной зоны температуре не меньше времени закачки композиции в эту зону пласта, а начальный градиент давления выше депрессии, которую будет испытывать гель в этой зоне пласта. Технический результат - повышение качества обработки в удаленной от забоя скважины зоне пласта при одновременном повышении срока сохранения качества установленного экрана за счет уменьшения влияния депрессии на гелеобразующую композицию. 1 пр., 3 ил.

 

Изобретение относится к области нефтедобывающей промышленности, в частности к способам обработки неоднородных нефтяных пластов для увеличения коэффициента охвата их заводнением и соответственно увеличения нефтеотдачи.

Для увеличения коэффициента охвата пласта заводнением используется большой спектр технологий, в том числе потокоотклоняющих, суть которых заключается в селективном создании гидродинамических сопротивлений в высокопроницаемых, промытых водой слоях и увеличении доли воды, вытесняющей нефть из низкопроницаемых нефтенасышенных пропластков. Гидродинамические сопротивления могут создаваться за счет формирования в пласте различного рода структур в виде неорганических и полимерных гидрогелей, образующихся в результате закачки в неоднородный пласт реагентов в виде водных растворов или суспензий.

Известен способ обработки неоднородного нефтяного пласта, направленный на выравнивание профиля приемистости в нагнетательных и ограничения водопритоков в добывающих скважинах, включающий закачку в пласт изолирующего состава на основе полимеров, сшивателя и воды, при этом изолирующий состав до гелеобразования продавливают в пласт на расстояние, обеспечивающее исключение влияния на гель депрессии до безопасного уровня (патент РФ №2169258, E21B 43/22). К недостаткам данного способа следует отнести отсутствие указаний оптимального размера потокоотклоняющего экрана и необходимого объема закачиваемой композиции.

Наиболее близким к предлагаемому способу является способ выбора полимерной гелеобразующей композиции для повышения нефтеотдачи пластов и водоизоляционных работ на основе полиакриламида, сшивателя и воды, осуществляемый с учетом характеристик пласта и конкретной скважины, экспериментально определенных свойств композиции и расчетных технологических характеристик (патент РФ №2272899, E21B 43/22). Однако, сформированные из таких композиций экраны, устанавливаемые обычно в призабойной зоне, где реализуются самые высокие перепады давлений, в результате высоких нагрузок достаточно быстро разрушаются, что требует повторных обработок и связанных с этим дополнительных затрат. Недостатком технологии обработки призабойной зоны гелеобразующими составами является также необходимость закачки интенсифицирующего состава после формирования геля в пласте с целью снижения гидродинамических сопротивлений в низкопроницаемом пропластке.

Задачей, на решение которой направлено заявляемое изобретение, является повышение эффективности обработки неоднородных нефтяных пластов для увеличения коэффициента охвата их заводнением и соответственно увеличения нефтеотдачи при использовании гелеобразующей композиции на основе полиакриламида, сшивателя и воды.

Технический результат, достигаемый при осуществлении данного изобретения, заключается в повышении качества обработки в удаленной от забоя скважины зоне пласта при одновременном повышении срока сохранения качества установленного экрана за счет уменьшения влияния депрессии на гелеобразующую композицию до безопасного уровня.

Для решения поставленной задачи с достижением указанного технического результата в способе выбора полимерной гелеобразующей композиции для повышения нефтеотдачи пластов и водоизоляционных работ на основе полимера акриламида, сшивателя и воды, включающем определение параметров пласта для конкретной скважины, экспериментальное определение характеристик указанной композиции, в том числе, времени гелеобразования и статического напряжения сдвига, расчет начального градиента давления, минимального радиуса гелевого экрана и минимального объема закачиваемой композиции, согласно предложенному техническому решению задают расстояние в удаленной от забоя нагнетательной скважины зоне, где должен быть сформирован гелевый экран, осуществляют определение для этого расстояния значения температуры по предварительно построенному графику зависимости распределения по расстоянию в пласте значений температуры, рассчитанных с учетом температуры закаченной воды, скорости и времени ее закачки, температуры, пористости и теплопроводности пласта, и значения давления - по предварительно построенному графику зависимости распределения по расстоянию в пласте значений давления, определенных по расчетной формуле, а выбор композиции производят из условий: время гелеобразования при определенной для данной зоны температуре не меньше времени закачки композиции в эту зону пласта, а начальный градиент давления выше депрессии, которую будет испытывать гель в этой зоне пласта.

Задача решается выполнением следующей совокупности операций:

1. Задается расстояние RK (радиус удаления) в удаленной от забоя нагнетательной скважины зоне пласта, где планируется формирование гелевого экрана. Как правило, это расстояние задается с учетом сохранения прежней приемистости нагнетательной скважины после обработки.

2. Рассчитывается распределение температуры в пласте до указанного расстояния с учетом температуры закачиваемой воды и времени ее закачки.

3. Подбирается композиция, время гелеобразования которой при установленной в заданной зоне пласта температуре больше или равно времени закачки ее в эту зону пласта. Определяется градиент давления, который может выдержать композиция без разрушения.

4. Рассчитывается величина депрессии, которую будет испытывать гель в условиях пласта на заданном расстоянии от нагнетательной скважины.

5. Рассчитывается объем композиции, обеспечивающий протяженность экрана, который выдерживает градиент давления в пласте на заданном расстоянии.

При расчете оптимальных составов и объемов гелеобразующих композиций необходимо знание реальных температур в зоне установки гелевого экрана.

В процессе заводнения водой с температурой, меньшей температуры пласта, пласт охлаждается. Определяющими факторами, влияющими на степень охлаждения пласта, является разность между пластовой температурой и температурой воды, поступающей на забой скважины, и приемистость скважины.

Распределение температур в зоне нагнетательной скважины можно посчитать с помощью математической модели расчета поля температур нефтяного пласта «Поле температур», основанной на решении уравнения теплопроводности Фурье в частных производных численными методами (Свидетельство №2001610296 о государственной регистрации программы для ЭВМ от 19.03.2001).

Оптимальный состав композиции определяют экспериментально с учетом времени гелеобразования композиции при температуре в заданной зоне пласта. При этом реагенты подбирают таким образом, чтобы время начала гелеобразования при температуре пласта было не меньше времени доставки оторочки композиции в заданную зону пласта. Время гелеобразования при заданной температуре, зависящее от свойств исходных компонентов и их концентрации в композиции, определяют с помощью реометров по известным методикам. Время доставки композиции в заданную зону пласта зависит от приемистости скважины.

Для выбранной композиции определяют прочностные характеристики.

После формирования и упрочнения структуры в пласте композиция должна обладать требуемой механической прочностью или статическим напряжением сдвига (СНС), и выдерживать те градиенты давления Δ P l (Па/м), которые воздействуют на нее в пласте. Градиент давления, который полимерный гель выдерживает без разрушения, пропорционален СНС и обратно пропорционален характерному размеру проводящих каналов. В случае пористой среды характерным размером является величина 32 K m , где K - проницаемость, a m - пористость. Для круглых каналов - это диаметр, а для трещин - ширина раскрытия трещин.

СНС (τ) определяют методом ротационной вискозиметрии в режиме постоянного напряжения сдвига с помощью специальных реометров.

Выбирают ту композицию, для которой начальный градиент давления выше депрессии, которую будет испытывать гель в условиях пласта на заданном расстоянии.

Причем начальный градиент давления рассчитывают из следующих соотношений:

ΔP/l=τ(m/2k)0.5 - для порового коллектора;

ΔP/l=τ/1,02b - для трещиноватого коллектора,

где:

ΔР/l - начальный градиент давления, Па/м

τ - статическое напряжение сдвига, Па

m - пористость

k - проницаемость, м2

b - ширина раскрытия трещин, м.

Распределение градиентов давления по пласту рассчитывается для конкретной скважины по уравнению Дюпюи (частное решение закона Дарси):

Q = 2 π k h Δ ρ μ ln ( R k R c ) или в общем виде ΔP/l=Q·µ/k·2π·h·Rk, где

Q - приток жидкости, м3

k - проницаемость, м2

h - мощность пласта, м

Rk - радиус удаления, м

Rс - радиус скважины, м

Δp - разность пластового и забойного давлений, Па

µ - вязкость, Па·с.

В соответствии с уравнением Дюпюи при плоскорадиальном режиме течения градиент давления как функция радиуса изменяется по логарифмическому закону. Распределение градиентов давлений зависит от радиуса удаления от нагнетательной скважины, а максимальные градиенты давления реализуются в прискважинной зоне. Это означает, что протяженность гелевого экрана в удаленной зоне пласта может быть меньше, чем в прискважинной зоне.

В экспериментах установлено, что полимерные гели выдерживают градиент давления в поровом коллекторе 20-100 атм/м (~20·105-100·105 Па/м). При наличие трещин этот показатель уменьшается в 2-3 раза.

При расчете объемов закачиваемой композиции необходимо учитывать, что он должен быть такой, чтобы гелевый экран в зоне обработки выдерживал действующий на него перепад давления. На основании полученных лабораторных данных и параметров пласта рассчитывают минимальный радиус гелевого экрана из соотношения:

Rэ≥[Pпл-Pзаб]/(ΔP/l),

где:

Rэ - минимальный радиус гелевого экрана, м;

Pпл - пластовое давление, Па;

Pзаб - забойное давление, Па;

ΔP/l - начальный градиент давления, Па/м.

Далее рассчитывают минимальный объем композиции, необходимый для формирования гелевого экрана, по формуле:

V к о м = π ( R э + R с ) 2 h m π h m R c 2 , где:

Vком - минимальный объем закачиваемой композиции, м3;

Rэ - минимальный радиус гелевого экрана, м;

Rс - радиус скважины, м;

h - толщина пласта, м;

m - пористость пласта.

Пример 1.

1. Допустим расстояние Rк для установки гелевого экрана составляет 50 м, что позволит полностью сохранить приемистость нагнетательной скважины после обработки.

2. Рассчитывается распределение температур в пласте до указанного расстояния с учетом температуры закачиваемой воды и времени ее закачки.

Пусть:

Температура закачиваемой воды = 25°C

Температура в пласте = 91°C

Скорость закачки воды = 52 м3/сут

Время закачки = 5 лет

Пористость пласта = 0,2 ед.

Теплопроводность пласта = 2,0 Вт/м K

Теплоемкость в водном слое = 0,5 Втч/кг K

Зависимость температуры в пласте от расстояния от скважины и времени закачки воды приведена на фиг. 1. Как видно из приведенного графика, несмотря на высокую начальную пластовую температуру (91°C), в зоне установки гелевого экрана (Rк=50 м), пласт охлаждается до 30-35°C.

3. Подбирается композиция «полимер + сшиватель», время гелеобразования которой при данной температуре больше или равно времени закачки ее в определенную зону пласта (50 м). Композиция подбирается на основании экспериментальных данных. Для этого готовятся образцы растворов, входящих в композицию с различными концентрациями полимера и сшивателя. Проводится тестирование данных композиций на определение времени гелеобразования при температуре 35°C. Время гелеобразования определяется с помощью прибора «Релаксометр».

В композиции «полимер + сшиватель» используют гидролизованные полимеры, например, полиакриломид, а в качестве сшивателя могут быть использованы соли трехвалентных металлов органических кислот, например, ацетат хрома, пропинат хрома и другие. Пусть время гелеобразования выбранной композиции при температуре 35°C составляет 24 часа. В результате фильтрационных исследований, проведенных в лабораторных условиях на модели пласта устанавливается значение начального градиента давления, которое выдерживает данная композиция в поровом коллекторе и трещине. Для этого отобранная композиция тестируется в поровом коллекторе (трещине) на насыпной модели пласта (модели трещины) с проницаемомостью, близкой к пластовой. Модель пласта готовится из кварцевого песка с добавлением определенного количества молотого кварца с целью подбора необходимой проницаемости (модель трещины изготавливается в виде капилляра из нержавеющей трубки с диаметром, моделирующим раскрытость трещины). Песчаная модель пласта помещается в кернодержатель и насыщается водой. Затем в модельный керн закачивается выбранная композиция в количестве, необходимом для заполнения всего объема пор. Кернодержатель с композицией помещается в термошкаф с температурой 35°C на 24 часа (время гелеобразования композиции). После чего через керн прокачивается вода при расходе, реализуемом в зоне установки гелевого экрана, с замером давления закачки. Начальным градиентом давления ΔP/l для полимерной композиции является давление, при котором начинается фильтрация воды через гель. Для данного примера установлено, что начальный градиент давления для выбранной композиции в поровом коллекторе равен 20 атм/м (~20·105 Па/м) и 5 атм/м (~5·105 Па/м) в трещине.

4. Рассчитывается градиент давления в пласте на расстояния Rк от нагнетательной скважины. Распределение градиентов давления по пласту при увеличении расстояния от нагнетательной скважины представлено на фиг. 2 для исходных данных:

k=4·10-12 м2

h=2,0 м

Rk=50 м

Rc=0,1 м

Δp=Pпл-Pзаб=50 атм (~50·105 Па)

µ=2·106 Па·с

Q=10 м3

Расчеты показывают, что при удалении от нагнетательной скважин на 50 м градиент давления уменьшается с 23 атм/м (~23·105 Па/м) до 0,06 атм/м (~6·103 Па/м).

Выбранная в результате экспериментальных исследований композиция удовлетворяет по прочности с большим запасом.

5. Рассчитывается минимальный объем композиции.

а) минимальный радиус экрана для призабойной зоны составит:

Rэ≥[Рплзаб]/(ΔP/l)

- для порового коллектора Rэ=50/20=2,5 м;

- для трещины Rэ=50/5=10 м;

б) минимальный объем композиции:

V к о м = π ( R э + R с ) 2 h m π h m R c 2

- для порового коллектора:

Vком=3,14·(2,5+0,1)2·2·0,2-3,14·2·0,2·0,12=8,49-0,01256=8,5 м3

- для трещины:

Vком=3,14·(10+0,1)2·2·0,2-3,14·2·0,2·0,12=128,1-0,01256=128 м3

Таким образом, для выбранной композиции с указанной прочностью и при перепаде давлений между пластовым и забойным, равным 50 атм (~50·105 Па), закачиваемый объем должен составить для порового коллектора 8,5 м3 и 128 м3 для трещины. С учетом адсорбционных явлений и диффузионных процессов в пласте закачиваемый объем композиции увеличивают в 5-10 раз (в зависимости от расстояний, на которые проталкивается композиция).

Способ прошел опытно-промышленные испытания, результаты которых показали положительный эффект, выразившийся в снижении обводненности продукции добывающих скважин окружения.

Для реализации опытно-промышленных работ по установке гелевого экрана в удаленной зоне был выделен промышленный участок, состоящий из одной нагнетательной скважины №15243 и семи скважин окружения Приобского месторождения. Наглядно участок представлен на фиг.3.

Анализ основных геолого-физических характеристик коллектора позволяет сделать следующие выводы:

1) Пласт преимущественно представлен песчаником с глинистыми включениями.

Средние значения характеристик пласта:

- пористость (m) 0,136

- проницаемость (k) 5,9 м2

- мощность пласта (h) 18 м

2) Отмечается высокая расчлененность разреза (Кр=5), что косвенно обосновывает лавинообразное обводнения продукции.

3) Помимо высокой послойной неоднородности, можно отметить ярко выраженную, проницаемостную неоднородность (коэф. вар. = 1,23).

4) Коллектор достаточно сильно заглинизирован (Кглин. = 10,35%).

На момент обработки скв. №15243 обводненность продукции окружения составляет 73,8%. Обводнение продукции происходило лавинообразно:

- с мая по сентябрь 2007 года (с 10% до 30%)

- с января по апрель 2008 года (с 23% по 44%)

- с декабря 2009 года по июнь 2010 года (с 52% до 70%).

Обводнение продукции связано с высокой расчлененностью и наличием сети техногенных трещин.

Для снижения количества попутно-добываемой воды и увеличения конечной нефтеотдачи, была рекомендована технология по выравниванию профиля приемистости, путем установки гелевого экрана в удаленной зоне.

Закачка сшивающейся полимерной системы (СПС) в пласт была начата 08.09.2011 г. при начальном устьевом давлении Рнач=116 атм ((~116·105 Па) и приемистости скважины 256 м3/сут. В пласт было закачено 987 м3 потокоотклоняющей композиции с концентрацией полимера Спаа=0,5% и концентрацией сшивателя Сах=0,05%. Время гелеобразования этой композиции было определено экспериментально в условиях лаборатории и составило 16 полных суток.

Закачка указанного выше объема осуществлялась в течение шести полных суток и была прекращена 14.09.2011 г. Композиция была успешно закачана в полном объеме.

После закачки полимерной системы в пласт была осуществлена продавка композиции водой. Объем закачиваемой воды Vводы, необходимый для проталкивания гелеобразующей композиции на заданное от забоя скважины расстояние, определяется из соотношения V в о д ы = π ( R к + R с ) 2 h m π R c 2 h m , м3 где Rк - заданное расстояние, на котором устанавливается экран, м; Rс - радиус скважины, м; h - толщина пласта, м; m - пористость пласта. Для продавки раствора полимерной композиции в глубь пласта было закачено 1000 м3 воды. Закачка воды производилась в течение 10 суток. При этом композиция была продвинута на расстояние 17-20 м от нагнетательной скважины. После продавки скважина была остановлена на 24 часа для процесса гелеобразования и укрепления гелевого экрана.

После пуска скважины была замерена приемистость, которая снизилась незначительно и составила 245 м3/сут. Следует заметить, что при установке гелевого экрана в призабойной зоне приемистость изменяется сильно, а при установке экрана в удаленной зоне практически не меняется. Сохранение приемистости является положительным фактором предлагаемого способа, т.к. при его осуществлении не требуется закачка интенсифицирующего состава.

Анализ основных технологических параметров работы скважин окружения показал, что в течение месяца эксплуатации по добывающим скважинам наблюдалось снижение попутно добываемой воды на 1,2%, что указывает на проявление технологического эффекта при установке в удаленной зоне пласта экрана, сформированного из выбранной предложенным способом полимерной гелеобразующей композиции.

Расчет прогнозных показателей разработки и планируемой дополнительной добычи показывает, что за месяц эксплуатации произойдет снижение попутно добываемой воды на 0,5%, т.е. по факту наблюдается более интенсивное снижение попутно добываемой воды, чем при расчете, и как следствие увеличение добычи нефти.

Способ выбора полимерной гелеобразующей композиции для повышения нефтеотдачи пластов и водоизоляционных работ на основе полимера акриламида, сшивателя и воды, включающий определение параметров пласта для конкретной скважины, экспериментальное определение характеристик указанной композиции, в том числе времени гелеобразования и статического напряжения сдвига, расчет начального градиента давления, минимального радиуса гелевого экрана и минимального объема закачиваемой композиции, отличающийся тем, что задают расстояние Rk в удаленной от забоя нагнетательной скважины зоне, где должен быть сформирован гелевый экран, осуществляют определение для этого расстояния значения температуры по предварительно построенному графику зависимости распределения по расстоянию в пласте значений температуры, рассчитанных с учетом температуры закаченной воды, скорости и времени ее закачки, температуры, пористости и теплопроводности пласта, и значения давления - по предварительно построенному графику зависимости распределения по расстоянию в пласте значений давления, рассчитанных по формуле
ΔP/l=Q·µ/k·2π·h·Rk,
где Q - приток жидкости, м3/с,
k - проницаемость, м2,
h - мощность пласта, м,
Rk - радиус удаления, м,
µ - вязкость, Па·с,
а выбор композиции производят из условий: время гелеобразования при определенной для данной зоны температуре не меньше времени закачки композиции в эту зону пласта, а начальный градиент давления выше депрессии, которую будет испытывать гель в этой зоне пласта.



 

Похожие патенты:

Изобретение относится к привитым сополимерам на основе полиамида. Предложены привитые сополимеры на основе полиамида, прошедшего реакцию с ангидридом малеиновой кислоты, содержащие по меньшей мере одну винил-ненасыщенную боковую цепь, выбранную из N-винилкапролактама и/или N-винилпирролидона и в качестве полиамидного компонента он содержит по меньшей мере одно соединение из ряда натуральных или синтетических полиамидов.
Группа изобретений относится к способам изоляции притока пластового флюида (воды) или газа в скважинах. Изоляционный раствор содержит массовых %: силиката натрия - 5-50; бентонита - 15-55; полиакриламида - 0,0005 до 0,5; воды - остальное.
Группа изобретений относится к использованию пеногасителей в скважинных операциях. Технический результат - универсальность пеногасителя, эффективность пеногасителя при низких концентрациях с одновременным сохранением способности пенных систем к повторному ценообразованию или к осуществлению ряда циклов пенообразования - пеногашения - повторного пенообразования.

Изобретение относится к нефтедобывающей промышленности и, в частности, к устройствам для повышения производительности скважин путем обработки призабойной зоны пласта нефтяной скважины.
Изобретение относится к нефтедобывающей промышленности и может быть использовано для кислотной обработки призабойной зоны пласта, представленного неоднородными по проницаемости карбонатными или терригенными коллекторами.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам, применяемым для изоляции водопритоков в скважину. Состав для изоляции водопритоков в скважину состоит из кремнийсодержащего соединения, соли титана и растворителя.

Группа изобретений относится к буферным жидкостям, которые используют при операциях цементирования в нефтяных и газовых скважинах. Технический результат - устойчивость буферной жидкости, хорошее восстановление при деформации сдвига, снижение стоимости в большом диапазоне температур.

Изобретение относится к композиции окисленного и малеированного таллового масла в качестве эмульгатора или ингибитора коррозии, содержащей талловое масло, имеющее по меньшей мере две C10-C24 структуры, где по меньшей мере одна из C10-C24 структур замещена по меньшей мере одним из α,β-ненасыщенной карбоновой кислоты или ангидрида, при этом C10-C24 структуры являются сшитыми простой эфирной связью, и где композиция окисленного и малеированного таллового масла имеет кислотное число от примерно 50 мг КОН/г до примерно 400 мг КОН/г.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для кислотной обработки призабойной зоны пласта, представленного неоднородными по проницаемости карбонатными или терригенными коллекторами.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для обработки неоднородных по проницаемости карбонатных и терригенных пластов.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности устройства за счет комплексного термогазодинамического и химического воздействия на призабойную зону пласта нефтяной скважины, уменьшение шлакообразования относительно массы устройства в 3-5 раз, упрощение изготовления устройства. Устройство для обработки призабойной зоны пласта нефтяной скважины включает воздушную камеру с атмосферным давлением и приемную камеру, выполненную из легкого упругопластичного материала. В приемной камере размещены цилиндрической формы композиционные материалы: малогазовый и газогенерирующий при сгорании композиционный материал, а между малогазовым и газогенерирующим композиционными материалами приемная камера устройства дополнительно содержит газо- и кислотогенерирующий при сгорании композиционный материал. Малогазовый при сгорании композиционный материал, обращенный к воздушной камере и закрепленный радиально расположенными металлическими штырьками неподвижно относительно корпуса приемной камеры, сформирован из композиции, включающей, мас.%: аммиачная селитра гранулированная марки Б 45-46, бихромат калия 1-2, эпоксидная смола марки ЭД-20 40-42, пластификатор марки ЭДОС 2-3, отвердитель Агидол марки АФ-2М 9-10. Газо- и кислотогенерирующий при сгорании композиционный материал сформирован из композиции, включающей, мас.%: нитрат аммония 40-50, порошкообразный фторкаучук марки СКФ-32 с дисперсностью 0,5-1,5 мм 10, хлорпарафин марки ХП-1100 10-30, фторопласт марки Ф-32Л 10-40. Газогенерирующий при сгорании композиционный материал сформирован из композиции, включающей, мас.%: нитрат аммония 78-85, порошкообразный бутадиен-нитрильный каучук с дисперсностью 0,5-1,5 мм 12, бихромат калия 3-10. 1 табл., 5 пр., 1 ил.

Изобретение относится к области строительства нефтяных и газовых скважин, в частности к облегченным тампонажным растворам, используемым при цементировании надпродуктивных интервалов газовых, газоконденсатных или нефтяных скважин, преимущественно, с большим газовым фактором, например более 100 м3/т. Технический результат - разработка двух вариантов облегченного тампонажного материала с высокими газоблокирующими свойствами при одновременном обеспечении оптимальных требуемых свойств для качественного цементирования надпродуктивных интервалов в условиях низких и нормальных температур, а именно низкий объем фильтрации при низкой скорости фильтрации и регулируемое время формирования статического напряжения сдвига. Тампонажный материал по одному варианту содержит, масс.ч.: портландцемент тампонажный ПЦТ 1G-CC-1 80,0-87,0, алюмосиликатные полые микросферы 10,0-15,0, стабилизирующая добавка редиспергируемый сополимер винилацетата и акрилата 3,0-5,0, понизитель фильтрации - оксиэтилцеллюлоза 0,2-0,3, пластификатор- полиэфиркарбоксилаты или вещество, активной составляющей которого является сульфированный меламинформальдегид 0,1-0,2, пеногаситель - модифицированный, кремнеорганический реагент ПОЛИЦЕМ ДФ 0,2-0,3, ускоритель сроков схватывания хлористый кальций 2,0-3,0, вода - остальное, при этом суммарное массовое содержание сухой смеси портландцемента, алюмосиликатных полых микросфер и стабилизирующей добавки составляет 100 масс.ч.; а по второму варианту облегченный газоблокирующий тампонажный материал содержит, масс.ч.: портландцемент тампонажный ПЦТ 1G-CC-1 76,0-86,0, алюмосиликатные полые микросферы, 10-16, стабилизирующая добавка редиспергируемый сополимер винилацетата и акрилата 3,0-6,0 и - реагент Conmix H2Ostop, активным действующим компонентом которого является силикат натрия 1,0-2,0, понизитель фильтрации - оксиэтилцеллюлоза 0,1-0,2, пластификатор - вещество, активной составляющей которого является сульфированный меламинформальдегид 0,1-0,2, пеногаситель - модифицированный кремнеорганический реагент ПОЛИЦЕМ ДФ 0,2-0,3 ускоритель сроков схватывания - этилсиликат-конденсат 0,5-2,0, вода 57-60, при этом суммарное массовое содержание сухой смеси портландцемента, алюмосиликатных полых микросфер, редиспергируемого сополимера винилацетата и акрилата и реагента Conmix H2Ostop составляет 100 масс.ч. 2 н.п. ф-лы, 2 табл.
Изобретение относится к композиции на основе нитрата карбамида для удаления карбонатных отложений, накипи, продуктов коррозии, высолов различного типа и иных продуктов, растворяющихся при взаимодействии с азотной кислотой. Композиция помимо нитрата карбамида содержит влагу не более 4% и фосфорсодержащий компонент в количестве до 1% (в пересчете на ортофосфорную кислоту). В качестве фосфорсодержащего компонента используются такие соединения фосфора, как ортофосфорная кислота и ее замещенные производные, например, оксиэтилидендифосфоновая кислота (ОЭДФК), нитрилотриметилфосфоновая кислота (НТФК), в т.ч. стехиометрически уравновешенные в композиции в виде соли, в частности в виде карбамидных солей. Также предложен способ получения композиции. Изобретение позволяет расширить арсенал химических средств для удаления карбонатных отложений, накипи, продуктов коррозии и иных продуктов. 2 н. и 2 з.п. ф-лы, 3 пр.

Группа изобретений относится к области бурения с использованием в качестве очистного агента газообразных текучих сред. Способ включает циркулирование системы буровой жидкости и эффективного количества пенообразующей композиции, состоящей из пенообразующего агента и стабилизирующего полимера, добавление газообразного агента в жидкость со скоростью, достаточной для образования пенного бурового раствора, и удаление вспененной буровой жидкости из скважины. Бурение осуществляют на саморазрушающейся пене, которую подают в скважину по замкнутому циркуляционному циклу посредством прокачивания через установку для циркуляции и регенерации саморазрушающейся пены путем нагнетания саморазрушающейся пены в колонну бурильных труб, направления потока саморазрушающейся пены со шламом горной породы после выноса из скважины по желобной системе в отстойник на регенерацию, выдерживания в отстойнике до саморазрушения, возвращения на стадию добавления газообразного агента для повторного вспенивания и возвращения в скважину. В качестве пенообразующей композиции используют композицию саморазрушающейся пены на основе карбамидных смол, предварительно модифицированных хлоридом аммония, сульфанола, хлоридов металлов второй группы и воды. Обеспечивает высокие показатели технических характеристик пены таких, как период полураспада и кратность пены, а также стабильность и устойчивость пены, улучшение экологической обстановки вокруг скважины, снижение себестоимости работ. 3 н. и 7 з.п. ф-лы, 4 ил., 9 табл.

Группа изобретений относится к системам и способам добычи нефти и/или газа с использованием смешивающегося их вытеснения из пласта. Обеспечивает повышение эффективности изобретений за счет существенной экономии энергии. Сущность изобретений: система для добычи нефти и/или газа содержит: механизм для выпуска в пласт, по меньшей мере, части серосодержащего соединения и механизм для переработки, по меньшей мере, части серосодержащего соединения в сероуглерод или оксисульфид углерода посредством реакционного взаимодействия, по меньшей мере, части серосодержащего соединения с углеводородом. При этом указанный механизм для переработки расположен внутри пласта. 2 н. и 19 з.п. ф-лы, 8 ил.
Изобретение предназначено для глушения скважин и может быть использовано на нефтегазодобывающих предприятиях. Технический результат - повышение эффективности глушения скважин с пластовым давлением выше гидростатического. Жидкость для глушения скважин включает, мас.%: глицерин 20,0-35,0; сульфацелл 1,5-2,0; аммоний йодистый 60,0-62,5; вода - остальное. 1 табл., 1 пр.

Изобретение относится к области нефте- и газодобывающей промышленности и может быть использовано для тампонирования каналов прорыва воды или газа в цементном камне за колонной, для ликвидации зон поглощений и обводненных зон пласта, в том числе высокопроницаемых и трещиноватых. Состав может быть также применен для ликвидации негерметичности резьбовых соединений и незначительных нарушений эксплуатационной колонны, для борьбы с поглощением при бурении скважин. Состав для изоляции заколонных перетоков и высокопроницаемых зон пласта содержит 100 масс.ч. этилового или метилового эфира ортокремневой кислоты или их смеси, 15-50 масс.ч. полярного растворителя, 1-3 масс.ч. хлорида металла IV-VIII групп, добавку - фиброволокно полипропиленовое в количестве 0,1-0,5 масс.ч. Технический результат - обеспечение регулируемого времени отверждения, получение укороченного времени потери текучести, увеличение эффективности изоляционных работ при ликвидации заколонных перетоков воды и газа и тампонировании высокопроницаемых и трещиноватых зон пласта, обеспечение более продолжительного тампонирующего эффекта за счет увеличения прочности отвержденного полимера и уменьшения его синерезиса. 1 табл.
Изобретение относится к композициям и способам извлечения углеводородных флюидов из подземного месторождения. Предложена композиция для изменения водопроницаемости подземного пласта, включающая расширяемые полимерные микрочастицы, которые включают гидрофобные полимеры, содержащие лабильные боковые группы, где микрочастицы имеют средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм, указанные гидрофобные полимеры включают сложный эфир акриловой кислоты и сомономеры, сополимеризованные со сложным эфиром акриловой кислоты и лабильные боковые группы являются гидролизуемыми. Предложен также способ изменения водопроницаемости подземного пласта, включающий закачивание в подземный пласт предложенной композиции. Технический результат - возможность упрощенного регулирования водопроницаемости подземного пласта за счет улучшенного распространения микрочастиц в структуре месторождения без использования флюида, иного, чем флюид месторождения. 2 н. и 16 з.п. ф-лы, 2 табл., 11 пр.

Изобретение относится к растворам для глушения скважин. Способ обработки подземного пласта включает: закачивание в обсаженный, перфорированный ствол скважины, который рассекает пласт, раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; контакт пласта с раствором для глушения скважины и предоставление возможности разлагаемому материалу, по меньшей мере, частично разложиться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; закачивание этого раствора в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, позволяя разлагаемому материалу разрушаться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; помещение раствора для глушения скважины в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, в котором гидролиз разлагаемого материала разрушает фильтрационную корку. Технический результат - снижение эффективности поступления и истечения флюидов между пластом и стволом скважины и минимизация повреждения пласта. 3 н. и 22 з.п. ф-лы, 2 табл., 5 ил.
Изобретения относятся к улучшенному способу вторичной добычи нефти. Технический результат - усовершенствование введения ингибитора отложений на стенках оборудования, повышение эффективности извлечения нефти, увеличение срока службы конструкций. Способ вторичного извлечения нефти включает стадию введения в систему резервуара от 0,1 до 100000 ч./млн аминоалкиленфосфоновой кислоты, выбранной из специально заданной группы соединений в сочетании с аминным нейтрализующим агентом, выбранным из специально заданной группы соединений при условии, что аминный нейтрализующий агент представлен сочетанием, по меньшей мере, двух структурно различных аминных типов, причем первый является более гидрофобным, имеющим величину гидрофильно-липофильного баланса, которая, по меньшей мере на 2 единицы меньше, чем величина гидрофильно-липофильного баланса второго, указанный первый и указанный второй аминные типы применяют в эквивалентных пропорциях первый (более гидрофобный):второй (более гидрофильный) в интервале от 10:1 до 2:5. 2 н. и 11 з.п. ф-лы.
Наверх